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Abstract

Compared with controlled terminologies (e.g., MedDRA, CTCAE, and WHO-ART), the 

community-based Ontology of AEs (OAE) has many advantages in adverse event (AE) 

classifications. The OAE-derived Ontology of Vaccine AEs (OVAE) and Ontology of Drug 

Neuropathy AEs (ODNAE) serve as AE knowledge bases and support data integration and 

analysis. The Immune Response Gene Network Theory explains molecular mechanisms of 

vaccine-related AEs. The OneNet Theory of Life treats the whole process of a life of an organism 

as a single complex and dynamic network (i.e., OneNet). A new “OneNet effectiveness” tenet is 

proposed here to expand the OneNet theory. Derived from the OneNet theory, the author 

hypothesizes that one human uses one single genotype-rooted mechanism to respond to different 

vaccinations and drug treatments, and experimentally identified mechanisms are manifestations of 

the OneNet blueprint mechanism under specific conditions. The theories and ontologies interact 

together as semantic frameworks to support integrative pharmacovigilance research.
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 Introduction

Although various types of drugs have dramatically improved public health, many drugs are 

associated with various types of adverse events (AEs, or called adverse reactions) including 

severe AEs. While most vaccine AEs are mild, many vaccines are occasionally associated 
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with severe AEs and even death [1–4]. Every year there are over two million severe adverse 

drug reactions (ADRs) [5]. Many countries spend 15–20% of hospital budgets to treat drug 

complications [6]. ADRs cause 100,000 human deaths yearly, making ADRs the fourth 

leading cause of human mortality in the United States [5, 7]. To prevent ADRs, it is critical 

to accurately monitor and assess ADRs, identify the drug-ADR associations, and understand 

the fundamental ADR causal mechanisms. These become the important topics of 

pharmacovigilance.

Different AE case reporting systems have been developed. USA has two federal level 

systems to monitor AEs. The USA Food and Drug Administration (FDA) AE Reporting 

System (FAERS) is a database that contains information on AEs and medication error 

reports and is designed to support the FDA post-marketing safety surveillance program for 

drug and therapeutic biologic products [8]. The Vaccine AE Reporting System (VAERS) is a 

web-based vaccine safety surveillance program co-sponsored by the USA FDA and Centers 

for Disease Control and Prevention (CDC) [9, 10]. Broadly speaking, a vaccine is a special 

type of drug [11]. However, vaccines and chemical drugs also differ in many aspects. For 

example, vaccine administration is usually given to humans under healthy conditions for a 

preventive purpose, but chemical drugs are typically given to a sick patient for therapeutic 

purpose. In general, the dose, time, route, and frequency of vaccine administration are well-

defined; however, for chemical drug administration, the dose, time, and frequency are often 

difficult to establish for patients with various conditions [11]. As a result of these 

differences, it is more challenging to identify the causality of ADRs since ADRs are 

associated with more confounding factors than vaccine AEs (VAEs). On the other hand, 

vaccine AEs can be spread to more of the population quickly due to its often wide use in a 

short period of time. To improve public health, it is important to monitor both ADRs and 

VAEs closely.

To support data comparison and sharing, it is important to establish and use a controlled AE 

terminology system. The Medical Dictionary for Regulatory Activities (MedDRA) [12, 13] 

is the standard terminology system used in FAERS and VAERS AE classifications in the 

USA. MedDRA has also been used in European Union and Japan. The Common 

Terminology Criteria for Adverse Events (CTCAE) is a product of the US National Cancer 

Institute (NCI) that provides the criteria for the standardized classification of adverse effects 

of drugs used in cancer therapy [14]. The World Health Organization (WHO) Adverse 

Reactions Terminology (WHO-ART) is a dictionary that serves as a basis for rational coding 

of adverse reaction terms [15]. As introduced later in this article, although MedDRA, 

CTCAE, and WHO-ART have been widely used, these classical AE terminology systems 

have many drawbacks to be addressed.

A biomedical ontology is a human- and computer-interpretable set of terms and relations 

(sometimes called ‘classes’ and ‘object-properties’) that represent entities in a specific 

biomedical domain and how they relate to each other. Ontologies have played a critical role 

in biomedical data and knowledge representation, exchange, integration, as well as inferring 

new knowledge. For example, the Gene Ontology (GO) provides controlled and 

standardized terms for naming different types of biological processes, cellular components, 

and molecular functions [16]. Creating such ontology-based annotations is highly valuable 

He Page 2

Curr Pharmacol Rep. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for both querying databases and analyzing high throughput data. Since its first publication in 

2000 [16], GO has been cited by over 9,000 peer-reviewed publications in PubMed and over 

110,000 hits in Google Scholar. The Ontology for Biomedical Investigations (OBI) [17] is a 

biomedical ontology co-developed by over 20 biomedical communities with the 

collaborative aim of representing life-science and clinical investigations. OBI has been used 

as the basis for developing more than 10 ontologies and for representing a wide range of 

investigations [18–21]. The community-based Vaccine Ontology (VO) [22–24] has been 

used in different applications, such as vaccine data integration [25–28] and literature mining 

[23, 29]. The Drug Ontology (DrON) has recently been developed to support drug 

classification [30]. A community-based Ontology of Adverse Events (OAE) has also been 

developed to support AE classification and different applications [31].

In addition to clinical AE surveillance and analysis, another important research effort is to 

identify the molecular mechanisms of causal AEs. Extensive research has been conducted in 

pharmacovigilance mechanism studies, resulting in a large amount of knowledge and data. 

However, it is still very difficult to integratively represent and analyze the results using 

bioinformatics approaches. Scientific theories may provide a better framework to support 

such studies. For the mechanism studies in pharmacovigilance, there have been two recently 

proposed theories, i.e., the “Immune Response Gene Network” theory [32, 33] and the 

OneNet Theory of Life (abbreviated as “the OneNet theory”) [34]. Ontology and ontology-

based Semantic Web technologies may provide a robust platform for reproducible data 

representation, exchange, sharing, and analysis [35, 36]. It is possible to use the theories to 

guide ontology development, and use theory-guided ontologies to build up an integrative 

foundation and framework to support the representation of reported knowledge and 

prediction of unknown knowledge and adverse events.

