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Abstract

Background—Many clinical trial designs are impractical for community-based clinical 

intervention trials. Stepped wedge trial designs provide practical advantages, but few descriptions 

exist of their clinical implementational features, statistical design efficiencies, and limitations.

Objectives—Enhance efficiency of stepped wedge trial designs by evaluating the impact of 

design characteristics on statistical power for the British Columbia Telehealth Trial.

Methods—The British Columbia Telehealth Trial is a community-based, cluster-randomized, 

controlled clinical trial in rural and urban British Columbia. To determine the effect of an internet-

based telehealth intervention on health care utilization, 1000 subjects with an existing diagnosis of 

congestive heart failure or type 2 diabetes will be enrolled from 50 clinical practices. Hospital 

utilization is measured using a composite of disease-specific hospital admissions and emergency 

visits. The intervention comprises of online telehealth data collection and counseling provided to 

support a disease-specific action plan developed by the primary care provider. The planned 

intervention is sequentially introduced across all participating practices. We adopt a fully 

Bayesian, Markov chain Monte Carlo-driven statistical approach wherein we use simulation to 

determine the effect of cluster size, sample size, and crossover interval choice on Type I error and 

power to evaluate differences in hospital utilization.

Results—For our Bayesian stepped wedge trial design, simulations suggest moderate decreases 

in power when cross-over intervals from control to intervention are reduced from every three 
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weeks to two weeks, and dramatic decreases in power as the numbers of clusters decrease. Power 

and Type I error performance were not notably affected by the addition of nonzero cluster effects 

or a temporal trend in hospitalization intensity.

Conclusions/Limitations—Stepped wedge trial designs that intervene in small clusters across 

longer periods can provide enhanced power to evaluate comparative effectiveness, while offering 

practical implementation advantages in geographic stratification, temporal change, use of existing 

data, and resource distribution. Current population estimates were used; however, models may not 

reflect actual event rates during the trial. In addition, temporal or spatial heterogeneity can bias 

treatment effect estimates.
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Introduction

Although randomized controlled trials (RCTs) have long been recognized as the gold 

standard for evaluating clinical interventions, the availability of high quality RCT evidence 

on clinical outcomes from community-based interventions remains limited.1 Practical 

community-based clinical trials provide important information for dissemination, and are 

essential for ensuring high quality evidence for health policy.2 Translational research can be 

categorized into 3 types: Type 1 evaluates the controlled application of a hypothesis on 

humans, Type 2 evaluates the hypothesis in a controlled clinical setting, and Type 3 

evaluates implementation across a representative community setting.3 Clinical RCTs have 

historically focused on Type 2 research, determining whether an intervention provides any 

beneficial effect when selectively applied. Health policy and community practice, however, 

is better informed by Type 3 translational research that focuses on the effectiveness of an 

intervention compared with existing approaches or alternative treatments applied under 

conditions that are more typical of the settings where most people receive care.4 Although 

Type 2 RCTs maximize internal validity by assuring rigorous control of all variables other 

than the intervention, Type 3 translational RCTs maximize external validity, helping to 

ensure that similar results can be expected when the intervention is generalized to a more 

diverse and less controlled world.5 Practical considerations such as competing clinical 

demands, availability of resources, common comorbidities, community expectations, and 

impact on work flow or costs can alter clinical outcomes in surprising and unexpected 

ways.6,7 Barriers to community adoption that remain unidentified will inhibit dissemination 

and contribute to the 17-year estimated average lag for new scientific discoveries to enter 

day-to-day clinical practice, or to the 86 percent of discoveries never adopted.3

Practice-based research networks, involving over 70,000 primary care providers throughout 

the U.S., offer a valuable infrastructure for addressing the science of community-based 

implementation and dissemination research.8 Practical limitations of existing RCT 

methodologies, however, inhibit the ability of large networks of practices (over which the 

simultaneous introduction of the intervention is infeasible) to implement rigorous 

community-based trials. This has contributed to a demand for new trial methodologies, such 
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as the “stepped wedge” design, to facilitate pragmatic or practical clinical trials 

characterized by inclusion of (1) clinically relevant alternative interventions, (2) a diverse 

population, (3) heterogeneous practice settings, and (4) a broad range of health outcomes.2 

