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ABSTRACT
Dendrite branching is an essential process for building complex nervous systems. It determines the
number, distribution and integration of inputs into a neuron, and is regulated to create the diverse
dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton
is critical to provide structure and exert force during dendrite branching. It also supports the functional
requirements of dendrites, reflected by differential microtubule architectural organization between
neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule
polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by
anterograde microtubule polymerization events in nascent branches. The polarities of microtubule
polymerization events are regulated by the position and orientation of microtubule nucleation events in
the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share
common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may
act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within
the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how
regulating this balance can generate neuron type-specific morphologies.

KEYWORDS
Augmin; dendrite; Golgi
outpost; microtubule
nucleation; microtubule
polarity; neuron morphology;
pericentriolar material

For the brain to function correctly, neurons must connect
through dendrites to receive inputs. The branching patterns
and sizes of individual neuronal dendrite arbors determine the
number and distribution of these inputs, and also delineate
their integration.1,2 Alterations in arbor patterning occur in
multiple neuropsychiatric and neurological disorders including
intellectual disability syndromes, autism spectrum disorders,
schizophrenia, and neurodegenerative diseases.3

A nascent neuron has a simple morphology and must
undergo a complex differentiation process to create a highly
branched dendrite arbor.4 Moreover, as beautifully illustrated
more than 125 years ago by Ram�on y Cajal,5 the dendrite dif-
ferentiation process must be organized in order to create arbor
morphologies that fit the specific functional requirements of
that neuron type.1 Final arbor morphology is produced by inte-
grating the activities of cell surface receptors and adhesion pro-
teins that regulate dendrite targeting with those of cytoskeletal
factors that regulate dendrite branching and outgrowth.4

The microtubule cytoskeleton is critical to provide structure
and to exert force in order to create, stabilize, and remodel den-
drites during development.6,7 Microtubules also act as tracks for
cargo transport by microtubule-based motor proteins.8 In addi-
tion, they regulate neuronal plasticity through activity-depen-
dent remodeling, with microtubule invasion events driving
spine enlargement and increases in post synaptic density protein
levels.9-12 Furthermore, microtubules support channel activity13;
for example, the coupling of the transient receptor potential
family mechanotransduction channel NompC to an array of
microtubules conveys force to gate channel activation.14-16

Dendrite microtubule architecture differs between neuron
types15,17-20 in order to support the specific functional require-
ments of each type. We illustrate that here for the specialized
dendrites of class IV nociceptive21 and class I proprioceptive22

Drosophila body wall neurons. The dendrites of these two neu-
ron types have very different microtubule configurations and
microtubule densities, features which reflect their differing sen-
sory modalities (Fig. 1).

Microtubules are polarized filaments. They are con-
structed from heterodimers of a- and b-tubulin that attach
in a head-to-tail manner, pack laterally, usually with 13 het-
erodimers (13 protofilaments) per cross section, and fold to
form a tube.23,24 In relatively thin cellular processes such as
dendrites the length of microtubules exceeds the diameter
of the cell, and therefore microtubules are necessarily orien-
tated either plus-end distal and anterograde polymerizing
(away from the cell body), or minus-end distal and retro-
grade polymerizing (toward the cell body).25 Dendrites con-
tain both possible polarities, while microtubules in the
mature axon are predominantly oriented in a plus-end dis-
tal orientation.25 Because microtubule-based motor proteins
are either plus- or minus-end directed, the presence of
minus-end distal microtubules in dendrites enables selective
delivery of cargo (for example, by dynein motor proteins)
facilitating neuron compartmentalization.8,26 Both plus- or
minus-end directed microtubule arrays are established in
dendrites from the earliest stages of neurite out-
growth.17,20,27-29 One mechanism to achieve this organiza-
tion is via the action of microtubule motor proteins. Motor
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proteins either anchored to the cell cortex or spanning two
microtubules can facilitate the sliding of preassembled
microtubules from the soma into the dendrite.6,25 In addi-
tion, as the dendrite arbor elaborates and after it reaches
the mature state, microtubule motor proteins maintain and
enhance the minus-end distal population by selectively
removing plus-end distal microtubules30 and guiding new
polymerization events passing through dendrite branch
points in the retrograde direction.31 A second mechanism is
via the nucleation of microtubules, i.e., de novo initiation of
microtubule polymerization within a nascent dendrite
branch. In this article we focus on recent studies that
address the mechanisms of microtubule nucleation in den-
drites and the role of this process in shaping the branching
pattern of the dendrite arbor.