The overall goal of this article is to review pharmacovigilance-related terminologies, 

ontologies, and theories, and propose the combination of ontologies and theories to support 

integrative research on clinical AE phenotypes and fundamental AE mechanisms. Specific 

objectives include: (i) a review of existing controlled terminologies and ontologies related to 

pharmacovigilance, (ii) a review of two theories applicable to understand the causal 

mechanisms of vaccine and drug safety, (iii) extension and applications of the OneNet 

theory, and (iv) proposing that the ontologies and theories can interact with each other and 

be applied to support integrative pharmacovigilance research.

 Conventional controlled AE vocabulary systems

Major controlled AE vocabulary systems that are widely used in different settings are first 

introduced below.

 The Medical Dictionary for Regulatory Activities (MedDRA)

MedDRA is organized with a five level hierarchy, with Lowest Level Terms (LLT) at the 

bottom, followed by Preferred Terms (PT), High Level Term (HLT), High Level Group 

Terms (HLGT), and with System Organ Class (SOC) at the top [12] (Figure 1A). The LLT 

level has more than 70,000 terms. Each LLT term is linked to only one PT term. Each PT 

has at least one LLT (itself) and may include many synonyms and lexical variants. Related 

He Page 3

Curr Pharmacol Rep. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PTs are grouped into HLTs and higher level HLGTs based on anatomy, pathology, etiology 

or function. Finally, HLGTs are grouped into SOCs based on etiology, manifestation site, 

purpose, or social circumstances.

MedDRA [12] has several limitations. First, the terms in MedDRA do not include term 

definitions, which may cause confusion and misunderstanding, especially when terms may 

have different meanings. Second, synonyms are often incorrectly assigned. For example, 

‘swollen eyelid’ and ‘swollen eyes’ are defined incorrectly as synonyms in MedDRA. Third, 

hierarchical relations among MedDRA terms are often invalid. As seen in Figure 1B, the 

MedDRA class ‘Acute and chronic thyroiditis’ has many subclasses including ‘Thyroiditis’, 

‘Thyroiditis acute’, ‘Thyroiditis chronic’, and ‘Thyroglossal cyst infection’. The class 

‘Acute and chronic thyroiditis’ is problematic because it is likely difficult to find a type of 

thyroiditis which is both acute and chronic at the same time. Based on the structure, it would 

be ideal to replace the ‘Acute and chronic thyroiditis’ with ‘Thyroiditis’; and the classes 

‘Thyroiditis acute’, ‘Thyroiditis chronic’ and other specific thyroiditis should be subclasses 

of ‘Thyroiditis’. In addition, ‘Thyroglossal cyst infection’ should not be considered as a 

subclass of ‘Acute and chronic thyroiditis’ or ‘thyroiditis’. Instead, ‘Thyroglossal cyst 

infection’ is an infection process that may be a possible cause of thyroiditis. The poorly 

defined hierarchy limits its ability to support valid VAE classification [3]. These issues 

described here often resulted in inconsistency and failure in identifying AEs [37]. In 

addition, the MedDRA licensing requirement prevents wide public software development 

and dissemination.

 The Common Terminology Criteria for Adverse Events (CTCAE)

As a product of the US National Cancer Institute (NCI), CTCAE (http://evs.nci.nih.gov/ftp1/

CTCAE) is a set of criteria for the standardized classification of AEs of drugs used in cancer 

therapy. Most US and UK drug trials encode their observations based on CTCAE. The 

CTCAE version 4.0 released in 2009 includes a relatively small number (790) of AE terms. 

This version of CTCAE is in general in harmony with the MedDRA’s terminology. Different 

from MedDRA, CTCAE terms are often well-defined with text definition. An AE in CTCAE 

may be assigned to Grades 0 through 5 that indicate different levels of clinical severity. The 

general guideline of assigning CTCAE severity is: Grade 0 – sign and symptom within 

normal limits; Grade 1 - Mild AE; Grade 2 - Moderate AE; Grade 3 - Severe AE; Grade 4: 

life-threatening or disabling AE; and Grade 5 - Death related to AE [14].

 The WHO Adverse Reaction Terminology (WHO-ART)

WHO-ART has been developed and maintained by the Uppsala Monitoring Centre, the 

WHO Collaborating Centre for International Drug Monitoring [38]. The WHO-ART 

hierarchical structure has four levels: Included Term (IT), Preferred Terms (PT), High Level 

Term (HLT), and System Organ Class (SOC). The 2015Q1 version of WHO-ART includes 

6,410 terms with 2,123 terms being the PTs - principal terms for describing adverse 

reactions [38]. Like MedDRA, WHO-ART does not provide formal definitions of terms.

In addition to MedDRA, CTCAE, and WHO-ART, there exist other controlled terminology 

systems for AE case reporting and analysis, including the Systematized Nomenclature of 
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Medicine Clinical Terms (SNOMED-CT) [39], and the International Classification of 

Disease (ICD) [40]. There have also been efforts to compare, map, and combinatorically use 

different terminology systems [41–46].

 Ontology-based AE representation and analysis

Compared to the conventional AE terminologies as described above, the formal ontology 

representation of AEs happened more recently and has offered more advantages [47–50]. A 

terminology is a structured collection of concepts and terms in a certain language in a 

specific subject field. An ontology is a formal naming and definition of the classes (or called 

types), properties, and the relations among the entities that really or fundamentally exist for 

a particular domain of discourse. An ontology provides formal and explicit models of 

entities in a human- and machine-readable representation, and relations among entities are 

logically represented as “axioms”. The conventional AE terminologies (e.g., MedDRA) are 

roughly equivalent to class hierarchies in ontologies. This means that a MedDRA concept 

“10037844” defines the class of all the individual AE instances that match the criteria for 

“rash”. The is_a relation relates classes between a superclass and its subclasses (e.g., 
members). In addition to the is_a relation, a formal ontology typically includes more 

sophisticated relations to present various necessary and/or sufficient conditions [29]. The 

logical relations between entities are more rigorously and explicitly defined in an ontology. 

