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Abstract

A review is presented of the physical principles governing the distribution of blood flow and blood 

pressure in the vascular system. The main factors involved are the pulsatile driving pressure 

generated by the heart, the flow characteristics of blood, and the geometric structure and 

mechanical properties of the vessels. The relationship between driving pressure and flow in a 

given vessel can be understood by considering the viscous and inertial forces acting on the blood. 

Depending on the vessel diameter and other physical parameters, a wide variety of flow 

phenomena can occur. In large arteries, the propagation of the pressure pulse depends on the 

elastic properties of the artery walls. In the microcirculation, the fact that blood is a suspension of 

cells strongly influences its flow properties and leads to a non-uniform distribution of hematocrit 

among microvessels. The forces acting on vessel walls include shear stress resulting from blood 

flow and circumferential stress resulting from blood pressure. Biological responses to these forces 

are important in the control of blood flow and the structural remodeling of vessels, and also play a 

role in major disease processes including hypertension and atherosclerosis. Consideration of 

hemodynamics is essential for a comprehensive understanding of the functioning of the circulatory 

system.

 Introduction

The circulatory system consists of the heart and an extensive branched system of vessels 

containing blood, whose primary function is the transport of oxygen, nutrients and other 

substances and heat throughout the body. In medical contexts, the term “hemodynamics” 

often refers to basic measures of cardiovascular function, such as arterial pressure or cardiac 

output. In the present review, “hemodynamics” refers to “the physical study of flowing 

blood and of all the solid structures (such as arteries) through which it flows” (64). 

According to this definition, the emphasis is on the fluid and solid mechanics of the system. 

While numerous biological processes have important interactions with hemodynamic 

effects, these processes are not discussed in depth. Furthermore, the fluid and solid 

mechanics of the heart are not addressed here, as they are described in other articles in this 

series.

The study of hemodynamics has a long history. The quantitative reasoning of William 

Harvey (1578–1657) led in 1628 to the concept that blood continuously circulates (38). 

However, the complete pathway for the circulation was not identified until Marcello 

Malpighi (1628–1694) described the frog lung’s capillaries in 1661 (61). In 1733, Stephen 

Hales (1677–1761) reported direct measurements of arterial pressure (35). Among his many 

scientific contributions, Thomas Young (1773–1829) established the relationship between 
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the elastic properties of arteries and the propagation speed of the arterial pulse (121,122). 

Through meticulous experiments, J.L.M. Poiseuille (1797–1869) in 1846 established the 

fourth-power relationship between flow rate and diameter for a tube subject to a fixed 

pressure gradient along its length (74). One of the several contributions of Otto Frank 

(1865–1944) to physiology was his development of the Windkessel model to describe the 

mechanical interaction between the ejection of blood from the left ventricle during systole 

and the elasticity of the aorta and the major arteries (25). In this model, the elastic arteries 

are considered as a single compliant compartment. The modern era of theoretical 

hemodynamics can be considered to begin in the 1950s with the work of John R. Womersley 

(1907–1958) and Donald A. McDonald (1917–1973), who observed and analyzed the time-

dependent motion of blood in an elastic artery driven by a fluctuating pressure gradient 

(63,119). “McDonald’s Blood Flow in Arteries” has since become a standard reference in 

the field (64,71). Its various editions contain detailed reviews of the history of 

hemodynamics. For further historical information, see also (24,66,102).

This review starts with a discussion of some basic concepts of hemodynamics, considering 

the relationship between pressures and flows in a network of blood vessels. Next, an 

introduction to the concepts of continuum mechanics is provided, including fluid and solid 

mechanics. Aspects of flow mechanics in blood vessels that are applicable to all types of 

vessels are then considered, including Poiseuille’s law for flow in a tube, the rheological 

properties of blood, and the overall structure of the systemic circulation as it relates to blood 

flow. Aspects of blood flow mechanics specific to arteries are considered next, including 

pulsatile flow, arterial compliance, propagation of the pulse wave, and effects of specific 

geometrical features of the arteries. Distinctive characteristics of blood flow in the veins are 

briefly considered. The microcirculation is discussed with emphasis on the consequences of 

the suspension characteristics of blood, including strong variations in the flow properties of 

blood and non-uniform distribution of hematocrit in microvessel networks. More detailed 

discussions of many of the topics mentioned here can be found in several books 

(7,12,28,64,66,71,73).