Microtubule seeds in dendrites

Microtubule nucleation is a kinetically unfavorable process; it
requires both a seed structure and accessory factors that increase
nucleation activity.32 The microtubule seed is commonly provided
by a template of g-tubulin and associated proteins in the g-tubulin
ring complex (g-TuRC).23,24 g-tubulin provides the initiation tem-
plate for polymerization.33 g-TuRC is central to themajority of cel-
lular microtubule nucleation processes, and it is localized and
activated to create microtubule organizing centers within the
cell.23,24 Loss of g-tubulin or g-TuRC factors reduces microtubule
polymerization frequency in both dendrites and axons of

hippocampal neuron cultures and in terminal dendrite branches of
Drosophila class IV sensory neurons.34,35

Pre-existing microtubule fragments can also act as seeds.
In this case nucleation occurs by binding at the b-tubulin
surface on the pre-existing fragment; this event is indepen-
dent of g-tubulin.32,36 Microtubule fragment seeds are gen-
erated when microtubule-severing enzymes break up pre-
existing microtubules.37,38 Evidence that microtubule frag-
ment-based nucleation occurs in dendrites comes from the
genetic disruption of severing enzymes Spastin, Katanin 60
and Katanin p60-like1, all of which are required for correct
dendrite patterning.39-42 Moreover, loss of Katanin p60-
like1 reduces the frequency of microtubule polymerization
events in the terminal branches of class IV neurons.39 The
activity of microtubule-severing enzymes is not restricted to
dendrites; they are also required for axonal growth.40,42,43

Spatial regulation of microtubule-severing enzyme activity
in neurons is controlled by mechanisms such as the binding
of the microtubule-associated protein Tau to microtubules
in hippocampal neuron axons44 and the post-translational
modification of dendrite microtubules (polyglutamylation).45

g-tubulin and microtubule-severing pathways interact in non-
neuronal cells, for example to organize meiotic spindle microtu-
bules in C. elegans.46 The extent to which microtubule-severing
pathways contribute to dendrite microtubule nucleation and fur-
thermore how g-tubulin andmicrotubule-severing pathways inter-
act to shape dendrites remain unclear and require further
investigation. On the other hand, recent studies have provided new

Figure 1. Microtubule organization varies in the dendrites of different neuron types. (A) The dendrites of Drosophila body wall nociceptive class IV neurons contain a
sparse microtubule organization (black arrowheads). (B) The dendrites of Drosophila body wall proprioceptive class I neuron contain dense arrays of microtubules (black
arrowhead), which are interlinked by bridges (whited arrowheads). In addition, different modes of linkage between the neurons and the body wall also highlight their
divergent functions. (C) Class IV neurons have dendrites embedded in the epithelial cells of the body wall.82,83 (D) Class I dendrite microtubules are embedded in a dense
matrix (green arrowheads), and attach to the surface of the epithelial cells by pads of electron dense material (red arrowheads). This specialized architecture in class I neu-
rons is similar to that found in other cells active in mechanotransduction.15,16,84,85 Pseudo-coloration in panels C-E: blue – dendrite; yellow – epithelial cell; uncolored –
basement membrane. Scale bars: 0.2 mm.
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information about where g-tubulin-mediated nucleation events
occur in developing dendrites, and have revealedmolecularmecha-
nisms controlling these nucleation events.

Microtubule nucleation at Golgi outposts

During cell division, the centrosome recruits g-TuRC to act as
the primary microtubule nucleation center. The centrosome
also supports nucleation in nascent neurons47; however, this
activity is rapidly lost, and dendrite elaboration occurs after the
centrosome has stopped functioning as a microtubule nucle-
ation site.34,47,48 The centrosome maintains a second function
as a signal transduction hub, which also influences dendrite
growth.49 In the differentiating dendrite, microtubule nucle-
ation and polymerization events occur away from the centro-
some and throughout the growing arbor.20,27-29,35

Although microtubule nucleation events are spread throughout
the arbor, specific foci repeatedly give rise to microtubules, suggest-
ing that particular subcellular structures within the dendrite have
microtubule nucleating activity. Other structures, in addition to the
centrosome, can focus g-tubulin-mediatedmicrotubule nucleation.
During mitosis the chromatin and kinetochores act as sites of
microtubule nucleation, as do the microtubules of the spindle.23

Membranous organelles also act as nucleation sites in several cell
types, including the nuclear envelope in muscle cells, the cell cortex
in plant cells, and somatic Golgi.23,50 To identify structures associ-
ated with microtubule nucleation within dendrites, Ori-McKenney
and colleagues used Drosophila sensory neurons as a model and
showed microtubule nucleation at Golgi fragments situated within
dendrites,35 called Golgi outposts.51 Endosomes andmitochondria,
other common membrane-rich organelles in dendrites, were not
found to be sites of nucleation.35

Notably, while g-tubulin is used in both dendrites and axons
to seed microtubules,34 Golgi outposts have only been detected
in the dendrites.51 Whether there are regulatory mechanisms to
control the positions of microtubule nucleation in the elongat-
ing axon is as yet unclear.