Ontologies are developed by using ontology specific languages, including the OBO format 

[51] and the Web Ontology Language (OWL) [52]. The OWL description logics (DL) 

format supports asserted hierarchy and inferred hierarchy [29]. In addition, many ontology-

based Semantic Web technologies [36] are available to support advanced data linkage, 

sharing, and analysis.

A formal ontology is developed by following specific principles and guidelines. The Open 

Biological and Biomedical Ontologies (OBO) Foundry is a collaborative initiative aimed at 

building up consensus-based ontology development principles and establishing ontologies 

following the set of principles in an evolving non-redundant suite [53]. Example OBO 

Foundry principles include: (1) ontologies should be open; (2) ontologies are developed in a 

collaborative effort; and (3) ontologies use common unambiguously defined relations [53]. 

These principles are widely accepted as the guidance for new ontology development.

In this section, we will introduce three ontologies that represent the general AEs and specific 

AEs induced by vaccines and chemical drugs. These ontologies are all developed by 

following OBO Foundry principles.

 The Ontology of Adverse Events (OAE)

OAE represents various AEs as pathological bodily processes that occur after a medical 

intervention [31]. The OAE-defined adverse event does not have to be causally induced by a 

medical intervention, which is consistent with its definition in commonly used clinical 

scenarios, including their uses in VAERS and FAERS. OAE also defines the term ‘causal 

adverse event’ to present an adverse event is known to be causally induced by a medical 

intervention [31].
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OAE is developed by importing existing ontology terms and generating new OAE-specific 

terms. OAE is aligned with the Basic Formal Ontology (BFO) [53, 54] (Figure 2). BFO 

contains two branches, continuant and occurrent [53, 54]. The continuant branch represents 

time-independent entities such as material entity and spatial region, and the occurrent branch 

represents time-related entities such as process and time interval. Using BFO as the upper 

level ontology makes our ontologies integrated seamlessly with >100 other ontologies that 

also align with BFO. To support ontology reuse and interoperability, OAE also imports 

terms (e.g., ‘pathological bodily process’) from over 20 existing ontologies (e.g., the 

Ontology of General Medical Science or OGMS) [55] (Figure 2). In addition to imported 

ontology terms, OAE has included over 2,600 OAE-specific terms whose ontology IDs start 

with “OAE_” followed with seven digital numbers. Most of these OAE-specific terms are 

various types of AE terms (Figure 2). Each term is well-defined, referenced, and linked to 

possible MedDRA ID using the annotation property seeAlso. The linkage supports cross-

referencing and term mapping. As of February 16, 2016, OAE has 4,666 terms. The 

statistics of OAE can be found on the Ontobee [56] website: http://www.ontobee.org/

ontostat/OAE.

OAE was first demonstrated to offer better classification of AEs than MedDRA in a 

bioinformatics analysis of VAERS VAE case reports [3]. This study used the VAERS VAEs 

associated with four trivalent (killed) inactivated influenza vaccines (TIV) and FluMist (the 

only trivalent live attenuated influenza vaccine or LAIV). After classical statistical analysis, 

48 TIV-enriched and 68 LAIV-enriched AEs were identified. The MedDRA terms of these 

AEs were first mapped to OAE terms. The analysis of the OAE-based hierarchies of TIV 

and LAIV-enriched AE terms allowed better classification of these AE terms. Different 

patterns associated with these VAE subsets were identified. Specifically, TIV-enriched AEs 

include neurological and muscular processing such as paralysis, movement disorders, and 

muscular weakness. In contrast, LAIV-enriched AEs include inflammatory response and 

respiratory system disorders. Furthermore, LAIV was found to have lower chance of 

inducing two severe AEs, Guillain-Barre Syndrome (GBS) and paralysis, than TIV [3]. In 

this study, a side-by-side comparison on how OAE, MedDRA [12], and SNOMED [39] 

classified TIV- and LAIV-associated VAEs provided strong empirical evidence on the clear 

advantages of OAE over MedDRA and SNOMED in AE classification [3].

As demonstrated below, OAE has also been used in developing domain-specific ontologies 

that act as vaccine or drug AE knowledge bases.

 The Ontology of Vaccine Adverse Events (OVAE) as a knowledge base of vaccine AEs

OVAE is an ontology of the AEs known to be associated with the administration of licensed 

vaccines [57]. OVAE is developed as an extension of OAE and VO. The community-based 

VO [22–24, 29] is developed to represent and integrate various vaccine and vaccine-related 

data, particularly those stored in VIOLIN, the largest web-based, comprehensive vaccine 

database and analysis system [58]. VO includes the information of all licensed human 

vaccines used in the USA. Figure 3 illustrates how VO logically represents the information 

of an influenza vaccine (Afluria), including how the vaccine links to the vaccinee, 

vaccination route, vaccine quality, vaccine allergen, the manufacturer, influenza virus 
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pathogen, and vaccine-induced immune responses. VO has been used in different 

applications to represent various types of vaccine-related information [22, 25–27, 59]. The 

VO has also been used for many studies in vaccine literature mining [23, 29, 60–62]. Like 

OAE, VO is also aligned with the BFO, which facilitates the seamless alignment and 

extension of the OAE and VO for OVAE generation.

OVAE classifies AEs associated with US-licensed human vaccines [57]. OVAE imports all 

the licensed vaccines from the VO, related AE terms from OAE, and axioms to link vaccines 

and AEs with specific details. Figure 4A shows how OVAE is used to represent the fever AE 

associated with an influenza vaccine Afluria. It is noted that OVAE accurately represents 

age-specific AE occurrence rates as described in the FDA-approved vaccine package insert 

documents. Currently, OVAE includes all over 1,300 AEs associated with 63 US-licensed 

human vaccines [57]. Therefore, OVAE serves as a knowledge base of the AEs known to be 

associated with the administration of licensed vaccines.

The information of the OVAE knowledge base can be queried using SPARQL (a recursive 

acronym for SPARQL Protocol and RDF Query Language). The Resource Description 

Framework (RDF) data model makes statements about resources in the form of subject-

predicate-object expressions (i.e., triples). The RDF triples can be stored in an RDF triple 

store and be queried using SPARQL. A previous study has demonstrated that SPARQL is 

able to retrieve useful information from OVAE such as the top 10 vaccines associated with 

the highest numbers of VAEs and the top 10 VAEs most frequently observed among all 

licensed human vaccines [57]. Figure 4B demonstrates how a SPARQL query with a few 

lines of code can identify useful information from the OVAE stored in a RDF triple store.

