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Efficient embedding of complex 
networks to hyperbolic space via 
their Laplacian
Gregorio Alanis-Lobato, Pablo Mier & Miguel A. Andrade-Navarro

The different factors involved in the growth process of complex networks imprint valuable information 
in their observable topologies. How to exploit this information to accurately predict structural 
network changes is the subject of active research. A recent model of network growth sustains that the 
emergence of properties common to most complex systems is the result of certain trade-offs between 
node birth-time and similarity. This model has a geometric interpretation in hyperbolic space, where 
distances between nodes abstract this optimisation process. Current methods for network hyperbolic 
embedding search for node coordinates that maximise the likelihood that the network was produced 
by the afore-mentioned model. Here, a different strategy is followed in the form of the Laplacian-based 
Network Embedding, a simple yet accurate, efficient and data driven manifold learning approach, 
which allows for the quick geometric analysis of big networks. Comparisons against existing embedding 
and prediction techniques highlight its applicability to network evolution and link prediction.

The gradual addition of nodes and edges to a network, a common representation of the relationships between 
complex system components, imprints valuable information in its topology. Consequently, development of tech-
niques to mine the structure of networks is crucial to understand the factors that play a role in the formation of 
their observable architecture.

Strong clustering and scale-free node degree distribution, properties common to most complex networks, 
have served as the basis for the establishment of tools for link prediction1, community detection2, identification of 
salient nodes3, and so on. In addition, several models that aim to mimic the evolution and formation of networks 
with the above-mentioned characteristics have been introduced4. Of special interest are a series of models that 
assume the existence of a hidden geometry underlying the structure of a network, shaping its topology5–12 (we 
refer the reader to13 for an extensive review on the subject). This is justified by the fact that complex networks 
possess characteristics commonly present in geometric objects, like scale invariance and self-similarity7,14–16.

One of such models is the so-called Popularity-Similarity (PS) model, which sustains that clustering and 
hierarchy are the result of an optimisation process involving two measures of attractiveness: node popularity and 
similarity between nodes12. Popularity reflects the property of a node to attract connections from other nodes 
over time, and it is thus associated with a node’s seniority status in the system. On the other hand, nodes that are 
similar have a high likelihood of getting connected, regardless of their rank.

The PS model has a geometric interpretation in hyperbolic space, where the trade-off between popularity and 
similarity is abstracted by the hyperbolic distance between nodes9,12. Short hyperbolic distances between them 
correlate strikingly well with high probabilities of link formation12. This means that mapping a network to hyper-
bolic space unveils the value of the variables in charge of shaping its topology (popularity and similarity in this 
case), allowing for a better understanding of the dynamics accountable for the system’s growth process.

Current efforts to infer the hyperbolic geometry of complex networks bet for a Maximum Likelihood 
Estimation (MLE) approach, in which the space of PS models with the same structural properties as the network 
of interest is explored, in search for the one that better fits the network topology12,17,18. This search is computa-
tionally demanding, which means that these methods require of correction steps or heuristics in order to make 
them suitable for big networks18.

In this paper, a different strategy is followed. Inspired by the well-established field of non-linear dimension-
ality reduction in Machine Learning19, an adaptation of the Laplacian Eigenmaps algorithm, introduced by 
Belkin and Niyogi for the low-dimensional representation of complex data20, is put forward for the embedding of 
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complex networks into the two-dimensional hyperbolic plane. The proposed approach is based on the approxi-
mate eigen-decomposition of the network’s Laplacian matrix, which makes it quite simple yet accurate and effi-
cient, allowing for the analysis of big networks in a matter of seconds. Furthermore, it is data driven, which means 
that no assumptions are made about the model that constructed the network of interest. Finally, benchmarking 
of the method against existing embedding and prediction techniques highlights the advantages of using it for the 
prediction of new links between nodes and for the study of network evolution.

Results
Preliminaries and the proposed method.  In this paper, only undirected, unweighted, single-component 
networks are considered, as the proposed embedding approach is only applicable to networks with these proper-
ties20. Moreover, these networks are assumed to be scale-free (with scaling exponent γ ∈ [2, 3]) and with clustering 
coefficient c significantly larger than expected by chance. These networks are graphs G = (V, E) with N = |V| nodes 
and L = |E| edges connecting them. An undirected, unweighted graph can be represented by an N × N adjacency 
matrix Ai,j = Aj,i ∀i, j, whose entries are 1 if there is an edge between nodes i and j and 0 otherwise. The graph 
Laplacian is a transformation of A given by L = D − A, where D is a matrix with the node degrees on its diagonal 
and 0 elsewhere.