Dendrite Golgi outposts and centrosomes share common
molecular machinery for organizing microtubule nucleation
(Fig. 2A, B). During cell division, Pericentrin/AKAP450
(Pericentrin-like protein (Plp) in Drosophila) and CDK5RAP2
(Centrosomin (Cnn) in Drosophila) cooperate to recruit
g-TuRC to the pericentriolar material (PCM) surrounding the
centrosome.52 Studies in mammalian neurons have shown

g-tubulin and PCM material are lost from the centrosome dur-
ing early neuron differentiation, and PCM components are
transported into developing dendrites.53,54 In Drosophila sen-
sory neurons, Cnn and Plp link microtubule nucleation to
Golgi outposts.20,35 AKAP450/Plp and CDK5RAP2/Cnn local-
ize to somatic Golgi,50 and Cnn localizes to Golgi outposts in
Drosophila sensory neurons.20 Plp promotes the association of
Cnn with the Golgi outpost,20 similar to its recruitment and
organization roles at the centrosome.52

At the centrosome the PCM recruits and concentrates
g-tubulin for microtubule nucleation.52 However, no increase
in g-tubulin has been observed at either somatic or dendritic
Golgi,50 and removing Golgi outposts from dendrites using
activated kinesin constructs did not disrupt g-tubulin localiza-
tion.55 Thus the microtubule nucleation machinery associated
with Golgi outposts may not function through the same
g-tubulin recruitment mechanism as the PCM. A recent model
proposes that Golgi drive microtubule nucleation by localizing
the accessory factors that increase the nucleation activity of
g-TuRC, while g-TuRC itself remains unenriched in the adja-
cent cytoplasm.50 CDK5RAP2/Cnn is one potential activating
factor as it has been shown to activate g–TuRC in vitro.56

Golgi outpost microtubule nucleation activity also depends
upon outpost structure. In dendrites the biochemically distinct
medial and trans compartments, which are characteristically
combined into a stack in the soma, are often disconnected into sin-
gle-compartment Golgi outposts.57 Single-compartment Golgi
outposts can nucleate microtubules, but fusion into a multi-com-
partment structure within dendrites increases outpost microtubule
nucleation activity.57 The Golgi structural protein GM130 localizes
to outposts and promotes the fusion of single-compartment
outposts into a multi-compartment structure.57 In addition to this
outpost fusion function, GM130 may also recruit AKAP450/Plp to
outposts, as it has been shown to link AKAP450/Plp to somatic
Golgi for microtubule nucleation.58

The role of alternative nucleation sites in orienting
microtubule nucleation in the dendrite

The orientation of g-tubulin-mediated microtubule nucleation will
affect microtubule polymerization polarities within the dendrite
arbor, and a recent study has shown that genetic mutants raising or
lowering g-tubulin activity altered the balance of these polarities.55

The direction of polymerization is important during dendrite

Figure 2. (A) The centrosome (the structure of interphase centrosome is illustrated86) and (B) somatic Golgi / dendritic Golgi outposts share common molecular machinery
for microtubule nucleation. (C) Microtubule nucleation from pre-existing microtubules by the Augmin complex. Illustrations adapted from references.50,86,87
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differentiation. Immature differentiating dendrites have a larger
balance of anterograde distal microtubules than mature dendrites
and anterograde polymerization events are concentrated in the
growing terminal regions.17,27-29,35 The polymerization of plus-end
distal microtubules drives neurite outgrowth during neuron differ-
entiation,59 and live imaging of growing dendrites in vivo shows
anterograde polymerizing microtubules extending the termini of
emerging branches leading to outgrowth and stabilization20,35

(Fig. 3A).
Golgi outposts bias the direction of microtubule polymeriza-

tion at the local level. Somatic Golgi nucleate microtubules that
only polymerize in the same orientation as the trans face50