A stepped wedge design is a form of crossover study where one practice cluster crosses over 

from the control arm to the intervention arm at every time period (“step”); no clusters ever 

“cross back” from intervention to control. Kotz et al.9,10 give a set of arguments that seem to 

suggest stepped wedge designs are of little use compared to the RCT. Mdege et al.11,12 

respond to these criticisms, advocating a stepped wedge design for certain situations. 

However, none of these papers consider the implementation of a stepped wedge design for a 

community based clinical intervention trial, perhaps its most natural setting. Several authors 

offer more recent implementations of the stepped wedge design in various applications,13–16 

such as quality improvement,17 colorectal cancer,18 and Ebola vaccine trials.19 Handley et 

al.20 discuss the clinical advantages of a stepped wedge design, while Hemming et al.21 offer 

an extensive review and power analysis for several stepped wedge design variations. 

However, all of these papers consider the stepped wedge design only from a classical, 

frequentist statistical paradigm; more modern and flexible Bayesian statistical approaches22 

are not considered. More recently, multiple papers23–25 provide critical reviews of published 

stepped wedge trials. Copas et al.26 discuss in detail three main categories of stepped wedge 

designs, such as our design using a closed cohort, in which all participants are identified 

from the onset of the trial until completion without any changes between clusters. Baio et 

al.27 validate using a simulation-based approach for sample size calculations by comparing 

with analytical methods; furthermore, they perform a sample size/power analysis for 

continuous and binary outcomes in closed cohort designs for cross-sectional data. In this 

paper, we propose and perform a sample size/power analysis for a novel Bayesian stepped 

wedge, closed cohort design for count outcomes.

Investigators planning practical community-based RCTs are challenged to balance internal 

and external validity, while accommodating high production environments typical of 

community-based health care delivery. Principal outcomes are commonly population-based 

clinical measures aggregated from patient-level observations. Since the broad spectrum of 

care provided by an individual’s primary care provider outside of a trial protocol can 

compromise the independence of clinical outcomes achieved across multiple subjects 

sharing one provider, patient-level repeated measures are most appropriately nested within 

provider. In addition, practical considerations, such as shared resources, potential for 

contamination bias, cost, or ethical considerations, often drive investigators to randomize 

experimental interventions at the level of the practice instead of at the level of the patient or 

provider. In addition, some interventions such as educational programs or new resources, 

once introduced into a practice, may be difficult or impossible to withdraw, preventing the 

application of standard crossover designs. Community participation is inhibited when using 

parallel designs with “usual care” controls, since practices randomized to control perceive 

less benefit in continuing study participation than practices receiving support for a new 

approach or intervention. This has led some investigators to offer study interventions to all 

control practices at the conclusion of a trial, introducing an additional expense with little 

research benefit.28 Finally, practical limitations exist for implementing complex 
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interventions across geographically dispersed practices, since practice randomization 

influences the cost and convenience of distributing necessary resources and training.

Methods

Design overview of the British Columbia Telehealth Trial (BCTT)

The BCTT is a pragmatic, cluster-randomized controlled clinical trial using an stepped 

wedge design to evaluate the effect of internet-based telehealth support to improve the 

percent of patients achieving compliance with recommended disease-specific action plans on 

hospital and emergency room utilization. The study evaluates compliance with 

recommended disease-specific care guidelines for individuals with chronic heart failure or 

diabetes mellitus to determine the effect on disease-specific utilization, quality of care, and 

clinical outcomes over 12 months, as measured by the reduction in emergency room visits 

and hospitalizations. The study compares telehealth support with usual care in 50 primary 

care practices. Practice clusters are the unit of randomization, and patient outcomes are the 

unit of observation. Each cluster of 2 practices contributes provider-selected subjects to the 

observation cohort for a total of 1000 subjects. Specifically, at each practice, the physicians 

will enroll and follow the the first Nijpatients they see who consent, have access to the 

internet, can speak English, and who the physicians feel can most benefit from the treatment. 