Let us now consider a real-valued function on the set of network nodes, →f V: , which assigns a real num-
ber f (i) to each graph node. If the Laplacian acts as an operator over this function, Lf (i) = ∑jAi,j(f (i) − f (j)), one 
can see that it is giving information about how the value of f for each node i compares to that of its neighbours j21. 
This is the discrete analogue of the Laplace operator in vector calculus and its generalisation in differential geom-
etry, the Laplace-Beltrami operator20, which measure how much the curvature of a surface is changing at a given 
point. This is more evident if one thinks of a function as being approximated by a graph, such that nodes have 
more edges where the value of the Laplacian is greater (see Fig. 1).

In particular, embedding of the network to the two-dimensional hyperbolic plane 2, represented by the 
interior of a Euclidean circle9, is given by the N × 2 matrix Y = [y1, y2] where the ith row, Yi, provides the embed-
ding coordinates of node i. Using the Laplacian operator (see above), this corresponds to minimising 
∑ − =‖ ‖A Y Y tr Y LY( )i j i j i j

T1
2 , ,

2 , which reduces to = =Y Y LYmin tr( )emb Y DY I
T

T  with D as defined above, I the 
identity matrix, MT the transpose of M and tr(M) the trace of M. Finally, Yemb, the matrix that minimises this 
objective function, is formed by the two eigenvectors with smallest non-zero eigenvalues that solve the general-
ised eigenvalue problem LY = λDY20 (see Section 1 in the Supplementary Information for a detailed justification 
of this embedding approach).

In the context of manifold learning, most algorithms rely on the construction of a mesh or network over the 
high-dimensional manifold containing the samples of interest19,22. When pairwise distances between samples are 
computed, they correspond to shortest-paths over the constructed network, allowing for a better preservation 
of the sample relationships when the data is embedded to low dimensions19,20,22,23. If there is really a hyperbolic 
geometry underlying a complex network, it should lie on a hyperbolic plane, with nodes drifting away from the 
space origin. If the network itself is seen as the mesh that connects samples (nodes in this case) that are close to 
each other12, it can be used as in manifold learning to recover the hyperbolic coordinates of its nodes. Connected 
pairs of nodes in the network should be very close to each other in the target, low-dimensional space (hence the 
minimisation problem presented above) and, consequently, their angular separation (governed by their similarity 
dimension according to the PS model) should also be small. Figure 2a shows that, if the described embedding 

Figure 1.  The graph Laplacian. A three-dimensional surface is depicted by a contour plot overlaid on a heat 
map. The surface is approximated by a network, whose nodes have more edges where the value of its Laplacian is 
greater (red region of the heat map). Let a function →f V:  act on each of the N nodes and produce its 
degree. The network’s Laplacian, a discrete version of the one acting on the surface, can be used as an operator 
on f (i), giving information about how the degree of each node i compares to that of its neighbours j, i.e. ∑j Ai, j(f 
(i) – f (j)). Node size is proportional to node degree. The numbers labelling each node indicate their row/column 
in the Laplacian matrix.
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approach is employed, this is indeed the case for an artificial network generated with the PS model (see the 
Methods for more details).

As a result, to complete the mapping to 2, angular node coordinates are obtained via θ = arctan(y2/y1) and 
radial coordinates (abstracted by the popularity or seniority dimension in the PS model) are chosen so as to 
resemble the rank of each node according to its degree. This is achieved via ri = 2β ln(i) + 2(1 − β) ln(N), where 
nodes i = {1, 2, …, N} are the network nodes sorted decreasingly by degree and β = 1/(γ − 1)9,12 (see Fig. 2b and 
the Methods for further details).

This strategy is valid, because the native representation of 2, in which the hyperbolic space is contained in a 
Euclidean disc and Euclidean and hyperbolic distances from the origin are equivalent, is a conformal model. This 
means that Euclidean angular separations between nodes are also equivalent to hyperbolic ones9. On the other 
hand, the radial arrangement of nodes corresponds to a quasi-uniform distribution of radial coordinates in the 
disc9. It is also important to mention that, due to rotational invariance of distances, the set of hyperbolic coordi-
nates responsible for the edges observed in a network is not unique (see Fig. 2b). Therefore, the goal of the pro-
posed technique is not to find a specific set of coordinates, but the one that corresponds better with the hyperbolic, 
distance-dependent connection probabilities that produce the network of interest.

The network embedding approach described in this section and in Table 1 is hereafter referred to as 
Laplacian-based Network Embedding (LaBNE).

