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Abstract

AXL is a tyrosine kinase membrane receptor that signals via PI3K, MAPK, and protein kinase C 

(PKC), among other pathways. AXL has oncogenic potential and interacts with other membrane 

receptors, depending on their relative abundance and availability. The increased expression of 

AXL in cancer is often the result of pharmacologic selective pressure to a number of 

chemotherapies and targeted therapies and acts as a mechanism of acquired drug resistance. This 

resistance phenotype, frequently accompanied by epithelial-to-mesenchymal transition, can be 

reversed by AXL inhibition. In tumors with high levels of EGFR, including lung, head and neck, 

and triple-negative breast cancer, AXL dimerizes with this receptor and initiates signaling that 

circumvents the antitumor effects of anti-EGFR therapies. Likewise, AXL overexpression and 

dimerization with EGFR can overcome PI3K inhibition by activating the phospholipase C-γ-PKC 

cascade that, in turn, sustains mTORC1 activity. The causative role of AXL in inducing drug 

resistance is underscored by the fact that the suppression of AXL restores sensitivity to these 

agents. Hence, these observations indicate that AXL is selectively expressed in tumor cells 

refractory to therapy and that cotargeting AXL in this setting would potentially overcome drug 

resistance. The use of AXL inhibitors should be considered in the clinic.
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 Background

The gene AXL, a name derived from the Greek word anexelekto (“uncontrolled”) was first 

isolated from chronic myelogenous leukemia, and its overexpression was found to induce 

fibroblast transformation with simultaneous appearance of a 140-kDa tyrosine-

phosphorylated protein (1). AXL is also known as adhesion-related kinase (2), Tyro7 (3), or 

unknown function (4). AXL belongs to the TAM family of receptor tyrosine kinases (RTK), 

which also includes Tyro3 and MERTK. TAM receptors have pleiotropic functions in many 

biologic processes, such as coagulation, immune response, and cancer progression (5). They 

share among their members 16% to 31% of their extracellular amino acid sequence and 54% 

to 59% of their intracellular domain (6). Autophosphorylation of the intracellular tyrosine 

kinase domain of AXL occurs following receptor activation and is mediated either by 

ligand-dependent or ligand-independent receptor dimerization. Growth arrest–specific 

protein 6 (Gas6) has been identified as the only ligand that binds the extracellular domain of 

AXL (7–9). Receptor homodimerization or heterodimerization with other RTKs, such as 

EGFR (10), results in rapid phosphorylation of AXL and the activation of a number of 

downstream effectors (see “AXL signaling pathway”).

AXL is ubiquitously expressed in a wide variety of tissues, such as brain (hippocampus and 

cerebellum), heart, liver, and bone marrow (monocytes and macrophages; reviewed in refs. 

5, 11). Increased expression of AXL has been reported in several human cancers, including 

colon, esophageal, thyroid, breast, lung, liver, and astrocytoma–glioblastoma (reviewed in 

refs. 12, 13).

The AXL receptor regulates fundamental cellular processes, including proliferation, 

survival, and migration (13). Moreover, AXL was shown to play a pivotal role in enhancing 

motility and invasiveness of breast (14) and lung cancer cells (15).

 AXL signaling pathway

AXL activation initiates the signaling of a number of downstream pathways such as PI3K, 

MAPK, and PKC (Fig. 1; ref. 16). The phosphorylation of three specific tyrosine residues 

(Tyr) within the intracellular domain of AXL promotes the recruitment of p85 (the 

regulatory subunit of PI3K), phospholipase C-γ (PLCγ, the initiator of the PKC cascade), 

and growth factor receptor–bound protein 2 [Grb2, an adaptor molecule that allows the 

activation of the MAPK pathway (17)]. Although Grb2 binding seems to be specific for 

Tyr821, p85 can interact with both Tyr821 and Tyr779, whereas PLCγ can anchor to both 

Tyr821 and Tyr886 (Fig. 1; ref. 17).

Both ligand-dependent and -independent activation of AXL initiates downstream signaling 

in several cancer types, including prostate (18), ovarian (19), lung (mesothelioma; ref. 20), 

and head and neck (21). In turn, these signaling cascades can activate transcription factors 

regulating cell proliferation and survival. One example is the AKT-mediated destabilization 

of the IkBα–NF-κB complex, resulting in nuclear shuttling of NF-κB (18) and consequent 

transcription of antiapoptotic proteins such as cyclin D1, survivin, and focal adhesion kinase 

(22).
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The activation of AXL is negatively regulated by a soluble form of the receptor that directly 

interacts with Gas6 and reduces ligand availability (23). Mechanistically, soluble AXL acts 

as a decoy receptor blocking Gas6 binding to membrane-bound TAM receptors and thus 

preventing AXL activation. A positive correlation between the levels of soluble AXL and 

membrane-bound AXL was observed in hepatocellular carcinoma (24), suggesting that the 

detection of soluble AXL could potentially be used as a biomarker to monitor increased 

