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Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disease, which is characterized by loss of
dopaminergic (DA) neurons in the substantia nigra pars compacta and the formation of Lewy bodies and Lewy
neurites in surviving DA neurons in most cases. Although the cause of PD is still unclear, the remarkable advances
have been made in understanding the possible causative mechanisms of PD pathogenesis. Numerous studies
showed that dysfunction of mitochondria may play key roles in DA neuronal loss. Both genetic and environmental
factors that are associated with PD contribute to mitochondrial dysfunction and PD pathogenesis. The induction of
PD by neurotoxins that inhibit mitochondrial complex I provides direct evidence linking mitochondrial dysfunction
to PD. Decrease of mitochondrial complex I activity is present in PD brain and in neurotoxin- or genetic factor-
induced PD cellular and animal models. Moreover, PINK1 and parkin, two autosomal recessive PD gene products,
have important roles in mitophagy, a cellular process to clear damaged mitochondria. PINK1 activates parkin to
ubiquitinate outer mitochondrial membrane proteins to induce a selective degradation of damaged mitochondria
by autophagy. In this review, we summarize the factors associated with PD and recent advances in understanding
mitochondrial dysfunction in PD.
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Background
Parkinson’s disease (PD) is the second common neuro-
degenerative disease that affects about 1 % of adults over
60 [1]. The motor symptoms of PD are rigidity, bradyki-
nesia, postural instability and resting tremor, which are
caused by a progressive loss of dopaminergic (DA) neu-
rons in the substantianigra pars compacta (SNpc) [2].
Besides loss of DA neurons in SNpc, in most familial
and sporadic PD, the surviving DA neurons present
cytoplasmic and neuritic inclusions named Lewy bodies
(LBs) and Lewy neurites that are mainly composed of
alpha-synuclein (α-syn), with other proteins in surviv-
ing DA neurons [3, 4]. Although the causative factors
for DA neuronal loss are still unclear, multiple events

contribute to PD pathogenesis, including protein aggrega-
tion [5], impairment of the ubiquitin-proteasome pathway
[6], oxidative stress [7], mitochondrial dysfunction [8, 9]
and neuroinflammation [10–12]. Clinically, most PD cases
are sporadic; however, autosomal dominant and recessive
familial forms that are resulted from mutations in PD-
associated genes have been identified in the past 2 de-
cades. Both environmental and genetic factors can induce
mitochondrial dysfunction. Many of the PD-associated
gene products are mitochondria-resident proteins or can
be translocated to mitochondria upon stimulations. They
function in either protecting or damaging mitochondria.
Mutations in these genes may result in either loss or gain
of function, thereby inducing mitochondrial dysfunction.
Importantly, some PD-associated gene products such as
PINK1 and parkin are identified as key factors involved
in the induction of mitophagy, a cellular process to
clear damaged mitochondria. In this review, we will
discuss the role of PD-associated factors in mitochon-
drial dysfunction.

* Correspondence: wanggh@suda.edu.cn
1Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of
Translational Research and Therapy for Neuro-Psycho-Diseases and College
of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021,
China
2The Second Affiliated Hospital of Soochow University, Soochow University,
Suzhou, Jiangsu 215021, China

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Hu and Wang Translational Neurodegeneration  (2016) 5:14 
DOI 10.1186/s40035-016-0060-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s40035-016-0060-6&domain=pdf
http://orcid.org/0000-0001-8551-6468
mailto:wanggh@suda.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Evidence of mitochondrial dysfunction in sporadic PD
brain and neurotoxin-induced animal model
Mitochondrial dysfunction is tightly associated with PD
pathogenesis. The direct evidence of mitochondrial
dysfunction in PD came from PD patient brain samples
[13, 14]. In SN of PD patients, the mitochondrial com-
plex I activity is significantly decreased [13, 14]. More-
over, a high level of mitochondrial DNA deletion was
observed in SN neurons from PD patients [15], suggesting
a role of mitochondrial dysfunction in PD. Furthermore,
decreases of peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC-1α, a co-activator im-
portant for mitochondrial gene expressions) and PGC-1α-
regulated mitochondrial genes were observed in DA
neurons in PD [16, 17]. These data suggest the presence
of defects in mitochondrial function and biogenesis in PD
brain.
The direct linkage of mitochondrial dysfunction with