 Basic concepts of hemodynamics

At a fundamental level, the study of hemodynamics is concerned with the distribution of 

pressures and flows in the circulatory system. In this context, “pressure” refers to hydrostatic 

pressure, which is an isotropic compressive stress (see below) and has units of force per unit 

area. However, pressure can equivalently be considered as internal mechanical energy per 

unit volume. By pressurizing blood, the pumping heart provides it with this internal energy 

that is available to drive its motion through the circulation. In a broad sense, the term “flow” 

refers to the motion of a fluid such as blood. More specifically, “flow velocity” refers to the 

fluid velocity at a specific point and has dimensions of distance per time, and “(volume) 

flow rate” refers to the amount of blood passing a given position along the length of a vessel 

and has units of volume per time. These quantities should be carefully distinguished.

In discussions of hemodynamics, an analogy with electric circuits is commonly introduced. 

In this analogy, the pressure at a point in the circulation corresponds to the voltage V (energy 

per unit charge) at a point in a circuit, and the volume flow rate corresponds to the current I 
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(charge per unit time) in the circuit. For a resistive element in a circuit, the resistance R is 

given according to Ohm’s law by R = V/I where V is the voltage across the element. This 

leads to the concept of the viscous flow resistance of a blood vessel, defined as the ratio of 

pressure drop Δp to the volume flow rate Q:

(1)

This relationship is strictly valid only when flow does not vary with time. In a time-varying 

flow, the driving pressure includes a component related to the acceleration of blood. Under a 

broad range of conditions, the flow resistance of a blood vessel is approximately 

independent of the flow rate, and depends only on the geometrical properties of the vessel 

and on the viscosity of blood, as discussed below. In this approximation, the vascular system 

or a subset of it can be viewed as a network of resistances, fed and drained by known 

pressures (Figure 1A). The flow rates in each segment of the network can be calculated 

using basic principles, such as the laws for the combined resistance of resistors connected in 

series or in parallel, namely

(2)

where R1 and R2 are the two resistances and Rseries and Rparallel are the effective resistances 

of their series and parallel combinations. Many important phenomena in the circulatory 

system can be understood from the perspective of a network of resistors. For example, an 

increase in flow resistance of an individual segment, resulting from constriction or from 

partial blockage by a thrombus or lesion, causes a decrease in flow in all dependent 

segments of a tree-like vascular structure (Figure 1B). Conversely, a decrease in resistance 

on a particular flow pathway, resulting for instance from an arteriovenous shunt, causes the 

flow along other parallel pathways to decrease because flow is “stolen” from them (Figure 

1C).

The concept of flow resistance can also be applied to the peripheral circulation as a whole, 

considered as a single resistance, giving

(3)

where TPR is total peripheral resistance, MAP is mean arterial pressure, CVP is central 

venous pressure and CO is cardiac output. The MAP is often defined as 2/3 of diastolic 

blood pressure plus 1/3 of systolic pressure, which gives an approximation to the time 

average of arterial pressure. The total peripheral resistance at any moment depends on the 

geometric properties of the vascular system, including effects of vascular tone on vessel 

diameter, and on the flow properties of blood. It determines the pressure that the left heart 

must generate in order to provide a given level of cardiac output.
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An analogous formula can be used to define the resistance of the pulmonary circulation:

(4)

where PVR is pulmonary vascular resistance, MPAP is mean pulmonary arterial pressure, 

defined in the same way as MAP, and PWP is pulmonary wedge pressure. The PWP is 

measured by wedging a pulmonary catheter with an inflated balloon in a small pulmonary 

arterial branch, and measuring the pressure downstream of the occlusion. It provides an 

estimate of pulmonary venous pressure. The pressure drop across the lungs (typically about 

10 mmHg) is much lower than the drop across the systemic circulation (typically about 100 

mmHg). This implies that PVR is typically about one tenth of systemic TPR (115), although 

wide variations can occur.