Clusters within a geographically defined block are randomized to a time allocation using a 

stepped wedge design. Clusters move to the intervention group at a selected time interval 

continuously over the study period. All practices enrolled are recruited from the British 

Columbia Health Authority. Recruitment and randomization is divided into five 

geographical regions or blocks as shown in Figure 1. Also in Figure 1, we give an example 

of a block configuration of the Northern Health region to display the cluster and practice 

units. We illustrate our block randomization scheme with the following example. Consider 

the randomization order: 3, 5, 1, 2, 4, for Block 1 in Figure 1. Then Practices E and F would 

crossover from control to intervention at the first step/time period and so forth. This 

randomization scheme provides contiguous geographic regions for convenient distribution of 

resources, controlling staff travel time around the province; a standard randomization 

schedule could have trial staff working simultaneously, or consecutively, in practices located 

hundreds of miles apart. Block order, that is the order in which Block 1, Block 2, etc. are 

randomized, might be randomized as well.

The practice intervention is estimated to take two weeks per practice. Randomization to 

periods of time less than two weeks would increase the overlap that occurred between 

practices undergoing sequential implementation; furthermore, it would provide diminishing 

value for defining a more precise implementation time and date. Since the implementation 

time is two weeks and the initial study period is 12 months, two practices are assigned to 

each two-week randomized cluster.

Settings and participants

Based on practical recruitment considerations, 10 subjects at least 45 years old with a history 

of chronic heart failure and 10 subjects at least 18 years old with Type 2 diabetes mellitus 

will be recruited from each of 50 primary care practices. Eligible subjects will have access to 
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an online telehealth intervention providing disease-specific support for individual action 

plans developed in cooperation with the providers.

Intervention

The study intervention provides home monitoring, self-management education, and 

telehealth support for a disease-specific action plan using a team of allied healthcare 

professionals. Chronic heart failure subjects are provided with scales and blood pressure 

cuffs, while diabetes patients are provided with glucose meters. Each device uploads data 

into an electronic personal health record to facilitate support. Subjects are provided with an 

average of 150 minutes of support over the course of the trial. Data and results of the 

consultations are provided to the primary care provider to facilitate provider-directed care 

management. The control arm provides “usual care” reflecting the range of clinical services 

for chronic disease management commonly available in general practice sites in the British 

Columbia Health Authority, excluding telehealth care.

Outcomes

The primary outcome measure for the BCTT is the control-intervention difference in 

disease-specific health care utilization (emergency room visits and hospitalizations) over the 

12-month intervention period. Health care utilization is measured using a composite of five 

Prevention Quality Indicators developed by the Agency for Healthcare Research and Quality 

identifying chronic heart failure and diabetes related hospitalization.29 Prevention Quality 

Indicators are standardized national measures that are used to estimate the number of 

hospitalizations for a particular disease that could be preventable through better clinical 

management or utilization of clinical services. Our endpoint is the subset of emergency 

room visits and hospitalizations that meet one of the 5 Prevention Quality Indicators, i.e., 

emergency room visits or hospitalizations that can be thought of as “preventable” in this 

context. Diabetes-related admissions include: diabetes short-term and long-term 

complications, uncontrolled diabetes, and lower-extremity amputation among patients with 

diabetes. Power estimates were based on data from the Agency for Health Research and 

Quality Healthcare Cost and Utilization Project (the largest collection of longitudinal 

hospital care data in the United States), and the National Health Interview Survey.30–32 

During the current planning phase of the study, we evaluate the effect of modifying trial 

design characteristics in order to provide the optimal power to detect a primary outcome 

change while addressing practical implementation issues.