 The Ontology of Drug Neuropathy Adverse Events (ODNAE)

ODNAE is an ontological knowledge base that represents 215 US FDA-licensed drugs able 

to induce >10 neuropathy AEs and how these drugs are linked to chemicals, human 

qualities, drug mechanisms of actions, and biological processes [63]. Among several drug 

ontologies (RxNorm [64], NDF-RT [65], and DrON [30]), we selected DrON as the default 

ontology for representing drugs, as DrON provides mapping between drugs and ChEBI [66] 

chemical terms and like ODNAE and OAE, DrON is also aligned with BFO and follows 

OBO Foundry ontology design principles [53]. In order to enable data integration and data 

reuse, we added links from the DrON terms to RxNorm and NDF-RT IDs by annotation 

property rdfs:seeAlso in ODNAE. Figure 5 shows an example of how ODNAE represents 

drug-associated neuropathy AEs.

As a knowledge base, ODNAE captures verified knowledge obtained from basic biomedical 

research and clinical practices. Since the ontology is machine readable, ODNAE supports 

neuropathy AE data representation, exchange, and integration. Furthermore, the integrated 

ODNAE knowledge base supports computer-assisted advanced analysis. For example, using 

the SPARQL queried results from the ODNAE, we performed a heatmap analysis to explore 

the correlation between drug molecular entities and various neuropathy AEs. Our results 

showed that drug-associated carbon groups, pnictogen, chalcogen and heterocyclic 

compounds were associated with the highest numbers of AE cases [63]. Among 215 

neuropathy-inducing drugs, 127 belong to organic chemical carbon groups, which include 
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21 organohalogen compounds. We also identified 7 pairs of agonists and antagonists that 

share targets (e.g., dopamine, serotonin, and sex hormone) [63].

 Theories towards understanding adverse event causality mechanisms

A fundamental approach towards understanding AE causality is to propose scientific 

theories and use these theories to guide our research. Two related theories and their 

applications in pharmacovigilance studies are introduced below.

 The Immune Response Gene Network Theory

Dr. Gregory A Poland proposed an “Immune Response Gene Network Theory” with an aim 

to explain the immune response mechanisms induced by vaccinations [32, 33]. This theory 

states that the responses to a vaccine are the cumulative results of interactions driven by a 

host of genes and the interactions among these genes [32] (Figure 6A). The interactive and 

iterative activation and suppression of specific pathway genes occur in a choreographed 

fashion to generate a coherent immune response to a vaccine. These immune gene activities 

result in activation and secretion of cytokines, antibodies, chemokines and immune effector 

cells, leading to innate, humoral, and cell-mediated immune responses, as well as local and 

systemic adverse events. The basic genetic elements of the theory include key immune 

response genes, gene polymorphisms and epigenetic modifications, and gene–gene 

interactions, which may all change the outcomes of host immune responses to a vaccine [32] 

(Figure 6A).

The theory has been supported by experimentally identified associations between immune 

response gene polymorphisms and various antibody and cell-mediated immune responses to 

many viral vaccines including measles–mumps–rubella vaccine, influenza vaccines, hepatitis 

B and smallpox vaccines [32]. Many gene polymorphisms have been found to be directly 

associated with vaccine AEs [67–70]. For example, based on three independent studies, 

three single nucleotide polymorphisms (SNPs) in two human genes that encode for the 

methylenetetrahydrofolate reductase (MTHFR) and the interferon regulatory factor-1 (IRF1) 

were significantly associated with systemic AEs after smallpox vaccination [68].

To understand the immune response gene networks, vaccinomics can be applied that uses 

immunogenetics and immunogenomics methods to understand the mechanisms of 

heterogeneity in immune responses to vaccines [71]. Adversomics has also become an 

emerging field of applying omics and immunogenetics to study AEs including vaccine AEs 

[72]. The results gained from vaccinomics and adversomics can be used in the rational 

design and development of new vaccines, leading to the new golden age of “vaccine 

informatics” [60], “reverse vaccinology” [73], and “predictive vaccinology” [32].

 The OneNet Theory of Life and its applications in pharmacovigilance

While the Immune Response Gene Network Theory explains well the mechanisms of 

vaccine AEs, it does not target the explanation of the AE mechanisms for chemical drug. 

The Immune Response Gene Network Theory does not focus on the effects of those genes 

and factors beyond the immune system. Therefore, there is a desire to generate a more 

systematical theory that traces the root causes of different types of AEs and associated 
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factors. Based on the Immune Response Gene Network Theory and several other theories 

including the Evolutionary Synthesis Theory [74], the Cell Theory [75], and the “Immune 

Network Theory” [76], the author has recently proposed a One Network Theory of the Life 

of an organism (abbreviated as “OneNet theory”) [34]. As described below, the OneNet 

theory provides an ideal framework to study the molecular mechanisms of causal AEs 

induced by vaccinations and drug treatments.

The OneNet theory treats the whole process of the life of an individual organism as one 
single complex and dynamic network (called “OneNet”). The OneNet has four 

characteristics represented by four tenets:

i. OneNet Blueprint: The OneNet blueprint is stored in the genotype of the 

organism;

ii. OneNet Start: The dynamic OneNet process starts to exist at the moment 

when the first cell of the organism forms;

iii. OneNet Dynamics: The OneNet of temporal interactions between the 

genetic materials and their environments determines the dynamic 

phenotype (e.g., morphology, behavior, survival, and reproduction) of the 

life.

iv. OneNet Effectiveness: An organism with its expressed OneNet profile 

more adaptive to an environment is advantaged to survive, replicate, and 

live a better life in the environment.

The first three characteristics were defined and discussed in the original paper [34]. The last 

OneNet characteristic is newly added to provide a mechanism to measure the effect (or 

outcome) of the complex OneNet process.