The adequate distribution of blood flow to all parts of the body, so as to meet the changing 

needs of the tissues for oxygen and other nutrients and for removal of waste products, 

represents the most essential function of the circulatory system. Considering the circulation 

as a network of interconnected resistors is simplistic for many reasons, some of which are 

addressed in the following sections. Nonetheless, it provides an essential basis for 

understanding how the distribution of blood flow can be controlled by the active contraction 

or dilation of blood vessels, and how it can be disturbed by disease processes leading to 

vessel blockage.

 Basic concepts of continuum mechanics

The behavior of any mechanical system can in principle be described by applying Newton’s 

second law, F = ma, to all the particles in the system, where F is the force acting on a 

particle, m is its mass and a is its acceleration. In practice, this approach is not feasible for a 

system such as an artery containing flowing blood because the number of molecules in the 

system is too large. Instead, a continuum approach is generally adopted, in which the 

physical properties of a material component of the system, such as its velocity, density or 

temperature, are represented as continuous functions of position. The value of a given 

variable at a point then represents a local average of the variable over a small region. 

Fluctuations on smaller scales, arising for example from thermal motion of molecules, are 

not explicitly represented.

An immediate consequence of this approach is that Newton’s second law cannot be directly 

applied, because individual particles and the forces acting on them are not identified. 

Instead, the forces acting in a continuum are described using the concept of stress, as defined 

below. The stress generally depends on the deformation and/or the rate of deformation of the 

material. This dependence is expressed in mathematical form using constitutive equations, 

which depend on the type of material under consideration. Newton’s second law is applied 

in a continuum by considering the forces acting on a small region of the material, which 

must equal the product of the mass of the region and its acceleration. The size of the region 

is then considered to approach zero. In this limit, a system of partial differential equations is 
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derived, relating the stress to the motion at each point in the material. These equations can 

be combined with the constitutive equations of the material to yield the governing equations 

of the continuum, which again take the form of partial differential equations.

The discussion of the key concepts of continuum mechanics, as introduced above, is 

expanded in the following paragraphs. The study of continuum mechanics is necessarily 

mathematical, requiring the use of vector calculus and partial differential equations to 

describe the spatial distributions of material motion and deformation. In this review, only a 

few key elements of the mathematical treatment are introduced. Emphasis is placed on 

providing physical insights into the phenomena involved, so that mathematical expertise is 

not essential for gaining an appreciation of the subject. For treatments of continuum 

mechanics in more mathematical detail, with an emphasis on applications in biomechanics, 

see (27,40).

 Definition of stress

The mechanical forces in a continuum are represented using the concept of stress, which can 

be defined as follows. In the first step, consider a small surface ΔS within or on the boundary 

of the material (Figure 2A). The local stress vector or traction T is defined as the force per 

unit area acting on the surface. More precisely, its value at a point is defined as the limiting 

value of the force per unit area, as the area ΔS of the surface being considered shrinks to 

zero around that point. Given a system (x1, x2, x3) of Cartesian coordinates in three 

dimensions, T can be represented in terms of its components (T1, T2, T3) or briefly as Ti 

where i is understood to take the values 1, 2 or 3. Generally, T depends on the orientation of 

the surface being considered. In the second step, the dependence of T at a given point on the 

orientation of the chosen surface is described by introducing the (Cauchy) stress tensor σ. A 

tensor is a generalized form of a vector that allows the representation of additional levels of 

directional information. This particular tensor is of second rank, i.e. it can be described in 

terms of its components σij, where the two subscripts i and j each take the values 1, 2 or 3, 

giving a total of nine components. Each component represents the traction force in the ith 

coordinate direction acting on a surface whose normal vector is in the jth coordinate 

direction (Figure 2B). Then the traction vector T acting on an arbitrarily oriented surface is 

given by

(5)

where nj are the components of n, the unit vector normal to the surface.