Statistical model and inference

The study will evaluate the number of events, defined as either an emergency room visit or 

any hospitalization, among all subjects (both diabetes mellitus and chronic heart failure) in 

each of the M = 25 clusters (each containing 2 practices) over T time intervals. Let Yijk be 

the number of events for patient k = 1,…, Nij within a given time interval j = 1,…, T in 

cluster i = 1,…, M, and let Yij be the cluster-level outcome aggregated over the Nij patients 

in cluster i and time interval j.
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If we assume the Yij are independent Poisson(λij) random variables, we can define the mean 

function as λij = Eij exp(μij) where

Here Eij is the expected number of events for cluster i during time period j and μij is the log 

Poisson rate parameter for cluster i at time period j, so that μij greater than 0 means more 

cases in cluster-time interval ij than expected, and μij less than 0 means fewer than expected. 

Regarding the components of μij, αi is a random effect for cluster i, βj is a fixed effect for 

time period j, Xij is an indicator variable, taking value 1 for intervention and 0 for standard 

of care, and thus θ is the log-relative risk of either an emergency room visit or 

hospitalization for treatment versus control. Here, Eij is a function of Nij, the number of 

patients at risk in each cluster, and may be obtained using either a table of sex- and age-

specific hospitalization rates appropriate for our population, or via crude standardization as 

Nij times the overall expected hospitalization and emergency room visit rate across all times 

and clusters; see our Simulations and Power Calculations section below for full details.

For a conventional statistical analysis, we could use generalized linear mixed models or 

generalized estimating equations to compute mean and variance estimates for our fixed and 

random effects. An attractive alternate approach is to use a Bayesian analysis, since it 

facilitates straightforward estimation of population probabilities of interest, yet its use does 

not appear to have been explored to date in the stepped wedge context. We therefore explore 

a Bayesian approach, basing inference on Markov chain Monte Carlo sampling from the 

posterior distribution using the Gibbs sampler.33 In our setting, Gibbs sampling was carried 

out in JAGS 3.1.0, as called from the R software using rjags.34 We can summarize our Gibbs 

samples to determine the posterior probability of a significant reduction in the log-relative 

risk of being hospitalized for intervention versus control, i.e., to see if , 

where here we condition on all data observed in the trial. Using our Gibbs samples, we can 

calculate 90% equal-tail Bayesian credible intervals to quickly check the significance of the 

treatment effect. We evaluate the design’s Type I error and power performance in our 

simulations below. For our simulation study, we used relatively flat prior distributions for 

our fixed and random effects. To improve estimates and increase power, we could also 

incorporate professional expertise or historical knowledge from existing community 

provider records to inform a more realistic prior for such parameters.

Our model permits an unbalanced design, having Nij patients in cluster i at time j. However, 

since practitioners will be trained to select N patients from their set of all diabetes mellitus 

and chronic heart failure patients, we implemented a balanced design (i.e., one setting Nij= 

N for all i and j), which in any case offered higher power.

The intracluster correlation coefficient is a commonly used descriptive statistic in cluster-

randomized trials to capture the ratio of the between-cluster variance and total variance. 

Following the work of Clark and Bachmann,35 we use the following definition for the 

intracluster correlation coefficient for count data (using a relative rate model), 
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, where  is the mean of the log-

Normal distribution defined for λij (see Appendix A in reference 35 for further details) and 

 is the variance of the random cluster effects. With this definition for ρj, as the between-

cluster variance increases the intracluster correlation coefficient tends towards one; and 

when there is no between-cluster variance, i.e., , the intracluster correlation coefficient 

is zero. We calculate the time-averaged intracluster correlation coefficient by averaging over 

ρj for all j = 1, …, T.

The presented stepped wedge design is non-adaptive and will complete regardless of the 

observed treatment effect over time. This is appropriate for our intervention, as we want to 

see how the on-line intervention affects utilization over time. For other interventions, it may 

be important to incorporate adaptive early stopping rules to guide the safety monitoring 

board if the intervention displays a large superiority or inferiority in the treatment effect.

Prior distributions

Since we want to implement a Bayesian framework, we must specify prior distributions for 

our parameters of interest and nuisance parameters. First, we need to define some notation. 