The OneNet theory targets the systematic representation and analysis of the life of one 

organism (e.g., a human being), with a special focus on the dynamic interactions among 

genotype, environment, and phenotype along the life process. The theory explores the root 

cause of an organism’s phenotypes (e.g., AEs after vaccine and drug administrations) 

(Figure 6B). The genotype of a human is rooted at the genome of the fertilized cell (i.e., 
zygote) that involves a sperm fusing with an ovum [74]. The zygote is the first cell that 

contains the intact and complete genotype information of the human. The genotype is the 

blueprint for the development of an organism [77]. Extending this fact, the genotype would 

also include the blueprint information of the OneNet mechanism on how the organism 

interacts with various environments (e.g., drug administration). The life of an organism with 

different stages is the manifestation of the OneNet blueprint of the organism. Such a OneNet 

blueprint manifestation is represented by various phenotypes and underlying gene 

expression profiles out of the dynamic interactions between the genotype and its 

environments. Different people may have different genotypes (including gene 

polymorphism) and encountered environments that include intra- and extra-organism 

environments. The intra-organism environments of the genetic materials include those inside 

the cells but outside the genetic materials and those outside the cells but inside the human 

body [34]. All these environmental factors may change the gene expression profiles and 
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phenotypes. Therefore, given various environmental conditions, different people may 

demonstrate different phenotypes including various AEs following exposure to a vaccine or 

a drug (Figure 6B).

The OneNet effectiveness tenet is newly added to the OneNet theory and first described in 

this article. There are different meanings of the terms effectiveness, efficacy, and efficiency 

in different settings [78–81]. For example, in medicine, effectiveness relates to how well a 

treatment works in practice, while efficacy measures how well it works in a well-controlled 

clinical trials or laboratory studies [79, 82, 83]. In physics, an effective theory is a 

framework intended to explain an observed effect without claiming that the theory correctly 

models the underlying unobserved processes [80]. In the OneNet theory, the author adopts 

the definitions of the ontology reference model developed for the uncertainty representation 

and reasoning evaluation framework (URREF) [81]. In the URREF ontology, the 

“effectiveness” relates to a system’s capability to produce an effect, and effectiveness 

includes: (i) “efficiency”: doing a thing in the most economical way, (ii) “efficacy”: getting a 

thing done (i.e., meeting a target or desire); and (iii) “correctness”: doing a “right” thing, i.e., 
setting a right target to achieve an overall goal (the effect). Similarly, the OneNet theory uses 

the term “OneNet effectiveness” to represent the capability of an organism to produce an 

effect, including the survival, replication, and quality of life in a specific environment. The 

OneNet effectiveness tenet states that an organism with its own expressed OneNet profile 

more adaptive to its environment is advantaged (i.e., more effective) to survive, replicate, 

and live a better life in the environment. Similar to the composition of the effectiveness as 

defined in the URREF ontology [81], OneNet effectiveness also includes different levels, 

i.e., OneNet efficiency, efficacy, and correctness.

Both the Immune Response Gene Network Theory and the OneNet theory facilitate the 

understanding and study of causal pharmacovigilance mechanisms. The Immune Response 

Gene Network Theory provides a more specific network scenario in the domain of vaccine-

induced AEs. This theory informs the importance of studying different immune response 

gene networks and gene polymorphism to understand fundamental vaccine AE mechanisms. 

The Immune Response Gene Network Theory fits well with the OneNet theory. The OneNet 

theory has a broader scope and can be used to study the mechanisms of AEs induced by both 

vaccines and drugs. In addition, the OneNet theory goes further to lay out the root cause 

genotype-guided molecular networks and the genotype-environment-phenotype network 

dynamics where the environment has a broad scope that includes vaccination, drug 

administration, infection, stress, etc. In a complex dynamic system, prior states will have an 

influence on present states [84]. Similarly, in the complex OneNet system, the genotype and 

a patient’s conditions (e.g., age, gender, and previous exposure to the same vaccine or drug) 

before and during vaccine/drug administration would affect the outcomes of vaccine/drug 

AE processes.
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 Ontology-based and theory-guided integrative representation and 

analysis of AE interaction networks

The standard controlled terminologies, pharmacovigilance-related ontologies, and two 

network theories are reviewed above. The author has also proposed a new tenet in the 

OneNet theory to cover the outcome aspect of the OneNet process. Now, two critical 

questions are how to the ontologies and the theories interact with each other, and how the 

possible interaction between the theories and ontologies can better support 

pharmacovigilance research. These two questions are addressed below.

 The two network theories and ontologies can closely interact with each other

As described above, the two network theories (the Immune Response Gene Network Theory 

and the OneNet theory) provide frameworks to study causal AE mechanisms. An ever 

increasing amount of data has been generated out of intensive research in the 

pharmacovigilance studies. Although the theories help mechanistic understanding, it has 

been a huge challenge to consistently and logically represent and analyze the obviously big 

data associated with the AE complex systems. Ontologies and ontology-based Semantic 

Web methods naturally provide tools to perform such tasks.

Ontologies support integrative representation of AEs and the processes leading to AEs. 

Figure 7 outlines an OAE-based ontological model of AE-related processes and related 

factors. After a vaccine/drug administration, three stages of biological processes occur in the 

patient (Figure 7) [31]. The initial stage processes involve the vaccine/drug entry and initial 

host responses. The intermediate stage processes include series of intermediate smaller 

processes, some eventually leading to positive preventative or therapeutic effect, some 

leading to noises, and some leading to AEs. The last stage processes are the execution stage 

processes leading to pathological outcomes [31]. These processes occur in different 

anatomic locations. Many factors, such as age and gene polymorphism, likely affect the final 

outcome. In addition to the OAE-based model (Figure 7), the OVAE model (Figure 4) 

logically represents the knowledge of vaccines and vaccine-induced AEs, and the ODNAE 

model (Figure 5) ontologically links drugs, drug chemical ingredients, AEs, mechanisms of 

actions, and biological processes. All the ontologies and models described above cover 

different granularity of details. A federation of these specific models provides a more 

comprehensive picture of vaccine- and drug-induced AE mechanisms.