Benchmarking LaBNE.  In order to test the ability of LaBNE to infer the hyperbolic geometry of complex 
networks, artificial networks were generated using the PS model. This model allows for the construction of net-
works with known hyperbolic coordinates for each of its N nodes and target average node degree 2m, scaling 
exponent γ and clustering coefficient c. The latter is controlled by the network temperature T, is reduced almost 

Figure 2.  Laplacian-based Network Embedding. (a) A network of 750 nodes was generated by means of the 
PS model, with target average node degree 2m = 10, scaling exponent γ = 2.75 and network temperature T = 0. 
The network is embedded to the hyperbolic plane 2 with LaBNE to reveal the angular position of the nodes in 
the hyperbolic circle containing the network. (b) Finally, the radial coordinates of the nodes are assigned, so that 
they resemble the rank of each node according to its degree. By the colour of the nodes, which highlights their 
angular coordinates, one can note that the embedding by LaBNE is rotated by some degrees with respect to the 
actual node angular coordinates obtained with the PS model. This does not impact the hyperbolic, distance-
dependent connection probabilities, because distances are invariant under rotations. Edges in the raw 
embedding by LaBNE are not shown for clarity.

Input: A, the N × N adjacency matrix representing network G = (V, E)
Output: Y 2, the hyperbolic coordinates for the set of nodes V

Compute the average node degree of the network 2m
Determine the network’s scaling exponent γ
β ← 1/(γ − 1)
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Compute the degree matrix D
L ← D − A
Embed G to 2 via Lvk+1 ≈ λk+1Dvk+1 with k = 2
Since the smallest eigenvalue is 0, Yemb = [y1 = v2, y2 = v3]
Sort nodes decreasingly by degree and label them i = {1, 2, …, N}
Assign each node with radial coordinates r(i) = 2β ln(i) + 2(1 − β) ln(N)
θ ← arctan(y2/y1)
Finally,  θ←Y r[ , ]2

Table 1.   Laplacian-based Network Embedding (LaBNE). Note that to embed a network G to 2, the 
truncated spectral decomposition of L is used. This gives the closest approximation to the eigen-decomposition 
by a matrix λk+1 of rank k + 1 and ensures that the computational complexity of LaBNE is O(N2).
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linearly with T and is the strongest possible at T = 09 (see Methods for more details). One hundred synthetic net-
works were grown for each combination of parameters T = {0, 0.3, 0.6, 0.9}, 2m = {4, 6, 8, 10} and γ = {2.25, 2.50, 
2.75}; the number of nodes N was fixed to 500. These networks were then mapped to 2 with LaBNE, and Pearson 
correlations between the inferred hyperbolic distances and the ones measured with the real node coordinates 
were computed and averaged across the one hundred networks for each parameter configuration. This same pro-
cedure was followed for the most recent and fastest version of HyperMap, a MLE method for network embedding 
to hyperbolic space that finds node coordinates by maximising the likelihood that the network is produced by the 
PS model17,18 (see Methods for details).

Figure 3a shows how the average correlation for each parameter combination, obtained by LaBNE, is as high 
or higher than the one obtained by HyperMap. This is especially evident in dense, strongly clustered networks  
(i.e. networks with large 2m and T → 0, which implies high c). These results are supported by the fact that angular 
coordinates inferred by LaBNE are closer to the angles from the generated PS networks, compared to the ones 
inferred by HyperMap (see Figure S1).

Figure 3.  Benchmarking LaBNE. (a) For each combination of the depicted parameters N = 500, γ, T and 2m, 
100 artificial networks were generated with the PS model. Each network was embedded to the hyperbolic plane 
with LaBNE and the most recent and fastest version of HyperMap, and the Pearson correlation between the real 
node distances and the inferred ones was computed. The average Pearson correlation across the 100 networks is 
shown for each parameter combination. (b) The average time required by HyperMap and LaBNE to embed each 
of the 100 artificial networks per parameter configuration was compared via the fold-change from the latter to 
the former. In this case, T was fixed to 0 and N changed from 250 to 1000.
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To provide an in-depth analysis of the differences in time performance of the two algorithms, an experiment 
similar to the one presented in Fig. 3a was carried out, but this time parameter T was fixed to 0 and the network 
size changed as N = {250, 500, 750, 1000}. Figure 3b depicts that the fold-change from the average time needed 
by LaBNE to embed each of the one hundred networks per parameter configuration to the average time needed 
by HyperMap to perform the same task is very big, the latter being 500 times slower than LaBNE for the smallest 
networks. These results highlight one of the great benefits of LaBNE, its time performance, which stems from its 
computational complexity of O(kN2) with k = 3. In a network with a single connected component, the smallest 
eigenvalue of L is always 021 and its corresponding eigenvector is discarded. The next two, which correspond to 
the smallest non-zero eigenvalues, form the resulting node coordinates. Since k is always constant, LaBNE can be 
considered a O(N2) algorithm.