According to this definition, the stress component σ11 represents a force per unit area in the 

x1 direction acting on a surface whose normal is oriented in the x1 direction (Figure 2B). 

Such a stress component is referred to as a normal stress, because it acts normal 

(perpendicular) to the surface. Likewise, the stress component σ 12 represents a force per 

unit area in the x1 direction acting on a surface whose normal is oriented in the x2 direction. 

Such a stress component acts parallel to the surface and is referred to as a shear stress. An 
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important special case is isotropic stress, where the diagonal components σ 11, σ 22 and σ 33 

are all equal, and the off-diagonal components are all zero. In a fluid subject only to 

hydrostatic pressure, the stress is isotropic and σ 11 = σ 22 = σ 33 = −p, where p is the 

pressure.

Although the definition of the stress tensor does not depend on the specific coordinate 

system chosen, the components of the tensor do vary according to the choice of coordinates, 

except in the case of isotropic stress. A normal stress component in one coordinate system 

may appear as a shear stress component in a different (rotated) coordinate system. Caution is 

needed in interpreting the physical significance of normal and shear stresses. Besides the 

Cauchy stress, other measures of stress are commonly used, particular in the study of large 

deformation elasticity, such as the Piola-Kirchhoff stresses. These are not discussed here. In 

summary, the stress tensor represents the forces per unit area acting on a small surface at a 

point in a continuum. Commonly used units of stress include dyn/cm2, N/m2 (i.e. Pa, 

Pascal), mmHg and cmH2O.

In order to derive the equations of motion for a continuum, Newton’s second law is applied 

to a small region of the material. This requires consideration of the net force acting on a 

piece of material, resulting from the stress in the material. In particular, consider a small 

cuboidal region aligned with the coordinate axes (Figure 2C). Suppose first that the stress 

tensor is uniform in space, i.e., independent of position. In that case, the forces acting on any 

two opposite faces of the cuboid are equal and opposite according to Eq. (5), because the 

stress is the same and the normal vectors (by convention outwards from the region) are 

opposite on the two faces. All the forces resulting from the stress balance each other and the 

resultant force is zero. Now consider the case where the stress varies with position in the 

material. In that case, resultant forces are generated when the stresses on two opposite faces 

of the cuboid are different. In the limit that the volume of the cuboid goes to zero, it can be 

shown that the resultant force per unit volume resulting from the stress depends on the 

gradient of the stress tensor, and its components are:

(6)

where ∂σij/∂xj represents the partial derivative of σij with respect to xj. The equation of 

motion, in the form of Newton’s second law applied per unit volume of the material, 

therefore gives

(7)

at each point, where ρ is the density of the material, a = (a1, a2, a3) is the local acceleration, 

and F = (F1, F2, F3) is an external “body” force, typically due to gravity, that acts on each 

part of the material. To complete the equations of motion for the continuum, it is necessary 
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to specify its constitutive equations, which define the dependence of stress on deformation 

and differ according to the type of material (fluid, solid or viscoelastic).

 Constitutive equation for a fluid

In continuum mechanics, a fluid is defined as a material that can be at equilibrium without 

stress in many different configurations, i.e. it has no preferred shape. A fluid at rest 

experiences only isotropic stress. Non-isotropic stress causes continuous deformation. Both 

liquids and gases are fluids according to this definition. The non-isotropic component of 

stress in a fluid depends on the rate of deformation of the fluid, which is related to the 

gradient of the fluid velocity. This may be illustrated by considering the flow of a fluid 

contained between two parallel plates spaced a distance h apart at x2 = 0 and x2 = h, one at 

rest and one moving parallel to itself in the x1-direction with a constant velocity V (Figure 

3). The fluid then moves purely in the x1-direction, with a velocity v(x2) such that dv/dx2 is 

independent of x2. (Other behaviors are possible under some conditions, but are not 

considered here for simplicity.) The assumptions of continuum theory imply that a fluid 

must satisfy the no-slip condition, which states that the velocity of the fluid immediately 

adjacent to a solid surface moves with the velocity of the surface. It then follows that v(x2) = 