(Fig. 2B). Similarly, repeated nucleation from an individual
Golgi outpost produces a unidirectional sequence of polymeri-
zation events.20,35 Nevertheless, when summed through all den-
drite termini, Golgi outpost-associated nucleation events
contribute approximately equally to both anterograde and ret-
rograde polymerizing microtubules (Fig. 3B). Although indi-
vidual outposts impart polarity on microtubule nucleation, this
process is unlikely to support enrichment of anterograde events
at dendrite termini. Instead, these data suggest that the orienta-
tions of individual Golgi outposts are mixed, approximately
half oriented to give rise to anterograde-directed nucleation
and half to retrograde-directed nucleation. Further experiments
are required to clarify the relationship between outpost polarity
and microtubule nucleation polarity. Because the organization
of dendrite Golgi outposts differs from somatic Golgi,57 espe-
cially for single-compartment outposts, it is possible that
microtubule nucleation might be able to initiate on either sur-
face of the outpost (and continue solely from that surface).

Recent data suggest that the interplay between alternative
sites of dendrite microtubule nucleation regulates the

distribution of microtubule polymerization polarities in the
developing dendrite termini20 (Fig. 3C). This is analogous to
how the interactions of centrosome, chromatin, and microtu-
bule-dependent microtubule nucleation mechanisms shape the
mitotic spindle.60 Decoupling nucleation events from Golgi
outposts shifts the balance of microtubule polymerization
polarities in dendrite termini in the anterograde direction.
Notably the increase in anterograde polymerization events
occurs primarily in the population of microtubules that are not
nucleating at Golgi outposts (Fig. 3B).20 Microtubule nucleation
is catalyzed from the sides of microtubules during the matura-
tion of the mitotic spindle by the Augmin complex,61 and loss
of the Drosophila Augmin component Wee Augmin (Wac)62

leads to a specific reduction of the additional anterograde poly-
merization events that are caused when nucleation is decoupled
from Golgi.20 Augmin nucleates new microtubules with the
same polarity as the pre-existing microtubule template61

(Fig. 2C). Therefore Wac activity might promote anterograde
polymerization in dendrite termini through nucleation events
that maintain the existing anterograde bias of microtubules
that had initially invaded the nascent branch59,63 (Fig. 3C).
Altering the relative Cnn and Wac levels in developing den-
drites regulates dendrite branching20 (Fig. 3C). As branching
can be controlled by modulating the balance between distinct
microtubule nucleation machineries, this suggests a mechanism
for neuron type-specific arbor patterning.

Microtubule nucleation control for dendrite
morphogenesis

Neuron diversification is driven by transcription factors that
regulate multiple aspects of neuron character including

Figure 3. (A) Anterograde polymerizing microtubule invasion into nascent dendrite branches drives outgrowth. Microtubules nucleated within termini or at the branch
site are more likely to drive an extension event.35 At a lower frequency, similar to the invasion of microtubules into the spines of mature dendrites,88 both retrograde- or
anterograde-oriented microtubules in the main branch enter nascent dendrite branches, becoming anterograde-directed within the termini.35 (B) The relative contribu-
tions of Golgi- and non-Golgi-derived polymerizing microtubules to the dendrite termini. Golgi outpost-associated events contribute approximately equally to both anter-
ograde and retrograde polymerizing microtubules. In cnn mutant neurons, there is an increase in non-Golgi microtubules that polymerize in the anterograde direction;
this increase is not accounted for by the loss of Golgi outpost-associated retrograde polymerization events. These data suggest that nucleation machinery at outposts
might counteract the activity of additional factors that promote anterograde bias. (C) A model for how arbor complexity can be regulated by modulating the balance
between these distinct Golgi- and non-Golgi-associated pathways that orient microtubule polymerization. A single outpost is shown here; it should be noted, however,
that throughout the arbor individual Golgi outposts can give rise to either repeated anterograde or retrograde nucleation events. During dendrite outgrowth, Cnn recruits
microtubule nucleation to Golgi outposts to suppress an activity (that may be due to Augmin, here illustrated by the Drosophila Augmin component Wac62), which in turn
promotes anterograde polymerization.
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dendrite arbor morphology.4,64 For example, in cortical pyra-
midal neurons the bHLH transcription factor Ngn2 specifies
the characteristic primary apical dendrite.65 The homeodomain
factor Cux2 also promotes branch complexity in the apical part
of the dendrite arbor, while Cux1 regulates the basal compart-
ment.66 In the somatosensory cortex, the BTB-domain factor
BTBD3 regulates the pruning of dendrite branches to enable
the establishment of the correct receptive field.67