Ontologies can also support integrative representation of AE-related genetic interaction 

networks. OVAE and ODNAE can be expanded to represent gene interaction pathways and 

networks leading to AEs induced by vaccines and drugs. Furthermore, we can use ontologies 

to represent various human interaction networks and identify those that are relevant to 

pharmacovigilance. Hundreds of interaction/pathway/network databases exist [85]. For 

example, Reactome [86], KEGG [87], BioCyc [88], and BioCarta [89] are interaction and 

pathway databases that cover various biological domains. The Pharmacogenetics Knowledge 

Base (PharmGKB) contains genomic, phenotype and clinical information collected from 

various pharmacogenetic studies [90]. Unfortunately, the knowledge in these databases is 

often overlapped but disintegrated. Extended from a general species-neutral framework of 
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the Interaction Network Ontology (INO) [91], the ongoing Human Interaction Network 

Ontology (HINO) project is designed to integrate data from different interaction pathway 

databases [92]. After an expected comprehensive HINO is generated, AE-related genetic 

interactions and pathways can be extracted from HINO and exported to OVAE and ODNAE 

to enrich their representation of integrated AE mechanisms.

Since the OneNet theory emphasizes the dynamic interactions among genotype, 

environment, and phenotype along the life process, it is necessary and critical to 

ontologically model and represent various environment factors and their interactions with 

genotype and phenotype. After drug administration, multiple and complex environmental 

factors may play important roles in the mechanism of AEs through interactions with 

genotype. There exist several ontologies, including Environment Ontology (EnVO) [93] and 

the Experimental Factor Ontology (EFO) [94], which represent various environmental and 

experimental factors. EnVO is a community-led, open ontology for specifying a wide range 

of environments relevant to life science disciplines [93]. Driven by the critical needs in 

annotating biological variables in gene expression studies, EFO is developed as an 

application ontology to represent various experimental factors [94]. In addition, the Gene 

Ontology (GO) includes a branch of Cellular Components [16], which lays out various 

levels of cellular components where intracellular molecular interactions may occur. To 

represent specific interactions between genotypes, environments, and phenotypes, related 

environmental and experimental factors can first be imported from existing ontologies (e.g., 

EnVO, EFO, and GO) to a domain ontology (e.g., ODNAE and HINO), and specific 

interactions can then be represented by building up ontological axioms.

In summary, the network theories and ontologies can closely interact with each other. First, 

the network theories provide the framework on how to link clinical AE phenotypes and 

internal causal mechanisms, guide the contents and logics of the entities to be represented in 

ontologies in pharmacovigilance studies. For example, the integrative ontological modeling 

of the processes and factors leading to vaccine/drug AEs (Figure 7) is generated based on 

the guidance of the OneNet theory. Without the theory, it is easy to miss the whole picture of 

what to include in the ontological model. On the other hand, the ontologies provide standard 

representations to support the standard description on the two network theories. Without a 

standard ontological representation, the network theories are hard to describe and be applied 

in various situations. The integrative relations between the ontologies and theories can be 

further illustrated when they are combined to analyze fundamental pharmacovigilance 

questions as exampled below.

 Combined theories and ontologies support integrative pharmacovigilance research

Is that possible that the combination of the theories and ontologies can synergistically 

support integrative pharmacovigilance research? As exemplified below, the author argues 

that the new theories can be used to generate new and novel hypotheses; and since the large 

scope and complexity of the hypotheses, the final addressing of the theory-derived 

hypotheses will require the support of ontologies.

Derived from the OneNet theory, the author hypothesizes that one human host uses one 
single mechanism to respond to different vaccinations and drug treatments. This hypothesis 
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is based on the fact that one human being has one genotype and a single OneNet blueprint; 

therefore, the same person would respond to different medical interventions using the same 

genotype-rooted OneNet mechanism. On the other hand, this hypothesis appears against the 

obvious experimental observations that human uses different mechanisms against different 

vaccinations and drug treatments. However, there is no conflict since these are essentially 

two different types of mechanisms. The OneNet mechanism represents the blueprint design 

of the sum of interactions, pathways, and networks that occur in the same human given any 

possible conditions. The experimentally identified mechanisms are those that occur in reality 

under specific conditions, and they are the manifestations (or expressions) of the OneNet 

blueprint with specific gene expression and molecular interaction profiles. As a multicellular 

organism, a human includes trillions of cells organized into tissues, organs, and organ 

systems. All the human cells contain the same or essentially the same genotype as seen in 

the zygote. Extending the above hypothesis, the author further hypothesizes that all cells 

with the same genotype in a human share the same OneNet blueprint mechanism although 

the blueprint manifestations in specific cells most likely differ, and the OneNet blueprint 

includes mechanistic design for how different cells interact with each other to form the 

physical human body and collaboratively respond to various environmental factors. Based 

on such an OneNet-derived framework, one ultimate goal of our research is to fully identify 

the comprehensive OneNet blueprint mechanism and use it to predict specific OneNet 

manifestation profiles given different conditions such as a vaccine or drug administration.

While the above hypothesis targets on each person having a single genotype-rooted OneNet 

blueprint mechanism, the OneNet mechanisms from different people may share many 

biological interactions, pathways, and networks. Each person has a single OneNet 

mechanism due to its own original initiation from one single cell and all cells sharing the 

same genotype source. Different people originate from different genotypes (except those in 

monozygotic twins) in different cells, and thus have essentially different OneNet blueprint 

mechanisms. However, all humans share human-specific genotype contents, suggesting that 

different people have many shared molecular interactions and pathways. In microbiology, a 

“pan-genome” represents the union of the gene sets of all the strains of a clade (e.g., species) 

[95, 96]. Such a pan-genome is composed of a “core genome” containing genes present in 

all strains, a “dispensable genome” containing genes present in two or more strains, and 

“unique genes” specific to single strains. Similarly, the human pan-genome is the non-

redundant collection of all human DNA sequence present in the entire human population. A 

recent human pan-genome study has found a large amount of novel sequences that are both 

population and individual specific [97]. Genetic sequence variations also exist for the same 

genes and non-coding genomic regions among different human genomes. In molecular 

biology, an interactome is the whole set of molecular interactions that occur in the cells of an 

organism (e.g., human) [98–100]. Inspired by the pan-genome and interactome concepts, the 

author envisions that the OneNet blueprint for a specific organism (e.g., human) population 

includes a “pan-interactome”, and the human pan-interactome would be composed of a 

“core interactome” containing interactions present in all humans, a “dispensable 

interactome” containing interactions present in a population of humans, and “unique 

interactome” specific to human individuals. The OneNet blueprint mechanism for thewhole 

human population can be considered as the pan-interactome given all possible environmental 
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conditions, and different interactions then form pathways and networks. The OneNet 

blueprint mechanism for a person would then include a pan-interactome subset that is 

specific for this person. This strategy would differentiate and integrate different people’s 

OneNet mechanisms. One future task is to identify the shared and differential mechanisms 

among different people, which would facilitate basic mechanism studies and rational 

therapeutic design in both general and personalized medicines.