Vx2/h and the velocity gradient is

(8)

The symbol  is commonly used to denote the velocity gradient, which has units of inverse 

time and is also referred to as shear rate. This case is known as simple shear flow. The 

continuous deformation of the fluid resulting from the velocity gradient is resisted by a shear 

stress σ12 = τ generated in the fluid, due to the energy that is dissipated as fluid molecules 

slide past each other. The resistance of the fluid to deformation can be characterized in terms 

of the viscosity μ, defined as the ratio of the shear stress to velocity gradient

(9)

The viscosity has units of stress × time, and is measured in units of Pa·s or dyn·s/cm2, also 

known as P (Poise). For many fluids, including air and water, the viscosity is an intrinsic 

property of the fluid at a given temperature and pressure. In such cases, the shear stress is 

proportional to the shear rate. Such materials are called Newtonian fluids. The viscosity of 

water is about 0.001 Pa·s (1 cP) at 20 C and about 0.0007 Pa·s (0.7 cP) at 37 C. However, 

biological fluids do not necessarily behave as Newtonian fluids. In particular, blood shows 

non-Newtonian effects at low shear rates, and the viscosity as defined in Eq. (9) is a function 

of shear rate . Furthermore, as a concentrated suspension of cells, blood does not behave as 

a continuum in narrow tubes such as capillaries. The non-Newtonian and non-continuum 

flow properties of blood are discussed in detail below.
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Liquids, including water and blood, have very large resistance to volume changes in 

response to changes in hydrostatic pressure and can be regarded as incompressible from a 

hemodynamic perspective. If v(x,t) = (v1, v2, v3) describes the velocity as a vector function 

of position x = (x1, x2, x3) and time t, then the condition of incompressibility requires that

(10)

The hydrostatic pressure p in an incompressible fluid is determined by the overall 

characteristics of the fluid flow field and not solely by the local conditions at a given point in 

the fluid. This is in contrast to the situation in a compressible fluid, where the pressure at 

any point can be defined as a function of the local fluid density. In a Newtonian fluid, the 

non-isotropic components of stress are proportional to the local velocity gradients. The 

components of the stress tensor in an incompressible Newtonian fluid are given by the 

following constitutive equation:

(11)

where δij denotes the Kronecker delta, defined to be 1 when i = j and 0 when i ≠ j.

 Governing equations for fluid motions

When Eq. (11) is combined with the equation of motion, Eq. (6), it yields the governing 

equation:

(12)

Equations (10) and (12) are referred to as the incompressible Navier-Stokes equations. Their 

full derivation is found in textbooks on fluid mechanics (4). Generally they must be solved 

for the unknown variables p and v to predict the fluid motion in a given situation. In the 

presence of solid boundaries, the no-slip condition applies, i.e. the fluid velocity adjacent to 

a solid surface must match the velocity of the surface.

A wide range of fluid behaviors is possible under the assumptions of the Navier-Stokes 

equations, depending on the size and shape of the flow domain and on the parameter values 

and boundary conditions that apply. The complexity of the behaviors that can occur is 

increased by the fact that the equations are nonlinear in the velocity, as a result of the terms 

vj ∂vi/∂xj that describe the acceleration experienced by a fluid as it moves through a non-

uniform flow field. This nonlinearity also complicates the solution of these equations by 

mathematical or computational methods. Under some circumstances, one or more of the 

terms in Eq. (12) can be neglected, leading to a simplified set of equations. For example, the 
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inertial terms on the left hand side of Eq. (12) may be negligible in very slow or highly 

viscous flows, whereas if velocities are high and effects of viscosity are small the viscous 

terms μ ∂2vi/∂xj
2 may be neglected in some situations. Insight into the relative importance of 

the physical effects in the Navier-Stokes equations and the types of flow phenomena that 

may occur can be obtained by considering the Reynolds number, as discussed next.