In spite of the version of HyperMap considered here being a O(N2) method as well18 (see Methods for details), 
Fig. 3b shows that it is slower than LaBNE. This is because the heuristic used to speed up this algorithm is not 
actually applied to all N nodes in the network of interest, but only to those with degrees smaller than a parameter 
kspeedup

18 (see Methods for details). The larger the value of this parameter, the faster the algorithm, but also the 
higher the impact on its accuracy. It was set to 10 throughout this paper, which produced good results in a reason-
able amount of time. On the other hand, LaBNE takes advantage of the efficiency and portability of the R package 
igraph24 and its interface with high-performance subroutines designed to solve large scale eigenvalue problems25.

Hyperbolic embedding for link prediction in real networks.  Given the accuracy and time perfor-
mance achieved by LaBNE, and considering that short hyperbolic distances correlate well with high probabilities 
of connection between nodes12, LaBNE was used to infer the hyperbolic coordinates for the nodes of three real 
networks (see Table 2 and Methods) to then carry out link prediction. As discussed in the previous section, 
Figure 3 shows that the accuracy of LaBNE is higher for networks with more topological information, i.e. with 
more edges between nodes, which occurs at high average node degrees (2m) and low temperatures (which imply 
high clustering c). Consequently, the three real networks analysed here were chosen with the aim to investigate the 
performance of LaBNE in the low, medium and high clustering coefficient scenarios (see Table 2). Furthermore, 
these network datasets represent complex systems from different domains: the high quality human protein inter-
action network (PIN) models the relationships between proteins within the human cell (low c), in the 
Pretty-Good-Privacy network (PGP) users share encryption keys with people they trust (medium c) and the 
autonomous systems Internet (ASI) corresponds to the communication network between groups of routers (high 
c, see the Methods for more details).

Topological link prediction deals with the task of predicting links that are not present in an observable net-
work, based merely on its structure. The standard way to evaluate the performance of a link predictor is to ran-
domly remove a certain number of links from the network under study, use a predictor to assign likelihood scores 
to all non-adjacent node pairs in the pruned topology, sort the candidate links from best to worst based on their 
scores, to finally scan this sorted list of candidates with a moving threshold to compute Precision (fraction of 
candidate links that pass the current score threshold and are in the set of removed links) and Recall (fraction of 
candidate links that have not passed the score threshold but are in the set of removed links) statistics1,26.

The above-described evaluation framework comes, however, with a critical caveat. Pruning edges at random 
can remove important information from the observable network topology in unpredictable ways, and this most 
certainly affects link predictors differently26. To avoid this problem, historical data of the evolution of the network 
must be used to test the ability of a link predictor to assign high likelihood scores to edges in a network Gt + 1 that 
are not yet present in a snapshot Gt, to which the predictor is applied. For the ASI27 and the PGP, temporal snap-
shots of their topology were available and this evaluation method was used (see networks with subscript t + 1 in 
Table 2). For the PIN28, it was necessary to resort to the so-called Guilt-by-association Principle29, which states 
that two proteins are highly likely to interact if they are involved in the same biological process. In this scenario, 
link predictors are applied to the observable protein network and discrimination between good and bad candidate 
interactions is based on a stringent cut-off on a measure of the similarity between the biological processes of the 
non-adjacent proteins (see the Methods for more details).

Network N L 2m γ c LaBNE (s) HyperMap (d)