Let Normal(a,b) refer to a Normal distribution with mean a and precision b, where precision 

is defined as the reciprocal of the variance. For our cluster random effects, we assume a non-

informative prior over a relatively large (on the log scale) range, 

(independent and identically distributed for all i) where we let  (with 

corresponding mean and variance 0.1). This specification means a majority of αi’s prior 

mass is contained within the interval (−6,6). Similarly for our fixed effects capturing time 

trends, we set βj ~ Normal(0,0.1) (independent and identically distributed for all j), so that 

approximately 95% of each βj’s prior density is also within (−6,6). Lastly, for our treatment 

effect we assume a prior distribution with mass defined over potential clinical values for the 

log-relative risk of either an emergency room visit or hospitalization for intervention vs. 

control, corresponding to θ ~ Normal(0,10). Then a majority of θ’s prior density is within 

(−0.63,0.63), or (0.53,1.9) on the relative risk scale centered around the prior mean of 1 

(with value 1 corresponding to no difference between intervention and control, and 0.5 to a 

50% reduction in relative risk). Note the only conditionally conjugate prior is the Gamma 

prior for . A conjugate prior has the same distributional form as the corresponding 

posterior, and allows for quicker computations. The posteriors of θ, αi, and βj are non-

conjugate, so Gibbs sampling in JAGS is done using slice sampling.36

Design parameters

A stepped wedge design sequentially adds an additional cluster to the intervention arm at 

each time point. For our implementation of the simulation study below, we randomize a new 

cluster to the intervention arm every two weeks, and use the data observed in the study up to 

the present time period j as our control measurements. In our power calculations, for 

comparison we also consider randomizing a new cluster to the intervention arm every three 

weeks. Here, our blocking factor is geographical region (see Figure 1). Using a block size of 
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five clusters (assuming 25 clusters), we randomize the (unidirectional) crossover order for 

each cluster within a block. To reduce systematic bias, clusters within a block are blinded to 

their randomization order. A display of our stepped wedge design for the first five time 

periods (ten weeks) is in Figure 2. In our BCTT design and simulation, we allow for one 

cluster made up of two clinical practices to be randomized to the intervention arm at each 

step.

Simulations and power calculations

To examine the power and Type I error performance of our design, we ran a simulation 

study. Initially, we assume no time trends (βj = 0, for j = 1,…, T) and no cluster effects (αi = 

0, for i = 1,…, M). To check sensitivity to these assumptions, we first assume a cluster effect 

exists and sample each αi from a Normal(0,4) for i = 1,…, M. Thus, the mean function λij 

varies by cluster with a multiplicative adjustment to the average number of emergency room 

visits or hospitalizations ranging from exp(−1.5) = 0.22 to exp(1.5) = 4.48 days, by taking 

three standard deviations from 0. Next, we instead assume there is a linear time trend (on the 

log scale) by setting βj = log(j) − log (T/2) for j = 1,…, T; corresponding to a multiplicative 

increase of exp(log(T/(T/2)) = 2 days for the mean function λij by the last time period, T. 

Lastly, we run a simulation where the mean function λij varies across both clusters and time 

periods. The true time-averaged intracluster correlation coefficient varies from 0 to 0.25 

across all scenarios. For simplicity, we assume the expected number of events within each 

cluster is fixed and does not change over time (Eij = Ei for all i and j). If we expect 83.5 

chronic heart failure and 280 diabetes events per 1000 subjects per year, then we estimate a 

total of 363.5 events.31,37

Assuming Nij= N patients per cluster, and using simple crude standardization, the expected 

number of events during any given week in cluster i is Ei = N*(0.3635 events per year)/(52 

weeks) for all i = 1,…, M. We can recalculate Ei in the various settings under consideration, 

using the appropriate N and time interval length values, such as 2 Ei when a cluster is 

randomized from the control arm to the intervention arm every two weeks. All simulations 

were completed in R version 2.15.0. We simulated 1000 trials for each of five true 

reductions in the relative risk of being hospitalized during any time period: 30%, 20%, 15%, 

10%, and 0%, with the fifth being the null scenario of no treatment effect. Within each trial, 

5000 Markov chain Monte Carlo iterations were kept for inference following 2000 iterations 

for burn-in. We include our JAGS and R code in the online Supplementary Material for 

reference.