 Reynolds number and turbulence

In analyzing a physical phenomenon, a common strategy is to construct a dimensionless 

parameter that indicates the relative importance of various effects that contribute to the 

phenomenon. In fluid mechanics, the most important such dimensionless parameter is the 

Reynolds number, which is derived by considering the relative orders of magnitude of the 

inertial and viscous terms. Suppose that the fluid flow is characterized by a typical velocity 

V and a typical length L. The magnitude of the inertial and viscous terms may then be 

estimated as

(13)

where ‘~’ means ‘is of the same order of magnitude as’. Here, we are assuming steady flow, 

for which ∂vi/∂t = 0. The Reynolds number is defined as the ratio of the inertial term to the 

viscous term, i.e.

(14)

When Re is much less than 1, the inertial terms on the left hand side of Eq. (12) are 

generally negligible. This case is known as Stokes flow. When Re is much larger than 1, 

inertial effects are dominant, but viscous effects may still strongly influence the flow. In this 

case, the no-slip condition at solid boundaries has the effect of creating very steep gradients 

in velocity in narrow regions close to the boundaries. Viscous effects remain important in 

such regions, which are known as boundary layers. The formation of boundary layers in 

blood vessels is discussed below, in the section on “Entrance effects.”

The Reynolds number is frequently considered in examining the occurrence of turbulence in 

a flow system. Fluid flows can generally be classified as laminar or turbulent. In laminar 

flow, the fluid motion is smooth and orderly. If a laminar flow is unsteady (time-varying), 

the variation with time is consistent and repeatable under a given set of conditions. In 

contrast, turbulent flow involves unpredictable fluctuations of velocity. Turbulent flows are 

fundamentally unstable, such that small random disturbances in the velocity field grow and 

create a disordered and randomly fluctuating flow distribution. Viscosity (viscous damping) 

tends to inhibit the growth of such disturbances. At low Reynolds number, this damping 

effect is large and turbulence cannot develop. With increasing Re, the effect of viscosity 

diminishes, and turbulence can occur if Re is high enough. The conditions leading to the 

occurrence of turbulence in cylindrical tubes and in blood vessels are discussed in a later 

section.
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 Constitutive equation for a solid

From a continuum mechanics perspective, a solid can be defined as a material that has a 

unique configuration in the absence of applied stress. In contrast to a fluid, a solid may 

undergo a deformation when a shear stress is applied, but it does not continuously deform 

under such a stress. In order to define the constitutive equation of a solid, it is necessary to 

introduce the concept of strain, a measure of the deformation of a continuum. Suppose that 

an object is initially in a reference configuration. Often this is a configuration in which the 

stress is zero. The points in the object are labeled using Cartesian coordinates (X1, X2, X3). 

The object’s deformed configuration is described by Cartesian coordinates (x1, x2, x3), i.e., 

the point initially at (X1, X2, X3) moves to (x1, x2, x3), as indicated in Figure 4. Its 

displacement is given by

(15)

If the displacement is the same for every point in the object, then it has undergone a 

translation without any deformation. It follows that the deformation of the object is related 

to the spatial derivatives of the displacement. Here, for simplicity, we consider the case 

where the displacements are small, and define Cauchy’s elongation strain tensor (27):

(16)

This tensor is dimensionless, resulting from taking the derivative of distance with respect to 

position. Each element of the tensor describes a specific type of deformation. For example, 

ε11 refers a stretch in the x1 direction, while ε12 refers to a shear deformation, in which 

displacement in the x1 direction varies with x2 (or vice versa). The condition for 

applicability of this tensor is that the strain is small, in the sense that the elements of εij are 

all much less than 1. If the strain is large, then Cauchy’s elongation strain tensor does not 

provide a mathematically precise description of the deformation, and other strain tensors 

must be used, such as Green’s or Almansi’s strain tensor (27).