AXL expression and emergence of drug resistance overtime. In addition, C1 domain–

containing phosphatase and tensin homolog(C1-TEN), a focal adhesion molecule with 

phosphatase properties and highly similar to PTEN, has been described to interact directly 

with AXL and negatively regulate the downstream activation of AKT (25, 26). AXL 

activation and downstream signaling propagation results in enhanced cell motility and 

invasion by increasing filopodia formation and cell-to-cell interactions (27). This phenotype 

is mechanistically explained, at least in part, by the AXL-mediated phosphorylation of 

engulfment and cell motility scaffold protein that, in turn, promotes Rac-mediated 

cytoskeleton changes, resulting in increased cancer cell migration (28). Accordingly, this is 

reversed by both AXL and Rac inhibition (29).

 AXL expression regulation

Although the regulation of AXL expression remains to be fully elucidated, it is not mediated 

by genomic amplification (30, 31). Likewise, no hotspot-activating mutations have been 

reported (30, 31). Overexpression of AXL may occur via alternative mechanisms, including 

activation of transcription factors, regulation of miRNAs, and posttranslational 

modifications. Specifically, transcriptional activation mediated by Fos/cJun/AP1 (16, 32), 

Sp1/Sp3 (33), and YAP1 (34) transcription factors results in increased AXL mRNA 

expression. AXL is also a direct transcriptional target of the Fos family member 

transcription factor Fos-related antigen 1 (Fra-1). Fra-1 was described to bind to four 

different regulatory regions of AXL-promoting gene expression (35). This was also 

confirmed by exogenous expression of Fra-1, which results in AXL upregulation (35). In 

imatinib-resistant chronic myeloid leukemia cells, the transcription factor activator protein 1 

(AP-1) seems to be required for AXL overexpression, as the promoter activity of AXL is 

almost completely abolished when carrying a mutation on its AP1-binding site (16). AXL 

expression may also be regulated by miR-34a and miR-199a/b, which target the 3′-UTR of 

the AXL gene (36–38). In non–small cell lung (NSCLC), breast, and colorectal cancers, for 

example, high levels of AXL can result from low expression of these miRNAs, which are 

suppressed by promoter methylation (36).

AXL protein levels can also depend on its stability. Receptor ubiquitination mediated by the 

Casitas B-lineage lymphoma (Cbl) E3 ubiquitin ligases can regulate the abundance of AXL 

in several cells (39, 40). Likewise, increased AXL half-life by impaired degradation of the 

receptor can occur in lung cancer cell lines, resulting in the net increase of AXL levels (41).

 Clinical–Translational Advances

Targeted therapy frequently results in a rapid increase of RTK expression that can 

compensate for the acute inhibition of a specific signaling pathway. In breast cancer, for 
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example, HER3 is often overexpressed as a result of PI3K/AKT inhibition (42–44), whereas 

increased expression and activity of EGFR plays a pivotal role in limiting the efficacy of 

BRAF inhibition in colon cancer (45, 46). These occurrences do not require genomic 

amplification, are versatile (not specific for a tumor type or a treatment), and inevitably 

result in the activation of downstream effectors that can oppose the pharmacologic pressure. 

The net result is either activation of parallel signaling or reactivation of the suppressed 

pathway, both of which overcome the pharmacologic pressure.

Increased AXL expression has been correlated with resistance to both antimitotic drugs and 

targeted agents. In AML, AXL was the only RTK overexpressed in cells from 4 patients that 

progressed on chemotherapy. Consistently, cell lines intrinsically resistant to chemotherapy 

express higher levels of AXL, and the chemotherapy exposure is sufficient to induce the 

expression of AXL (47). A similar effect is observed in NSCLC cell lines, with acquired 

resistance to cisplatin in vitro. Refractoriness to cisplatin coincided with induction of AXL 

expression, transcriptional changes compatible with epithelial-to-mesenchymal transition 

(EMT), and partial resistance to the EGFR kinase inhibitor gefitinib (48). EMT is a 

conserved transdifferentiation process that many tumor cell types undergo during cancer 

evolution (49). It is caused by a complex transcription rewiring that results in the acquisition 

of mesenchymal properties and nonspecific drug resistance. A recent report confirmed the 

association between induction of EMT and increased AXL expression but concluded that 

EMT-associated drug resistance is independent of AXL function (50). Nonetheless, these 

data indicate that AXL inhibition sensitizes mesenchymal cells to antimitotic agents, such as 

docetaxel or aurora kinase and polo-like kinase 1 inhibitors, both in vitro and in vivo. This 

finding is in contrast with another report showing that the overexpression of AXL is 

sufficient to induce EMT directly in breast cancer cells and that AXL suppression can 

reverse this phenotype (51). Overall, there is consensus in ascribing to AXL a central role in 

leading to transcriptional changes related to EMT.