Estimated power curves for different treatment effects, varying the number of clusters M, 

patients N within each cluster (with the constraint of 1000 patients total), and time interval 

length between the unidirectional crossovers, are displayed in Figure 3. Type I error values 

are those corresponding to the right side of the plots in Figure 3 (i.e., when the true 

treatment effect θ is zero). The top left plot gives the results assuming no time or cluster 

effects, the top right plot assumes an underlying cluster effect, the bottom left plot assumes 

an underlying linear time trend, and the bottom right plot assumes both time and cluster 

effects. We consider M = 50 clusters and N = 20 patients, corresponding to a 2- or 3-year 

study for two- or three-week time intervals, respectively. When we have M = 25 clusters 
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with N = 40 patients, the trial duration is either 1 or 1.5 years for two- or three-week time 

intervals, respectively. The last configuration of 1000 patients we consider is M = 10 clusters 

with N = 100 patients, which corresponds to a 22-or a 33- week long study for two- or three-

week time intervals, respectively. Recall a cluster is comprised of two practices, so this last 

setting would enroll 20 practices with 50 patients in each practice.

In Figure 3, we see assuming M = 50 clusters with N = 20 patients within each cluster and a 

three-week time interval between crossovers displays the highest power for detecting a 

reduction in θ, and the Type 1 error when θ = 0 (0.03) is neglibly smaller than that for two-

week intervals (0.032). If we assume a cluster crosses over to the intervention arm every two 

weeks, the study is shortened by 1 year (33% decrease). Although the study may be faster 

and cheaper, our power decreases by 6–15%.

While we see a slight decrease in power when we use the shorter time interval, the treatment 

effects’ point estimates and Bayesian credible intervals from 1000 simulations are consistent 

with the true values. (We also acknowledge the “unfairness” of directly comparing the 2- 

and 3-week interval trials, since they do not have the same total duration.) Assuming M = 50 

clusters with N = 20 patients within each cluster for exp(θ) = 0.7 (30% relative risk 

reduction) with two-week time intervals, the mean relative risk (95% Bayesian credible 

interval) is 0.73 (0.61,0.88), whereas for three week time intervals it is 0.73 (0.62,0.85). In 

our simulations, recall we initially set αi = 0 for all i and βj = 0 for all j, so there are no 

underlying cluster or time effects, and we set a flat prior for these parameters. Given the flat 

prior on the random effects, we observe a slight overestimate of the treatment effect toward 

1, but underestimation of the time effects. This suggests a small negative correlation 

(between −0.1 and −0.3) between the treatment effect and the time effect; recall the prior 

standard deviation for our time effect is 0.1. We note that we observe less than the nominal 

5% Type 1 error rate of incorrectly identifying a significant treatment when one in fact does 

not exist.

Turning to our sensitivity analyses, we see the appearance of our power curves is rather 

robust across all four sets of assumptions in Figure 3. We see a slight decrease in power 

when an underlying cluster effect is present, and the expected shrinkage of the estimated 

time effects toward the true value of 0. We see a slight decrease in power when an 

underlying time trend is present; and an underestimation of the cluster effects (again toward 

the true value of 0) is also present. When both time and cluster effects exist, we see a 

decrease in power, slight overestimation of the treatment effect, and widened treatment 

effect 95% Bayesian credible intervals. For example, M = 50 clusters with N = 20, we have 

85% power (assuming two-week time intervals) or 96% power (assuming three-week time 

intervals) to detect a true treatment effect of exp(θ) = 0.7 (30% relative risk reduction), 

compared to 92% power (assuming two-week time intervals) or 98% power (assuming three-

week time intervals) when αi = 0 for all i and βj = 0 for all j. Also when both time and 

cluster effects exist, the mean relative risk (95% Bayesian credible interval) is 0.75 (0.62, 

0.9) with two-week time intervals, and 0.73 (0.62, 0.86) for three-week time intervals.