In an elastic solid, the stress depends only on the deformation of the material at a given 

moment, and not on the time course of the deformation. The constitutive equation for an 

elastic solid must therefore specify stress as a function of strain. If the strains are small, then 

it is often sufficient to represent the material as a Hookean elastic solid, for which the 

components of stress depend linearly on the components of strain. The simplest such 

relationship applies to an isotropic material, meaning that its material properties are identical 

regardless of the orientation of the material. In that case, the stress is given by (27)

(17)

where λ is the bulk modulus, G is the shear modulus and δij is the Kronecker delta as defined 

above. This relationship is often used in inverted form
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(18)

where ν = ½λ/(λ + G) is the Poisson ratio and E = G(3λ + 2G)/(λ + G) = 2G(1 + ν) is the 

Young’s modulus. Physical insight into the significance of ν and E can be obtained by 

considering uniaxial stress, in which a stress σ11 is applied but all the other components of 

stress are zero, and Eq. (18) reduces to

(19)

The strain (elongation) of the material in the direction of tension is proportional to the 

applied stress divided by the Young’s modulus, while the strain (shortening) in the two 

perpendicular directions equals the elongation multiplied by the Poisson ratio.

Many biological materials are effectively incompressible under short-term deformations, 

although they may show changes in volume under long-term stresses as a result of 

displacement of tissue fluid relative to the cellular structure. In the special case of an 

incompressible isotropic solid, for which the bulk modulus λ is infinite,

(20)

the Poisson ratio is 1/2, and Eq. (17) is replaced by

(21)

Here σ0 is an isotropic stress field that is determined by the overall characteristics of the 

deformation field and not solely by the local conditions at a given point in the solid, 

analogous to the hydrostatic pressure for an incompressible fluid.

The Young’s modulus is the parameter most frequently used in describing the elastic 

properties of blood vessel walls. However, it should be noted that blood vessel walls are in 

reality strongly anisotropic in structure, with highly nonlinear elastic properties when 

subjected to the stresses produced by blood pressure. Therefore, the Hookean elastic solid 

model may not be adequate for describing important aspects of hemodynamics. A more 

general type of constitutive equation for biological solids derives from the concept of a 

strain-energy function, a scalar quantity that describes the amount of energy per unit volume 

stored in the material, as a function of the components of (Green’s) strain (27). The stresses 

are then given by the partial derivatives of the strain-energy function with respect to the 

components of strain. The nonlinear and anisotropic characteristics of artery walls and other 

biological tissues can be explicitly represented using this approach, which is well suited for 

computational simulations using the finite-element method.
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The deformation of biological materials such as artery walls generally involves viscous 

energy dissipation as well as storage of elastic energy, so that they are viscoelastic solids. 

This behavior may be represented approximately by a Kelvin-Voigt model (also called a 

Voigt model), in which the stress in the material is the sum of an elastic component 

dependent on the strain and a viscous component dependent on the rate of strain (66,71). 

Such a model leads to a single characteristic relaxation time, i.e. the time constant for the 

approach of the stress to its final value following an abrupt and sustained deformation. 

Observations of the transient responses of artery walls to deformation on a range of time 

scales show presence of more than one relaxation time, and provide a basis for application of 

more elaborate viscoelastic models (27).

The constitutive equations for a solid can be combined with the equations of motion to yield 

a set of equations governing its deformation. Solution of these equations yields relationships 

between the load applied to a mechanical system and the resulting deformation. For 

example, this approach can be used predict the deformation of a blood vessel subjected to a 

time-varying transmural pressure, as it experiences during each cardiac cycle, and the 

dependence of the deformation on the material properties of the artery wall, as discussed in 

more detail below.

 Fluid mechanics of flow in blood vessels

Many significant aspects of hemodynamics can be understood by analyzing the associated 

fluid mechanical phenomena. For example, an analysis of fluid flow in tubes provides 

insight into the factors determining the flow resistance of a blood vessel. Similarly, fluid 

mechanical factors determine the distribution of fluid shear stress acting on the endothelial 

lining of blood vessels, which has important biological effects. The logical starting point for 

this discussion is the analysis of fluid flow through a uniform cylindrical tube, for which the 

relationship between driving pressure and flow rate is described by the equation generally 

known as Poiseuille’s law. A derivation of this equation is presented. This provides a basis 

for considering a range of fluid dynamical phenomena occurring in the circulatory system.