The role of transcription factors in specifying differences in
arbor morphology between different types of Drosophila body
wall sensory neurons has been extensively studied over the last
decade.4,64 Sensory neuron dendrite patterning is defined by
the combinatorial activities of a group of transcription factors,
including the homeodomain factor Cut (homolog of Cux1
and 2), the BTB-domain factors Abrupt and Lola, the Kr€uppel-
like factor Dar1, the Iroquois factor Mirror, the bHLH-PAS fac-
tor Spineless, the PRDM factor Hamlet, and the EBF factor
Knot.41,68-78 These studies have demonstrated that individual
transcription factors control specific aspects of dendrite cyto-
skeleton organization; for example, Cut and Lola were shown
to regulate actin organization,41,76,78 while Knot, Dar1, and
Abrupt regulate microtubule organization.20,41,77

A complex interacting network of microtubule regulatory
events occurs within the differentiating neuron,7 and conse-
quently, a microtubule regulator that is an effector of a tran-
scription factor need not be under the direct transcriptional
control of that factor. Nonetheless, elucidating a transcriptional
relationship is a valuable approach to identify molecular mech-
anisms shaping the arbor.64 This approach revealed a key
mechanism of how the transcription factor Abrupt represses
dendrite branching. In Drosophila class I neurons, Abrupt pre-
vents branching to create the simple arbor morphology charac-
teristic of this class.20,74,75 Cnn was found to be a
transcriptional target of Abrupt. Loss of Abrupt leads to Cnn
downregulation and the decoupling of microtubule nucleation
from Golgi outposts, thereby causing an increase in antero-
grade microtubule nucleation events and the de-repression of
branching.20 In another transcriptional pathway, Cut, which
promotes dendrite branching,41,73 regulates Sec31 and other
components of the COPII secretory transport pathway to pro-
mote Golgi outpost formation79 (the outcome on dendrite
microtubule nucleation was not examined).

Golgi outpost compartment organization is different
between neuron types, raising the possibility that it may also be
used to control neuron type-specific patterning. In class III sen-
sory neurons, outposts exist in both single- and multi-compart-
ment forms.57 In class I neurons, however, although the Golgi
structural protein GM130 is present in the dendrites,79 only
medial-Golgi markers were detected.20,55 The transcription fac-
tor Dar1 is required to create complex dendrite arbor struc-
tures. Dar1 also drives the formation of multi-compartment
Golgi outposts; the transcriptional pathway responsible for this
has not been determined.57 Nevertheless, because multi-com-
partment outposts drive a higher level of nucleation than sin-
gle-compartment outposts, controlling differences in Golgi
outpost composition between neuron types should be expected
to alter microtubule nucleation parameters.57

Taken together these recent studies highlight how the
network of microtubule nucleation machineries in growing

dendrites can provide a rich substrate through which intrin-
sic transcription factors modulate branching to create the
characteristic dendrite arbor morphologies of different neu-
ron types.

Conclusions

In this article we reviewed recent studies that address the mech-
anisms and roles of microtubule nucleation during dendrite
development, a critical aspect of a complex interacting network
of microtubule regulatory events occurring within the differen-
tiating neuron.6,7 The regulation of microtubule nucleation
events within a developing dendrite creates a system for guid-
ing the direction of microtubule polymerization at the termini
of the growing arbor.20,35 Golgi outposts provide a local guide
for microtubule nucleation in dendrites, and they interact with
other nucleation sites in order to fine-tune the amplitude and
polarity of dendrite microtubule nucleation events.20,35,57 Den-
drite microtubules themselves may also act as a nucleation site
through the activity of the Augmin complex,20,62 an important
question for further study. Diversity in neuron arbors can be
achieved by modulating the dendrite nucleation machinery, for
example by regulating the activity of Golgi outposts as nucle-
ation sites.20,57

Methods

For transmission electron microscopy, neurons were marked by
2-21-gal4,UAS-lacZ or ppk-Gal4,UAS-lacZ. Third instar larvae
were dissected as previously described,80 then fixed in 2.5% glu-
taraldehyde for 20 min, washed in 0.1 M Tris-HCl (pH 7.3)
containing 2 mM MgCl2 for 3 £ 5 min, and processed as
described previously.81 Following identification of the labeled
neuron soma, serial sections were cut and microscopy was per-
formed using a JEOL JEM-1200EXII. Microtubule nucleation
localization and polarity quantifications were extracted from
previously reported data sets.20
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