PIN 6906 39303 11.38 2.84 0.20 6.23 0.57

PGPt 14367 37900 5.28 2.14 0.47 44.67 1.71

PGPt+1 31524 168559 10.69 2.10 0.38 56.22 5.79

ASIt 24091 59531 4.94 2.12 0.60 49.73 3.59

ASIt+1 34320 128839 7.51 2.14 0.71 63.81 6.43

Table 2.   The three real networks analysed in this paper. The high quality protein interaction network (PIN), 
the Pretty-Good-Privacy web of trust (PGP) and the autonomous systems Internet (ASI). The number of nodes 
N and links L, average node degree 2m, scaling exponent γ, clustering coefficient c, and embedding times in 
seconds (s) for LaBNE and in days (d) for the most recent and fastest version of HyperMap are reported for each 
network. For PGP and ASI, the two temporal snapshots used in this paper are also listed. To embed all these 
networks, HyperMap was fed with the values of γ and m reported in this table, T was set to the values that 
produce PS artificial networks with the same N, 2m, γ and c (0.70, 0.33, 0.55, 0.40 and 0.15 respectively) and the 
algorithm’s speed-up heuristic was applied to nodes with degree k < kspeedup = 10. It is worth noting that the 
performance of HyperMap was reported not to be considerably impacted by the choice of T18.
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Figure 4a–c shows the performance in link prediction of LaBNE, HyperMap and a set of neighbourhood-based 
link predictors that are commonly considered for benchmarking in this context (see Methods). As expected from 
the results on artificial networks (Fig. 3a), the performance of both LaBNE and HyperMap improves as cluster-
ing increases. The worst results are thus obtained in the PIN (Fig. 4a). However, LaBNE is the only prediction 
technique that allows for more Recall without sacrificing as much Precision as the others. The performance of 
HyperMap in this network is bad because, as it can be seen in Fig. 3a and S1b, its application should be restricted 
to highly clustered networks. In the other two cases (Fig. 4b,c), LaBNE is the second best performing method in 
terms of area under the Precision-Recall curve, only slightly behind HyperMap. These are very good results con-
sidering that LaBNE can obtain reliable link predictions in these big networks in a matter of seconds, while the 
current implementation of the most recent and fastest version of HyperMap requires days to produce the results 
(see Table 2).

Regarding the performance of the neighbourhood-based link predictors, it is important to highlight their 
good Precision at low Recall levels. This is mainly due to the fact that they are only able to assign meaningful 
scores to node pairs separated by at most two hops, which is a very small fraction of all possible candidate edges. 
The rest obtain the exact same score, which prevents from differentiating between good and bad candidate inter-
actions and results in the rapid drop of Precision observed in Fig. 4a–c.

Hyperbolic embedding for real network evolution analysis.  In the PS model, radial coordinates are 
directly proportional to node birth-times, i.e. if a node i is close to the origin of the hyperbolic circle containing 
the network (ri → 0), it means it was born early in the evolution of the complex system12. To test whether this is 
the case in the most recent temporal snapshot of the three real networks considered (PIN, PGP and ASI), node 
radial coordinates inferred by LaBNE were compared to actual node birth-times (see the Methods for details on 
how birth-times are defined for each real network; HyperMap was not used here as it practically produces the 
same radial coordinates as LaBNE).

Figure 5a–c shows that in the three cases, nodes that are close to the centre of the hyperbolic space are older 
than those located in its periphery. Even all nodes from the first network snapshot in the PGP and ASI, which 
represent a mix of nodes that appeared at that time and nodes from older, not available time-points, possess small 
radial coordinates (Fig. 5b,c).

These are very important results, because they exhibit the close relationship between node popularity and 
seniority in networks of very different objects and time scales. The results obtained with LaBNE suggest that, even 
when the identity of the network nodes is unknown, one can have an idea of their history in the system under 
study, based merely on their degree and, consequently, their inferred radial positions.

Conclusions
Scale-invariance, self-similarity and strong clustering, properties present in complex systems and geometric 
objects alike, have led to the proposal that the network representations of the former lie on a geometric space 
where distance constraints play important roles in the formation of links between system components8,9,12,30. One 
of such proposals advocates for the hyperbolic space as a good candidate to host complex networks, given that 
their skeletons (trees abstracting their underlying hierarchical structure) require an exponential space to branch 
and only hyperbolic spaces expand exponentially9.

Figure 4.  Link prediction in real networks. Precision-Recall curves for the three networks analysed: (a) the 
high quality protein interaction network (PIN), (b) the Pretty-Good-Privacy web of trust (PGP) and (c) the 
autonomous systems Internet (ASI). Note that despite LaBNE being an approximate method, its performance 
is similar to HyperMap’s, especially on strongly clustered networks like the ASI. The performance of other 
topological link predictors - the Common Neighbours index (CN), the Dice Similarity (DS), the Adamic and 
Adar index (AA) and the Preferential Attachment index (PA) - is also shown. Some curves start late in these 
plots, because the first set of best candidate links considered produced high Recall levels right away.



www.nature.com/scientificreports/

7Scientific Reports | 6:30108 | DOI: 10.1038/srep30108

In consequence, efficient and accurate methods to embed networks to hyperbolic space are needed. In this 
article, a novel approach to perform this task is proposed: the Laplacian-based Network Embedding or LaBNE. 
Since it is based on a transformation of the adjacency matrix representation of a network, namely the graph 
Laplacian, it highly depends on topological information to carry out good embeddings. This was confirmed when 
applied to artificial and real networks with differing structural characteristics. The higher the average node degree 
(2m) and clustering coefficient (c) of a network, the better the results achieved by LaBNE. Nevertheless, its low 
computational complexity allows for the study of the hyperbolic geometry of big networks in a matter of seconds. 
This means that LaBNE is suited to draft a geometric configuration of a network, which can then be used by more 
involved and time consuming techniques, thus reducing the space of possible node coordinates they have to 
explore.