As previously discussed, we calculate the time-averaged intracluster correlation coefficient 

for each setting. In our simulations, we found only a modest correlation present, with 
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ranging from 0.1 to 0.35 across all simulations, except when we consider M = 10 clusters. 

For M = 10 clusters, we have 100 patients per cluster and we can expect the between-cluster 

variation to increase, since we have greatly reduced the number of clusters. In this setting, 

we see  ranging from 0.32 to 0.56 across all simulations.

Limitations

With this design, there are some limitations and concerns over potential sources of bias. 

First, it is important to ensure a fair comparison of data collected before and after the 

crossover. Data collection methods and instruments should be consistent over time, allowing 

a “like with like” comparison among data collected over time. Second, while the 

randomization order is blinded, treatment status is not blinded. Since health care providers 

and patients are aware of cluster assignment, it is important to consider the potential for bias 

due to un-blinded treatment status. For example, patients in an intervention cluster may be 

more likely to be sent home prematurely from the hospital in “local” attempts to show 

improvement. Other potential sources of bias include selection bias, which could arise if the 

clusters enrolled are systematically different than those refusing enrollment or those not 

recruited (though in this case we have little interest in the effect of the intervention to 

persons who the physicians feel are unlikely to benefit). To avoid systematic bias due to 

training improvement over time, we assume no “training learning effect” should exist; that 

is, the trainers should not improve in their ability to teach the intervention to providers over 

the course of the study.

Another limitation is that a single crossover stepped wedge design does not allow order 

effects to be distinguished. That is, since every patient receives the intervention second, if 

there is a tendency for patients to prefer the second treatment, the stepped wedge design 

cannot distinguish this order effect from the treatment effect. This may be less of a 

consideration in community-based trials that compare a single intervention to the provision 

of “usual care”. Also, since the composite outcome includes both diabetes mellitus and 

chronic heart failure patient events, care should be taken not to misinterpret results. Event 

rates for diabetes mellitus and chronic heart failure may respond differently in the 

intervention arm. Observable treatment effects do not necessarily represent events expected 

for either disease independently. Events were modeled to equate one emergency room visit 

or one hospitalization. Modeling “events” meant three emergency room visits and three one-

day hospitalizations were three events, while a three-day hospitalization was one event. 

Although hospitalization may require greater resources, we were hesitant to give 

hospitalizations more weight in the outcome, since the intervention could impact either 

emergency room visits or hospitalizations. In addition, long hospitalizations would become 

problematic, and make it difficult to interpret whether the findings represented an overall 

reduction in emergency room visits or hospital days. Finally, while our statistical model does 

not assume the availability of individual counts Yijk, were they available, we could 

contemplate a model that included individual-level random effects. However it is not clear if 

the likelihood for this model should remain as a Poisson, switch to Bernoulli (i.e., assume 

each patient can have at most one event per time period j), or something in between – say, a 

zero-inflated Poisson model.
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Discussion

Commonly, a parallel design for a two-arm study randomizes K independent clusters to each 

study arm at a single time point, for a total of 2K independent clusters. A crossover design 

typically requires fewer clusters than a parallel design, but a longer trial duration since each 

cluster serves as its own control. In standard crossover designs, a “washout” period is often 

included during the crossover period between one intervention and the next, in an effort to 

remove any residual effect of the previous intervention. The washout period lengthens trial 

duration, but is generally necessary only for drug interventions. The stepped wedge trial 

duration can be even longer than a standard crossover design, since only a fraction of the 

clusters are added to the experimental arm during any given time period. However, 

additional temporal information can be gained by the sequential roll-out of the intervention, 

potentially improving estimation and power.38 The stepped wedge design also allows 

researchers to investigate potential time trends in the treatment effect, though not an order 

effect, since clusters only cross in one direction (from control to intervention).