In terms of resistance to RTK inhibitors, although AXL can also interact with HER2 (52) 

and HER3 (53), EGFR seems to be the strongest dimerization partner of AXL in several 

tumor types. AXL interacts and dimerizes with EGFR in lung (54), triple-negative breast 

cancer (10), and head and neck squamous cell carcinomas (21, 32). In accordance, 

overexpression of AXL has been shown to be sufficient to limit the sensitivity to anti-EGFR 

therapy in several models, both in vitro and in vivo (10, 32, 38, 55, 56). In particular, AXL 

overexpression and activation, accompanied by EMT-associated transcriptional changes, was 

observed in EGFR-mutant lung cancer xenografts that acquired partial resistance to the 

EGFR kinase inhibitor erlotinib in vivo (54). The causative role of AXL in inducing this 

phenotype was demonstrated by the facts that exogenous expression of AXL was sufficient 

to induce partial resistance to erlotinib in parental erlotinib-sensitive cells and that AXL 

inhibition restored erlotinib sensitivity in the resistant xenografts. In head and neck cancer 

cells, overexpression of AXL and its dimerization with EGFR can maintain EGFR activation 

and signaling even in the presence of the EGFR blocking antibody cetuximab (32). In these 

cells, AXL overexpression and dimerization with EGFR also results in acquired resistance to 

α isoform–specific PI3K inhibition, both in vitro and in animal models (21). In this case, the 

mechanism of resistance involves the engagement of a parallel signaling cascade (PLCγ-
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PKC) that compensates for PI3K/AKT inhibition via downstream parallel mTORC1 

activation.

As mentioned, AXL can also interact with HER2 in HER2+ breast cancer cells. In this 

context, AXL–HER3 dimerization bypassed HER2 signaling inhibition and provided the 

rationale to combine lapatinib, a small-molecule HER2 kinase inhibitor, with an AXL kinase 

inhibitor (53). Another plausible combinatorial strategy is the simultaneous suppression of 

AXL and the MAPK pathway in melanoma. In this case, AXL suppression seems to be 

important in cell lines/human tumors with low levels of microphthalmia-associated 

transcription factor and high levels of AXL, a cell state associated with acquired resistance 

to MAPK pathway inhibition (57, 58). These findings support the clinical development of 

AXL inhibitors in cancer in combination with targeted agents (EGFR, HER2, and PI3K 

inhibitors) at the time of acquired resistance and high AXL levels. Similarly, AXL inhibitors 

could be tested upfront if AXL overexpression is detected earlier in the course of the 

disease. In Table 1, we list the AXL inhibitors currently being developed in the laboratory, in 

animal models, and in the clinic.

In summary, the available data suggest that overexpression of AXL may be restricted to cells 

that are, or more frequently become, refractory to either chemotherapy or targeted therapy. 

Its suppression may revert the drug-resistant phenotype, either by reversing EMT or blunting 

the activation of a compensatory pathway that limits therapy effectiveness.
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Figure 1. 
AXL overexpression and activation of downstream signaling pathways. AXL is 

overexpressed upon acquisition of therapy resistance and can induce epithelial-to-

mesenchymal transition (EMT). It dimerizes with RTKs present in the membrane of tumor 

cells to initiate signaling cascades that ultimately lead to increased cell motility and survival.
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Table 1

Anti-AXL agents currently in preclinical or clinical development

Company Compound Target(s) Indication Clinical status

Servier S49076 (kinase inhibitor) MET, AXL, FGFR1/2/3 Advanced solid tumors Phase I
2013-003079-37

Mirati Therapeutics Inc. MGCD516 (kinase inhibitor) MET, AXL, and members 
of the VEGFR, PDGFR, 
DDR2, TRK, and Eph 
families

Advanced solid tumors Phase I
NCT02219711

Mirati Therapeutics Inc. MGCD265 (kinase inhibitor) MET/AXL Advanced malignancies Phase I
NTC00697632

Betta Pharmaceuticals Co., 
Ltd

BPI-9016M (kinase inhibitor) MET/AXL Advanced solid tumors Phase I
NCT02478866

BerGenBio AS BGB324 (R428; kinase 
inhibitor)

AXL NSCLC and AML Phase I/II
NCT02488408
NCT02424617

Tolero Pharmaceuticals 
and Astex Pharmaceuticals

TP-0903 (kinase inhibitor) AXL Pancreatic cancer, lung 
cancer

Preclinical

Abbreviations: AML, acute myelogenous leukemia; DDR, discoidin domain receptor; Eph, ephrin; FGFR, fibroblast growth factor receptor; 
PDGFR, platelet-derived growth factor receptor; TRK, tropomyosin receptor kinase.
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