Since the above OneNet-derived hypotheses cover a huge and complex scope of the dynamic 

interactions between genotypes, environments, and phenotypes in one person or different 

people, it is difficult to study and address these hypotheses for real specific applications 

without theory-guided ontological representation and knowledge organization. A similar 

situation occurred when a small number of chemical elements were discovered in early 

1800’s. When Dmitri Mendeleev published the first widely recognized Periodic Table of 

Chemical Elements in 1869, there had been only 63 elements discovered. The generation of 

such a periodic table led to correct organization of published elements and prediction of new 

elements and their attributes. Similar to the Periodic Table of Chemical Elements that well-

organizes chemical elements, ontologies will allow semantic organization of complex 

biological entities and interaction networks among these entities. The OneNet theory 

provides a framework for rational ontology design for modeling and representing the 

complex biological networks. While the Periodic Table of Chemical Elements is relatively 

simple, the Table had been used as a very powerful platform for predicting new chemical 

elements. With much more complex biological ontologies, it is much more difficult to 

generate new hypotheses. Therefore, new ontology-based algorithms and tools will need to 

be developed and evaluated for real case studies. Many advanced computational modeling 

methods and tools for complex systems have been developed [84, 101, 102], which can be 

combined with existing theories and ontology representations to better understand complex 

organism systems including pharmacovigilance, leading to precision medicine.

 Discussion and Future Perspectives

The contributions of this paper are multiple. First, this paper reviews standard and classical 

AE terminology systems (including MedDRA, CTCAE, and WHO-ART), and three AE-

related ontologies (i.e., OAE, OVAE, and ODNAE). Second, this paper reviews two network 

theories, (i.e., the Immune Response Gene Network Theory and the OneNet theory) and 

proposes to use the two theories as the integrative framework to systematically explain and 

analyze complex network mechanisms in pharmacovigilance. Third, the author proposes and 

explains a new OneNet effectiveness tenet to cover the outcome of the whole OneNet 

process of an organism’s life. With this newly added tenet, the OneNet is characterized by 

four features: blueprint, start, dynamics and effectiveness. Fourth, the author argues that the 

ontologies and theories can closely interact with each other, and the combination of the 

theories and ontologies can be used to support integrative pharmacovigilance research. Fifth, 

to better illustration of such integrative research, the author proposes a novel OneNet-

derived hypothesis that differentiates and integrates the single genotype-rooted OneNet 

blueprint mechanism in a human and various expressions of the blueprint given specific 

conditions, extends the hypothesis with new hypotheses, and proposes ontology-based 

systems biology methods to study these hypotheses.
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While the standard AE terminologies are widely used to support the evaluation of clinical 

trials, their shortcomings have promoted the development of new ontologies related to AE 

classification and analysis. The classical terminologies classify specific AEs and higher level 

AE types with specified hierarchical structures. However, these terminology systems have 

their internal drawbacks such as the lack of robust hierarchical structure and logical 

definitions, and their inability to semantically link to patients’ attributes. As noted by FDA 

scientists in a prominent Opinion article published in early 2012 [49], although MedDRA 

has served the public health well, to continue to advance the drug safety, adverse drug 

reaction (ADR) classification must “evolve beyond relatively simple vocabularies and 
toward being the knowledge framework for a systematic organization of all ADR-related 
data and information”, and such evolvement “promises to enable new discoveries, inform 
researchers and regulators, and create new biosurveillance capabilities”. The OAE and OAE-

based OVAE/ODNAE provide such knowledge frameworks for systematic organization, 

representation, and linkage of AE-related information, including vaccines/drugs, patient, 

patient quality, anatomic locations, biological mechanisms, biological processes, and gene 

responses. As demonstrated in the OVAE and ODNAE data analyses [57, 63], such ontology 

knowledge base representations also support data query and allow the statistical correlations 

between different factors and meaningful inference from one to the other.

Extending from the ontological knowledge frameworks, the author proposes to use and 

integrate complex network theories to further study scientific questions in 

pharmacovigilance. To systematically study molecular mechanisms leading to AEs, two 

theories are reviewed in this article. The Immune Response Gene Network theory 

emphasizes the importance of gene-driven activation of immune response pathways, and can 

be used to explain vaccine AE causality and study gene-AE associations. The OneNet theory 

focuses more on the root case analysis of the whole life process, and is applicable for 

studying the mechanisms of vaccine/drug AEs and linking them to different conditions (e.g., 
genotype, age, and history). The author also proposes to use ontologies to represent and 

analyze various interaction networks covered by these theories. Furthermore, to demonstrate 

the usage of the network theories, the author derived a hypothesis on the unified mechanism 

of each person (and even different people) to respond to different medical treatments. This 

newly proposed hypothesis differentiates one single OneNet blueprint design in one person 

and various OneNet manifestation (or expression) profiles given different conditions. Based 

on the hypothesis, the author proposes an integrative framework of representing the 

comprehensive OneNet blueprint mechanism using ontology, and predicting OneNet 

manifestations in specific people given different conditions such as vaccination and drug 

administration. While such a hypothesis is ambitious to tackle, integrated ontological and 

computational methodologies provide a feasible strategy to address and study the 

hypothesis.