PD came from the discovery of 1-methyl-4-phenyl-1,2,5,
6-tetrahydropyridine (MPTP), a neurotoxin that induces
PD symptoms in drug-abused patients in 1983 [18].
Soon, the neurotoxicity of MPTP was confirmed in pri-
mate and rodent models [19–21]. Later, the inhibitory
effects of MPTP on mitochondria were identified [22–24].
Now, it is well known that the neurotoxicity of MPTP
arises from its toxic metabolite 1-methyl-4-phenylpyridi-
nium (MPP+). MPTP is converted by monoamine oxidase
in astrocytes to form 1-methyl-4-phenyl-2,3-dihydropyri-
dinium, which is rapidly converted to MPP+ [25]. MPP+ is
released from astrocytes through the organic cation
transporter 3 and taken up by DA neurons through the
dopamine transporter [26]. MPP+ accumulates in mito-
chondria to interfere the electron transport chain by inhi-
biting complex I, leading to ATP depletion and reactive
oxygen species (ROS) production [24, 25]. Induction of
PD by the inhibition of complex I is also evidenced from
studies using rotenone and paraquat, two pesticides with
similar structure as MPTP, that inhibit complex I [27].
ROS production by inhibition of complex I is a key
mechanism for DA neuronal damage as DA neurons
are susceptible to oxidative stress due to autoxidation
of DA during catabolism [28]. The generation of ROS
induces the damage of complex I and III, and oxidation
of proteins on mitochondria and in cytoplasm, leading
to mitochondrial dysfunction [29, 30]. The increased
oxidative stress overloads the ubiquitin-proteasomal
system (UPS), resulting in the accumulation of dam-
aged and misfolded proteins [30, 31]. Importantly, ad-
ministration of complex I inhibitors induces loss of DA
neurons and enables animals to develop the clinical
features of PD, which has been commonly used for
producing laboratory PD model mimicked sporadic PD
for addressing the mechanism and exploring the thera-
peutics [32, 33].

Autosomal dominant PD gene products in association
with mitochondrial dysfunction in PD
SNCA (PARK1)
SNCA (PARK1) that encodes α-syn was the first gene
identified to be associated with familial PD [34, 35]. α-
syn is a major component of cytoplasmic inclusions
(LBs) in survived DA neurons in PD brain [36, 37]. α-
syn is highly enriched in presynaptic terminals [38]. It
interacts with synaptic vesicles and regulates vesicle
trafficking and endocytosis [39]. Although the neuronal
toxicity of α-syn induces a wide range of cellular dys-
functions in cytoplasm, such as oxidative stress, synaptic
transport, UPS impairment and autophagy dysfunction
[40–42], the linkage between α-syn and mitochondrial
dysfunction has been recently identified. α-syn has a
mitochondrial localization, although the majority of
α-syn is soluble in cytoplasm [43–45]. Most recently,
α-syn is identified to be located at the mitochondria-
associated membranes that connect mitochondria and
endoplasmic reticulum [45]. Overexpression of patho-
genic α-syn (A53T or A30P) induces mitochondrial
fragmentation, probably through inducing cleavage of
dynamin-like 120 kDa protein (OPA1), a negative regulator
of mitochondrial fragmentation [45]. In transgenic mice,
the pathogenic α-syn (A53T) inhibit complex I activity and
induce mitochondrial degeneration [46]. The transgenic
mice present axonal degeneration, neuronal cell death and
cytoplasmic inclusions positive for α-syn and nitrated α-
syn, presenting pathological features as PD brains [46].
Thus, above studies provide evidence that α-syn has effects
on mitochondria, besides its indirectly influencing mito-
chondrial function by the induction of oxidative stress.