Notwithstanding the fact that techniques for embedding networks to generic low-dimensional spaces have 
been proposed to facilitate their visualisation and analysis19,20,22,23,30–33, it is important to stress that LaBNE deals 
specifically with the embedding to the two-dimensional hyperbolic plane. This space has been shown to provide 
an accurate reflection of the geometry of real networks9,12 (see Figs 4 and 5) and allows for their visual inspection 
in two or three dimensions (see Figure S2). However, LaBNE does not make any a priori assumption about the 
model or mechanism that led to the formation of the network of interest. Thus, the distance-dependent connec-
tion probabilities resulting from the mapping to 2 serve as the basis to determine if such a space is suitable for 
the network or not. For example, networks grown with the Barabasi-Albert model14 are infinite-dimensional 
hyperbolic networks34, but short distances between their nodes, measured with the coordinates inferred by 
LaBNE or HyperMap in 2, are not indicative of link formation in this space (see Figure S3). The in-depth study 
of networks with high-dimensional latent spaces or their embedding to d (with d > 2) are of great interest, but 
beyond the scope of this article.

Finally, although this work did not intend to provide an extensive comparison between link predictors or a 
thorough analysis of the evolution of real networks, it is important to note that LaBNE performed very well in 
these two type of studies when applied to a biological, a social and a technological network. These represent a 
few example scenarios in which the inference of the hyperbolic geometry underlying a network could be useful.

Methods
The PS model.  The PS model12 on the hyperbolic plane of curvature K = −1 is formulated as follows: (1) 
initially the network is empty; (2) at time t ≥ 1, a new node t appears at coordinates (rt, θt) with rt = 2 lnt and θt 
uniformly distributed on [0, 2π], and every existing node s < t increases its radial coordinate according to rs(t) = β 
rs + (1 − β) rt with β = 1/(γ − 1) ∈ [0, 1]; (3) new node t picks a randomly chosen node s < t that is not already 
connected to it and links with it with probability = + −p x e( ) 1/[1 ]st

x R T( )/2st t , where parameter T, the network 
temperature, controls the network’s clustering coefficient, = − 






β π

−
−

β− −

R r 2 lnt t
T e
m T

2 (1 )
(1 )sin( )

rt(1 ) /2
 is the current radius of 

the hyperbolic circle containing the network, xst = rs + rt + 2ln(θst/2) is the hyperbolic distance between nodes s 
and t and θst is the angle between the nodes; (4) repeat step 3 until node t gets connected to m different nodes; (5) 

Figure 5.  Inferred radial coordinates resemble actual node birth-times. Senior nodes of the three networks 
analysed - (a) the high quality human protein interaction network (PIN), (b) the Pretty-Good-Privacy web of 
trust (PGP) and (c) the autonomous systems Internet (ASI) - have radial coordinates that are close to the centre 
of the hyperbolic disc containing the network, as opposed to younger nodes, which are placed in the circle’s 
periphery. The numbers above each box-plot indicate the number of network nodes that were assigned to the 
corresponding birth-time.
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repeat steps 1–4 until the network is comprised of N nodes. Note that if T → 0, = − 





π β

−
−

β− −

R r 2 lnt t
e

m
2(1 )

(1 )

rt(1 ) /2
. In 

addition, if β = 1/(γ − 1) = 1, existing nodes do not change their radial coordinates and Rt = 2lnt.

Radial arrangement of nodes in LaBNE.  As described above, new nodes in the PS model acquire radial 
coordinates rt = 2lnt that depend on their birth-time t. This means that the probability of finding a node that is 
close to the centre of the hyperbolic circle containing the growing network, is exponentially lower than the proba-
bility to find a node on the periphery. When a new node is added to the system and the existing ones change their 
radial position according to rs(t) = β rs + (1 − β) rt, where β = 1/(γ − 1), their seniority is attenuated by increasing 
their distances to every newly added node12. Consequently, the N angular coordinates found by LaBNE are comple-
mented with the nodes’ radial coordinates obtained via ri = 2β ln(i) + 2(1 − β) ln(N), where nodes i = {1, 2, …, N}  
are the network nodes sorted decreasingly by degree.