Stepped wedge designs offer advantages when an intervention can only be initiated at a 

limited number of sites at one time, whence an intervention must be staged or stepped. It 

also avoids potential ethical concerns and retainment issues that arise from withholding an 

intervention from subsets of patients or practices since all participants receive the 

intervention at some time during the study.39 It has been suggested that stepped wedge 

designs are burdensome because repeated measurements are necessary, or are potentially 

more dangerous since the intervention is administered to all clusters.9,10 In practical 

community trials, however, repeated measures on individual subjects are commonly 

necessary for the ongoing provision of care. When one arm is usual care, administration of 

the intervention to all clusters generally enhances recruitment and retainment by ensuring 

each practice has an opportunity to participate in the experimental intervention. Finally, in 

pragmatic community trials, patients have often been seen at a community-based clinic for 

many years, potentially providing rich historical data. In this case, as each practice cluster 

enters the trial, retrospective control arm data can be captured from the medical record for 

previous time points.

Another obstacle for community-based trials is efficient implementation across 

geographically dispersed practices. It is often impractical to travel large distances between 

scattered clinics dictated by the randomization order of a parallel RCT. In addition, 

recruitment efforts across large regions with diverse populations may be costly, less focused, 

and less well received. A practical solution with the stepped wedge design is to block by 

geographic location and randomize the order in which clinics cross from the control arm to 

the treatment arm within each block; block order might be at least partially randomized as 

well. In this case, the blocks contain practice clusters located closer to one another. This 

allows focused recruitment efforts in smaller geographic regions, decreases the impact of 

proximity problems on training resources, and diminishes issues of contamination, attrition, 

and the impact of changes in population characteristics among clusters enrolled later in the 

trial. This can be particularly valuable for large studies with national site distribution.
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Finally, as in any study, patient dropout and possible consequent loss to follow-up is a 

concern in stepped wedge trials. In our BCTT setting, we expect only between 1 and 5% 

dropout over the course of our 12-month study, so we do not expect it to be a major source 

of bias. See Little et al.40 for a summary of a report by a blue-ribbon National Research 

Council panel on minimizing missing data in clinical trials.

Conclusions

Traditional controlled clinical trial designs present practical barriers to community-based 

trials that potentially compromise the likelihood of finding important treatment effects. The 

stepped wedge design is a practical alternative that resolves several issues while maintaining 

a rigorous clinical trial methodology. While stepped wedge designs should be expected to 

require a longer trial duration than parallel designs, the resources required for 

implementation are evenly distributed over time and can be focused geographically to 

conserve resources. Stepped wedge trials have the added capability of providing valuable 

temporal information for discerning secular trends from intervention effects. The stepped 

wedge design appears to provide particular benefit in community-based practical trials by 

potentially allowing investigators to include previously collected historical information on 

subjects. Examining stepped wedge trial data under a Bayesian framework allows a full 

posterior inference for the treatment effect, time trends, and cluster random effects, and 

readily accommodates other generalized models. For reference or to adapt for a sample size/

power analysis in a particular setting, we include our R and JAGS code in the online 

Supplementary Material.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Geographic stratification for the British Columbia Telehealth Trial, with example Block 1 

configuration in Northern Health region.
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Figure 2. 
A display of the first five time periods of our stepped wedge design, assuming a cluster is 

added to the intervention group every time period, or every two/three weeks.

Cunanan et al. Page 16

Clin Trials. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Estimated power curves for 1000 patients divided among 50 clusters with 20 patients each, 

25 clusters with 40 patients each, or 10 clusters with 100 patients each. The black lines 

assume a cluster is randomized to the intervention arm every 2 weeks, whereas the red lines 

assume a cluster is randomized every 3 weeks. Top left, no time or cluster effects; top right, 

nonzero underlying cluster effects; bottom left, underlying time trend; bottom right, both 

nonzero cluster effects and underlying time trend.
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