LRRK2 (PARK8)
Mutations in LRRK2 (PARK8) are associated with auto-
somal dominant PD [47–49]. The frequency of mutation
G2019S was reported in 5-6 % of autosomal dominant
PD patients [50, 51] and even near 1 % of sporadic PD
patients without a known family history of the disease
[52]. LRRK2 (leucine-rich repeat serine/threonine-protein
kinase 2) is located in mitochondria, cytoplasm and nu-
cleus [53]. The kinase activity of LRRK2 G2019S is in-
creased [53]. The mitochondrial membrane potential and
ATP level are decreased but mitochondrial elongation is
increased in fibroblasts from PD patients harboring
LRRK2 G2019S mutation [54]. LRRK2 G2019S increases
uncoupling protein level to depolarize mitochondrial
membrane potential [55]. LRRK2 interacts with dynamin-
related protein 1 (DRP1), a mitochondrial fission protein
[56]. Inhibition of LRRK2 activity increases mitochondrial
ROS production, DRP1 mitochondrial translocation and
mitochondrial fission, suggesting an involvement of LRRK2
in the regulation of mitochondrial dynamics and oxidative
stress [57].
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CHCHD2 (PARK22)
Recently, the association of mitochondrial dysfunction
with PD is further evidenced by the identification of a
missense mutation in CHCHD2, an autosomal dominant
gene associated with late-onset PD in a Japanese family
[58] and a risk factor for sporadic PD [59]. CHCHD2
(PARK22) encodes coiled-coil-helix-coiled-coil-helix domain-
containing protein 2 (CHCHD2), a protein originally iden-
tified as a transcription factor that binds to oxygen
responsive element of COX4I2, a gene encoding cyto-
chrome c oxidase (COX) subunit 4, isoform 2 that regu-
lates cytochrome c oxidase activity [60]. As a transcription
factor, CHCHD2 transactivates the nuclear encoded
COX4I2 in nucleus [61]. However, it is also a mitochon-
drial intermembrane space-resident protein bound to
COX and regulating COX activity [61]. Decrease of
CHCHD2 level results in decreases of COX activity and
mitochondrial membrane potential, and increases of
ROS production and mitochondrial fragmentation [61].
Moreover, CHCHD2 functions in mitochondria to anti-
apoptosis through its interacting with Bcl-xl to inhibit
the oligomerization and mitochondrial accumulation
of Bax [62].

Autosomal recessive PD gene products in association
with mitochondrial dysfunction in PD
PARKIN (PARK2)
Three of autosomal recessive PD genes PARKIN (PARK2),
PINK1 (PARK6) and DJ-1 (PARK7) are tightly associated
with mitochondrial dysfunction in PD. PARKIN is the first
recessive gene identified to be associated with autosomal
recessive juvenile Parkinsonism in a Japanese family [63],
just 1 year after the discovery of SNCA (α-syn). Mutations
in PARKIN have been found in patients of different ethni-
city and account for about half of known cases of auto-
somal recessive PD [64, 65]. Parkin, the PARKIN gene
product, is a RING finger containing E3 ligase [66]. A lo-
gical hypothesis is that loss of parkin function will result
in the accumulation of its substrates that may be toxic for
DA neurons [67]. However, up to date, most identified
substrates of parkin are not exclusively expressed in DA
neurons or accumulated in PD [68]. And the pathological
LBs are absent in PD cases with PARKIN mutations. It is
possible that parkin-mediated non-degradation signal also
plays roles in PD as it can ubiquitinate substrate through
either K63- or K48-linked ubiquitin chains [69]. One of
the parkin substrates is PARIS (Zinc finger protein 746), a
major repressor of PGC-1α [70]. Parkin ubiquitinates
PARIS and regulates its expression level. In PARKIN
knockout mice and PD brains, the PARIS levels are in-
creased but PGC-1α levels are decreased [70]. As PGC-1α
is a central regulator for nuclear and mitochondrial
encoded gene expressions, the mitochondrial protein ex-
pressions are decreased with the decrease of PGC-1α in

PD brains [71]. Thus, parkin may regulates mitochondrial
biogenesis by its indirectly infleuencing PGC-1α level.
Thus, the accumulation of PARIS in PD brain reflects loss
of parkin E3 ligase activity-induced impairment of protein
degradation and provides an explanation of mitochondrial
dysfunction in PD.