HyperMap.  HyperMap17 is a Maximum Likelihood Estimation method to embed a network to hyperbolic 
space. It finds node coordinates by replaying the network’s hyperbolic growth and, at each step, maximising the 
likelihood that it was produced by the PS model17. For embedding to the hyperbolic plane of curvature K = −1 it 
works as follows: (1) nodes are sorted decreasingly by degree and labelled i = {1, 2, …, N} from the top of the 
sorted list; (2) node i = 1 is born and assigned radial coordinate r1 = 0 and a random angular coordinate θ1 ∈ [0, 
2π]; (3) for each node i = {2, 3, …, N}: (3.1) node i is born and assigned radial coordinate ri = 2lni; (3.2) the radial 
coordinate of every existing node j < i is increased according to rj(i) = β rj + (1 − β) ri; (3.3) node i is assigned the 
angular coordinate θi maximising the likelihood = ∏ −≤ <

−p x p x( ) (1 ( ))L
i

j i ij
e

ij
e

1
1ij ij . β and p(xij) are defined as 

in the PS model and eij is 1 if nodes i and j are connected and 0 otherwise. The maximisation of L
i  is performed 

numerically by trying different values of θ in [0, 2π], separated by intervals Δθ = 1/i, and then choosing the one 
that produces the greatest L

i .
Since the angular coordinates yielded by this link-based likelihood are not very accurate for small i  

(i.e. for high degree nodes)17, the fast version of HyperMap used in this paper uses information on the  
final number of common neighbours between these old nodes via the maximisation of the log-likelihood 

 σ θ θ= − − ∑ − ∑π
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=
− −
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, where μ is the mean number of com-

mon neighbours nij between i and j and σ2 is the associated variance18. This hybrid version of HyperMap is O(N3) 
and to speed it up, Papadopoulos and colleagues resort to the following heuristic: for nodes i with degree 
ki < kspeedup, an initial estimate θi

init of their angular coordinate is computed by considering only the previous nodes 
j < i that are their neighbours; these estimates are then refined, searching for the final θi within a small region 
around θi

init. The fast hybrid version of HyperMap with kspeedup = 10 is the one used throughout this work. We refer 
the reader to18 for more details on the speed-up heuristic and the derivation of CN

i . Finally, even when correction 
steps can be used together with the fast hybrid HyperMap, their effect on this method has been reported not to be 
significant18 and they are not considered here.

Network datasets.  For the three network datasets used in this paper, self-loops and multiple edges were 
discarded and only the largest connected component was considered.

The high-quality protein interaction network (PIN) is a stringent subset of the Human Integrated 
Protein-Protein Interaction rEference (HIPPIE)28. HIPPIE retrieves interactions between human proteins from 
major expert-curated databases and calculates a score for each one, reflecting its combined experimental evi-
dence. This score is a function of the number of studies supporting the interaction, the quality of the experi-
mental techniques used to measure it and the number of organisms in which the orthologs of the interacting 
human proteins interact as well. In this paper, only interactions with confidence scores ≥0.73 (the upper quartile 
of all scores) in release 1.7 were considered. The raw version of this network is available at http://cbdm-01.zdv.
uni-mainz.de/ mschaefer/hippie/download.php. To determine the birth-time of the PIN nodes, proteins from the 
manually curated database SwissProt were clustered based on near full-length similarity and/or high threshold of 
sequence identity using FastaHerder235. If proteins from two evolutionarily distant organisms are present in one 
cluster, this suggests that the protein family is ancient. The minimum common taxonomy from all proteins that 
are part of a cluster was taken as an indication of the cluster’s age. Each node of the PIN was assigned to one of the 
following age clusters: Tree of Life Root, Metazoa, Chordata, Mammalia, Euarchontoglires or Primates/Human.

Pretty-Good-Privacy (PGP) is a data encryption and decryption program for secure data communication. 
In a PGP web of trust, each user (node) knows the public key of a group of people he trusts. When user A wants 
so send information to user B, this information is encrypted with B’s public key and signed with A’s private key. 
When B receives the information, he verifies that the message is coming from one of the users he trusts and 
decrypts it with his private key36. This encryption and decryption event, forms a directed link between users A 
and B. In this article, however, the edge directionality of this network is not considered. This is not a problem for 
the interpretation of the network if we assume that by sharing a key, two users reciprocally endorse their trust 
in each other12. The four temporal snapshots of the undirected PGP network used here, which were collected by 
Jörgen Cederlöf 37, were used to assign a birth-time for each user based on the snapshot in which he first appeared. 
The snapshots correspond to April and October 2003, December 2005 and December 2006. The raw PGP data is 
available at http://www.lysator.liu.se/ jc/wotsap/wots2/.