Although this article clearly demonstrates the critical role of ontologies in systematic 

pharmacovigilance study, its efficient usage meets the bottleneck of extensive time-

consuming efforts needed for ontology development. To overcome the bottleneck, many 

software programs have been developed, for example, the Protégé OWL editor [103] and the 

BioPortal web ontology repository system [104]. In the past years, the author’s laboratory 

has also developed a collection of web-based “Ontoanimal” tools including OntoFox [105], 
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Ontodog [106], Ontorat [107], Ontobee [56], and Ontobeep [108]. Each tool has specific 

functions; together, these tools are able to extract ontology subsets, provide ontology 

community views, generate and edit ontology terms, query and visualize ontology terms, 

provide statistics of ontologies, and compare ontologies. These “Ontoanimal” tools have 

been widely used to facilitate the development of various ontologies including the OAE [31], 

OVAE [57], and ODNAE [63].

Although extensive research has been done, there is still a long way to go to fully understand 

how a human develops and responds to a vaccine/drug administration. However, the author 

is optimistic that the development of well-organized, theory-guided ontologies will gradually 

and firmly increase the semantic representation and organization of complex entities and 

interaction networks. Furthermore, the theories will be developed and used to generate new 

and novel hypotheses. Such theoretic and ontological frameworks will lay out a solid 

foundation for the development of more advanced computational algorithms and the 

generation of new hypotheses, leading to integrated pharmacovigilance research that better 

bridges and understands clinical AE phenotypes and fundamental biological mechanisms.
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ADR Adverse Drug Reaction

AE Adverse Event

BFO Basic Formal Ontology

ChEBI Chemical Entities of Biological Interest

CTCAE Common Terminology Criteria for Adverse Events

DrON Drug Ontology

FDA Food and Drug Administration

GO Gene Ontology

HINO Human Interaction Network Ontology

INO Interaction Network Ontology

LAIV Live Attenuated Influenza Vaccine

MedDRA Medical Dictionary for Regulatory Activities
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NDF-RT National Drug File - Reference Terminology

OBO Open Biological and Biomedical Ontologies

ODNAE Ontology of Drug Neuropathy Adverse Events

OGMS Ontology for General Medical Science

OWL Web Ontology Language

PATO Phenotypic Quality Ontology

RDF Resource Description Framework

SNP Single Nucleotide Polymorphism

SPARQL SPARQL Protocol and RDF Query Language

TIV Trivalent Inactivated Influenza Vaccines

VAE Vaccine Adverse Event

VO Vaccine Ontology

WHO World Health Organization

WHO-ART WHO Adverse Reaction Terminology
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Figure 1. MedDRA features
(A) The five layers of MedDRA. (B) A subset of the MedDRA hierarchy. It is a screenshot 

made from the MedDRA visualization in NCBO BioPortal (http://bioportal.bioontology.org/

ontologies/MEDDRA). It is problematic to list a term ‘Acute and chronic thyroiditis’ as the 

parent term of other thyroiditis terms including ‘thyroiditis’ itself. Instead of being a subtype 

of ‘Acute and chronic thyroiditis’, ‘Thyroglossal cyst infection’ is an infection process that 

may cause thyroiditis.
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Figure 2. OAE hierarchical structure
This screenshot displays part of the OAE hierarchy using the Protégé-OWL editor. For each 

OAE term such as ‘rash AE’, clear label and definition are provided. Its cross-references to 

other resources (e.g., MedDRA) are cited if available. OAE is aligned with the upper level 

BFO and OGMS.
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Figure 3. VO representation of vaccine knowledge
This example ontologically represents the information about Afluria, a killed inactivated 

influenza vaccine manufactured by the company CSL Limited. In addition to the inactivated 

influenza virus, the vaccine contains chicken egg protein allergen. The vaccine is 

administered to humans through intramuscular route. The human’s background such as age 

can be linked to the vaccination event. The Afluria vaccination has the ability of inducing 

specific adaptive immunity against virulent influenza infection as well as various adverse 

events. Note that the AEs that are known to be induced by specific vaccines are primarily 

represented in OVAE instead of VO.
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Figure 4. OVAE representation and query of AEs associated with FDA licensed vaccines
(A) OVAE representing Afluria VAEs reported in FDA vaccine package insert. The top 

screen shows the adverse reactions of Afluria as recorded in the FDA vaccine package insert 

document of Afluria. The bottom screen (extracted from a view using the Protégé OWL 

editor) shows how OVAE represents the >=10% occurrence of ‘Afluria-associated fever AE’ 

in children 5 through 17 years of age. The OVAE representation matches the information in 

the FDA vaccine package insert document. (B) SPARQL query of OVAE for the top 3 AEs 

associated with the highest numbers of vaccines. As shown in (A), ‘Afluria-associated fever 

AE’ is a cross product of ‘Afluria vaccine adverse event’ and ‘fever AE’, which provides the 

query strategy for identifying the vaccine (Afluria) and the specific AE (‘fever AE’). The 

query was performed using the Ontobee SPARQL web program: http://www.ontobee.org/

sparql.

He Page 26

Curr Pharmacol Rep. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ontobee.org/sparql
http://www.ontobee.org/sparql


Figure 5. Illustration of ODNAE design pattern and representation
(A) Design pattern for representing cisplatin-associated peripheral neuropathy AE. The drug 

product Cisplatin Injectable Solution contains the active ingredient of cisplatin. The 

administration of the drug on a human patient causes a peripheral neuropathy AE. During 

the bodily process, the drug acts as a nucleic acid synthesis inhibitor, a role that is realized in 

a ‘negative regulation of cellular biosynthetic process’ that occurs in the patient. Age is the 

patient’s quality that may affect the AE formation. In addition to ODNAE-specific terms, 

this model uses terms from other ontologies including ChEBI, DrON, NDF-RT, PATO, GO, 

and NCBITaxon. (B) Ontological hierarchy of the cisplatin chemical entity. The screenshot 

was obtained from the Ontobee [56].
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Figure 6. Graphic illustration of two gene network-based theories for explaining AE mechanisms
(A) The Immune Response Gene Network Theory. (2) The OneNet Theory of Life. The 

details about these two theories are described in the text.
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Figure 7. Integrative ontological modeling of the processes and factors leading to adverse events 
induced by a vaccine or a drug
The OAE-based model is extended with the knowledge from the OneNet theory. The model 

logically links the patient’s genotype, qualities (e.g., age), and gene expression profiles 

before a vaccine/drug administration to the adverse event. See the text for more details.
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