PINK1 (PARK6)
PINK1 is a mitochondrial serine/threonine protein kin-
ase encoded by PINK1 gene which mutations cause an
autosomal recessive form of PD [72]. PINK1 is known as
a parkin upstream factor that accumulates on mitochon-
dria upon depolarization of mitochondria and recruits
parkin onto mitochondria [73]. As a mitochondrial pro-
tein, PINK1 has multiple roles in mitochondria, including
mitophagy [73], mitochondrial traffic [74], mitochondrial
dynamics [75] and complex I activity [76]. Depolarization
of mitochondria induces PINK1/parkin to associate with
Miro, a mitochondrial out membrane protein that recruits
kinesin to the mitochondrial surface [74]. PINK1 phos-
phorylates Miro to induce a parkin- and proteasomal-
dependent degradation of Miro, thereby releasing kinesin
from mitochondria, leading to an inhibition of mitochon-
drial motility [74], which may be an initial quarantining
step prior to mitophagy [74]. PINK1/parkin pathway also
affects mitochondrial dynamics. Both mitochondrial fu-
sion- and fission-proteins, such as mitofusin (Mfn) [77, 78]
and DRP1 [79], are parkin substrates that are ubiquiti-
nated by parkin. Phosphorylation of Mfn2 by PINK1 is re-
quired for Mfn2 interaction with and ubiquitination by
parkin [78]. PINK1 deficiency causes defect of complex I,
mitochondrial depolarization and increased sensitivity to
apoptotic stress [80]. The deficiency of complex I by loss
of PINK1 can be rescued by wild type PINK1, but not PD-
related mutant PINK1 [80]. Interestingly, the impaired
mitochondrial respiration is presented in the striatum but
not in the cerebral cortex in young PINK1 knockout mice,
suggesting a specific involvement of PINK1 in DA cir-
cuitry [81]. Recently, NADH dehydrogenase [ubiquinone]
1 alpha subcomplex subunit 10 (NdufA10), a complex I
subunit, was identified to be phosphorylated at S250
dependent on PINK1 [76]. Loss of phosphorylation of
S250 in NdufA10 was observed in PINK1 knockout mice
[76]. Introduction of S250D NdufA10 into PINK1 defi-
cient cells or mutant fly restores complex I activity and
membrane potential [76], suggesting a critical role of
PINK1 in regulating complex I activity through NdufA10
phosphrylation.

DJ-1 (PARK7)
DJ-1 is another PD gene which missense or deletion mu-
tations are associated with autosomal recessive PD [82].
DJ-1 is a multifunctional protein involved in many cellu-
lar functions [83], including transcriptional regulation
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[84, 85], anti-oxidative stress [86–88], chaperone activity
[89] and protecting mitochondria [87]. DJ-1 protects
cells against ROS by self-oxidation at C106 [86]. Al-
though DJ-1 lacks mitochondrial targeting sequence and
is mainly cytosolic, it can be translocated onto mito-
chondria against oxidative stress-induced cell death [87].
However, pathogenic forms of DJ-1, such as L166P and
M26I, are localized on mitochondria and sensitize cells
to oxidative stress [82, 90]. DJ-1 binds to complex I sub-
units and loss of DJ-1 decreases complex I activity [91],
suggesting that DJ-1 has impact on complex I. Interest-
ingly, similar mitochondrial phenotype can be observed in
PINK1- or DJ-1-deficient cells and mitochondrial defects
in DJ-1-deficient cells can be rescued by parkin or PINK1,
although PINK1/parkin pathway seems functioning in
parallel to, rather than downstream of, DJ-1 pathway [92].