The autonomous systems Internet (ASI) corresponds to the communication network between IPv4 Internet 
sub-graphs comprised of routers, as collected by the Center for Applied Internet Data Analysis27. The six available 
network snapshots, spanning the period from September 2009 to December 2010 in 3-month intervals, were used 

http://cbdm-01.zdv.uni-mainz.de/%20mschaefer/hippie/download.php
http://cbdm-01.zdv.uni-mainz.de/%20mschaefer/hippie/download.php
http://www.lysator.liu.se/%20jc/wotsap/wots2/


www.nature.com/scientificreports/

9Scientific Reports | 6:30108 | DOI: 10.1038/srep30108

to determine the birth-time of each autonomous system based on the snapshot in which it first appeared. These 
Internet topologies are available for download at https://bitbucket.org/dk-lab/2015_code_hypermap.

Link prediction.  The performance of LaBNE and HyperMap in link prediction was compared to that of ref-
erence neighbourhood-based link predictors. They receive this name because the scores they produce are usually 
based on how much overlap there is between the neighbourhoods of non-adjacent pairs of nodes in a network. 
These unlinked nodes are often called seed nodes.

The simplest predictor considered was the Common Neighbours (CN) index, which just counts the number 
of common neighbours between seed nodes38. The other indices examined were the Dice Similarity (DS), which 
is one of the possible normalisations of CN39; the Adamic and Adar (AA) index, which assigns higher likelihood 
scores to seed nodes whose CNs do not interact with other components40; and the Preferential Attachment index 
(PA), which is simply the degree product of the seed nodes38. The formulae for these indices are, respectively: 
CN(x, y) = |Γ(x) ∩ Γ(y)|, DS(x, y) = 2CN(x, y)/(|Γ(x)| + |Γ(y)|), Γ= ∑ ∩Γ Γ∈AA x y z( , ) 1/log ( ( ))z x y( ) ( ) 2  and 
PA(x, y) = |Γ(x)||Γ(y)|, where Γ(x) is the set of neighbours of x and |Γ(x)| is the set cardinality.

The embedding- and neighbourhood-based predictors were applied to all the seed nodes of a network snap-
shot Gt, these node pairs were later sorted from best to worst score. This sorted list was scanned with a moving 
score threshold from top to bottom to compute the proportion of candidate interactions taken that coincide 
with the set of new edges in Gt+1 (Precision) and the proportion of candidate interactions not taken at each 
threshold but that belong to the set of new edges present in Gt+1 (Recall). This allowed for the construction of a 
Precison-Recall curve for each of the predictors considered.

For the PGP, Gt has 14367 nodes and 37900 edges (snapshot from April 2003), while Gt+1 has 31524 nodes and 
168559 edges (all the nodes and edges from April 2003 to December 2006). Note, however that only the 62547 
new links between the same set of 14367 nodes present in Gt are considered.

For the ASI, Gt has 24091 nodes and 59531 edges (snapshot from September 2009), while Gt+1 has 34320 
nodes and 128839 edges (all the nodes and edges from September 2009 to December 2010). Note, however that 
only the 48119 new links between the same set of 24091 nodes present in Gt are considered.

For the PIN, it was necessary to follow a different procedure, as edge timestamps are not available for this 
network. When the performance of a link predictor is assessed in protein networks, researchers have opted for 
using Gene Ontology (GO) similarities to discriminate between good and bad candidate interactions30,32,41,42. This 
is based on the Guilt-by-association Principle, which states that if two proteins are involved in similar biological 
processes, they are more likely to interact29. So, the link predictors were applied to the non-adjacent protein pairs 
in the observable network topology of the PIN and then sorted from best to worst score. The GO similarity of the 
top 10% candidate links was then computed, together with the proportion of protein pairs with similarities ≥0.75. 
This percentage corresponds to the precision of the link predictors reported for the PIN.

To compute GO similarities the R package GOSemSim was utilised43. Although this package provides different 
indices to measure similarities between proteins, Wang’s index was used because it was formulated specifically for 
the GO44. GO similarities on the high end of the range [0, 1] are normally good indicators of a potential protein 
interaction44. However, a threshold of 0.544 was preferred in this study, as it corresponds to the upper quartile of 
all the GO similarities of connected protein pairs in the PIN.

Hardware used for experiments.  All the experiments presented in this paper were executed on a Lenovo 
ThinkPad 64-bit with 7.7 GB of RAM and an Intel Core i7-4600U CPU @ 2.10 GHz × 4, running Ubuntu 14.04 
LTS. The only exception were the link prediction experiments, which were executed on nodes with 100 GB of 
RAM, within the Mogon computer cluster at Johannes Gutenberg Universität in Mainz.

Availability.  R implementations of the PS model and LaBNE are available at http://www.greg-al.info/code. 
The network data used in this paper are also available at the same website. The C++ implementation of the fast 
version of HyperMap used in this paper is available at https://bitbucket.org/dk-lab/2015_code_hypermap.
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