HTRA2/OMI (PARK13)
The HTRA2/OMI (PARK13) gene product HtrA2/OMI
(HtrA serine peptidase 2, refer to OMI later) is a mito-
chondrial serine protease that was first identified as a
mammalian homologue to bacterial heat shock endopro-
tease HtrA and named as OMI [93]. It is released from
mitochondria to cytosol to cleave XIAP in response to
apoptotic stimuli, which induces apoptosis [94]. In 2005,
it was found that loss of OMI protease activity is associ-
ated with PD [95]. mnd2 (motor neuron degeneration 2)
mice which harbor protease-deficient OMI S276C mutants,
and OMI-knockout mice present motor abnormalities simi-
lar to PD, with the progressive neurodegeneration in some
brain regions, especially in striatum [96]. Loss of OMI
protease activity leads to mitochondrial dysfunction. The
cells from mnd2 or OMI knockout mice increased suscep-
tibility of mitochondrial membrane permeabilization, de-
creased mitochondrial membrane potential, and reduced
mitochondrial density [96–98]. In OMI knockout mouse
embryonic fibroblasts, the damage and mutation of mito-
chondrial DNA are increase [99]. Interestingly, PINK1 in-
teracts with OMI and facilitates OMI phosphorylation,
which contributes to increased resistance of cells to mito-
chondrial stress [100]. Moreover, in brains from PD pa-
tients with PINK1 mutaions, the phosphorylation of OMI
is decreased, further suggesting that PINK1 acts on the
upstream of OMI in a mitochondrial stress sensing path-
way in PD.

PLA2G6 (PARK14)
The PLA2G6 (PARK14) gene encodes an 85-kDa calcium-
independent phospholipase A2β (PLA2G6) that hydrolyses
the sn-2 acyl chain of glycerophospholipids to release free
fatty acids from phospholipids [101]. PLA2G6 gene muta-
tions cause PLA2G6-associated neurodegeneration (PLAN),
including infantile neuroaxonal dystrophy [102] and
adult-onset dystonia-parkinsonism [103, 104]. PLA2G6

is distributed in cytosol and membrane associated
compartments, but mostly in mitochondria [105]. In
cells, overexpression of PLA2G6 protects cells from
staurosporine-induced apoptosis through stabilizing
mitochondrial membrane potential, reducing mitochon-
drial reactive oxygen species production [105]. In Dros-
ophila, loss of iPLA2-VIA, the Drosophila orthologue of
PLA2G6, leads to age-dependent locomotor deficits and
neurodegeneration [106]. The flies lacking iPLA2-VIA dis-
play severe mitochondrial degeneration with decreases of
mitochondrial membrane potential and ATP production
[106]. In PLA2G6 knockout mice, abnormal mitochondria
with multiple morphological changes are presented in the
anterior horns spinal cord [107]. Most interestingly, in
PLA2G6 knockout mice as well as PLA2G6 knockdown
cells, α-syn levels are increased [108]. The immunoreactiv-
ity of S129-site phosphorylated α-syn is strongly presented
in neuronal granules which are labeled with mitochondrial
outer membrane 20 kDa protein (TOM20) in PLA2G6
knockout mice [108], suggesting an accumulation of α-syn
on damaged mitochondria. In PLAN brains, α-syn labeled
small inclusions are colocalized with TOM20, which may
develop to LBs [108], further suggesting a role of PLA2G6
in mitochondrial dysfunction and LB formation.

Mitophagy
Mitochondrial dysfunction is a key pathological change
in PD. The only way to clear the damaged mitochondria
is mitophagy, a cellular process for a selective degrad-
ation of mitochondria by autophagy [109]. The role of
PINK1/parkin in mitophagy has been extensively studied
after the discovery of PINK1/parkin selectively driving
damaged mitochondrial degradation [110]. The early
hints of PINK1/parkin on mitochondrial homeostasis
came from studies using Drosophila model [111–113].
Drosophila park null flies present prominent mitochon-
drial damage in muscle [111]. Similar phenotype was ob-
served in pink1 null flies [112, 113]. Overexprsssion of
parkin in pink1 null flies rescues mitochondrial pheno-
type, but overexpression of PINK1 does not rescue the
phenotype in parkin null flies, suggesting that parkin
functions in the downstream of PINK1 [112, 113].
The role of PINK1/parkin in mitophagy was identified

the study that parkin is selectively recruited to damaged
mitochondria to drive mitochondrial degradation after the
treatment of carbonyl cyanide m-chlorophenylhydrazone
(CCCP), a mitochondrial uncoupler that induces mito-
chondrial depolarization [110]. The recognition of
mitochondria for autophagic degradation needs either
mitophagy receptor or ubiquitinated protein on mito-
chondrial membrane. The substrates of autophagy
need to be interacted with phosphatidylethanolamine-
conjugated LC3 (microtubule-associated protein light
chain) that is anchored on phagophore [114, 115]. Three
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mammalian mitophagy receptors are recently identified,
including Nix (BCL2/adenovirus E1B 19 kDa protein-
interacting protein 3-like) [116], FUNDC1 (FUN14
domain-containing protein 1) [117], and BCL2L13 [118],
that are located on the outer mitochondrial membrane
(OMM) and able to interact directly with LC3 to induce
mitophagy. The induction of mitophagy dependent on
PINK1/parkin pathway is mediated by ubiquitination of
mitochondria, on which the ubiquitin chains are recognized
by autophagic adaptors that interact with LC3 through LC-
interaction region (LIR) to link LC3-conjugated phago-
phore and ubiquitinated mitochondria [119].
Parkin ubiquitinates OMM proteins with K48- and

K63-linked ubiquitin chains that play roles in parkin-
dependent mitophagy [120]. The parkin-dependently
ubiquitinated mitochondria are recognized by autopha-
gic receptor p62 [121] or NBR1 [120, 122] for mito-
phagy. Interestingly, parkin induces a degradation of
OMM proteins such as Mfn1, Mfn2, TOM70 and others,
which is independent on autophagy but dependent on
UPS [120, 123]. Degradation of OMM proteins by UPS
promotes mitophagy, probably by influencing mitochon-
drial motility [120, 123]. Deubiquitination by deubiquiti-
nases (DUBs) are also involved in the regulation of
mitophagy. The ubiquitin-specific protease (USP) 15 de-
creases parkin-attached mitochondrial ubiquitin chains
to interfere parkin-driven mitophagy [124]. The mito-
chondrial DUB, USP30, also removes ubiquitin chains
on mitochondria to block parkin-induced mitophagy
[125]. Knockdown of USP15 or USP30 improves the
phenotype of parkin- or PINK1-deficient flies, suggesting
a functional interaction between mitochondrial ubiquiti-
nation by parkin and deubiquitination by DUBs.
Recently, the kinase activity of PINK1 and its role in

the clearance of damaged mitochondrial are well docu-
mented and reviewed [126, 127]. PINK1 phosphorylates
parkin at S65 to activate parkin and to induce parkin re-
cruitment onto mitochondria [128]. PINK1 also poho-
sphorylates ubiquitin at S65, which activates parkin E3
ligase activity [129–131]. It seems that the phosphoryl-
ation of ubiquitin chains on damaged mitochondria by
PINK1 is prior to and promotes parkin recruitment onto
mitochondria [129, 130]. Mitochondrial damage induces
accumulation of PINK1 that phosphorylates and acti-
vates parkin and ubiquitin. Meanwhile, mitochondrial
damage activates serine/threonine-protein kinase TBK1,
a kinas that phosphorylates autophagic adaptor opti-
neurin, Nuclear domain 10 protein NDP52 and p62, and
induces them recruitment to damaged mitochondria,
leading to activation of mitophagy [132].

Conclusions
Evidence from PD patients and animal models indi-
cate a linkage between mitochondrial dysfunction and

PD pathogenesis. Environmental and genetic factors con-
tribute to mitochondrial dysfunction in PD. One of com-
mon defects in PD patients and PD model is the
deficiency of complex I. Recent findings indicate that
PINK1 and parkin are involved in mitophagy. PINK1 can
be accumulated on damaged mitochondria to recruit par-
kin onto mitochondria, resulting in ubiquitination of
OMM proteins and induction of mitophagy. Loss of
PINK1 or parkin leads to a failure in the clearance of dam-
aged mitochondria, thereby inducing DA neurons suscep-
tible to stresses. However, it is still unclear why the
damaged mitochondria are not successfully cleared in
sporadic PD patients or in neurotoxin- or genetic factor-
induced animals that harbor wild type PINK1 and parkin.
It is also unclear why loss of mitochondrial membrane po-
tential does not induce PINK1 accumulation on mito-
chondria to promote mitophagy for the clearance of
damaged mitochondria in vivo, although it induces mito-
phagy in cellular models. It is of help to identify the fac-
tors that influence PINK1 activity and accumulation on
mitochondria and that affect or block PINK1 downstream
factor activation in both cellular and animal models.
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