 Steady laminar flow in a uniform tube

In the mid-nineteenth century, J.L.M. Poiseuille (74) sought to understand the physical 

factors governing blood flow. He performed experiments to determine the relationship 

between the flow rate Q in a tube of diameter D and length L and the driving pressure Δp. 

His experimental observations revealed a fourth-power relationship between flow and 

diameter, Q = KΔpD4/L, where the factor K depended on the type and temperature of the 

fluid. Subsequent theoretical analysis (34) led to the relationship:

(22)

where μ is the fluid viscosity. The history of this relationship, now commonly known as 

Poiseuille’s law, is discussed by Sutera and Skalak (106).
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The derivation of Poiseuille’s law depends on a number of assumptions, namely that the tube 

is a uniform rigid circular cylinder; the fluid is Newtonian; the flow is steady, i.e., constant 

in time; the flow is laminar, i.e., not turbulent; and the flow is not subject to entrance effects, 

i.e., non-uniformities associated with the entrance of fluid into the tube. Although these 

conditions are violated to some extent in the circulatory system, Poiseuille’s law remains a 

central result in the area of hemodynamics. A standard mathematical derivation of 

Poiseuille’s law involves solving Eq. (12) in cylindrical coordinates. Here, an alternative 

derivation is presented that provides more physical insight into the stresses generated when 

fluid flows in a tube.

A tube of radius a = D/2 and length L is assumed to be filled with a fluid of fixed viscosity 

μ. The forces acting on a control volume are considered, where the control volume consists 

of a cylindrical region of fluid, concentric with the tube, with radius r < a (Figure 5A). 

Effects of gravity are neglected. The hydrostatic pressures p1 and p2 acting on the ends of 

the region generate a net force πr2p2 − πr2p1 acting to the right. Although hydrostatic 

pressure also acts on the curved surface of the cylinder, the resultant forces cancel out and 

do not produce a net force. As a result of velocity gradients, a uniform shear stress τ acts on 

the curved surface, here defined as positive to the left. The resultant force is −2πrLτ to the 

right. Under the assumption of steady flow, the acceleration is zero and so the forces must 

sum to zero, giving

(23)

where Δp = p2 − p1. This result shows that the shear stress in tube flow varies linearly with 

radial position, from zero at the center-line to a maximum of

(24)

at the wall of the tube, where τw is the wall shear stress. The effects of gravity g can be 

represented by replacing the pressure p with p′ = p + ρgz in this derivation, where ρ is the 

fluid density and z is the vertical coordinate.

If the fluid is Newtonian, then according to Eq. (6) the shear stress is given by

(25)

where v(r) is the fluid velocity. The minus sign is needed because τ is defined in the negative 

direction (Figure 5A). Combining Eqs. (23) and (25) gives

(26)
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According to the no-slip condition, v(a) = 0 and Eq. (26) can be integrated to give

(27)

Velocity fields are conventionally represented graphically by plotting velocity as a function 

of position, giving a velocity profile, which in this case is a parabola with its vertex on the 

center-line (Figure 5B). The peak velocity occurs on the center-line and is given by

(28)

Integrating the velocity across the circular cross-section of the tube gives the volume flow 

rate Q in the tube:

(29)

which is equivalent to Eq. (22) with D = 2a. The mean velocity of flow in the tube is

(30)

and equals half of the center-line velocity given by Eq. (28).

Then flow resistance R as defined in Eq. (1) above can be expressed as

(31)

This relationship shows that the resistance to blood flow is sensitively dependent on the 

diameter D, being proportional to 1/D4. An important consequence is that blood flow can be 

modulated over a wide range by relatively small changes in the diameters of the blood 

vessels. For example, a 16% decrease in diameter gives a doubling of flow resistance. This 

also implies that precise control of vessel diameters is needed in order to achieve a given 

distribution of blood flow rates in a network of vessels. Lack of such control can lead to 

maldistribution of blood flow. Therefore, the behavior described by Poiseuille’s law is of 

central importance in understanding how blood flow is controlled and distributed in the 

circulatory system.

The analysis given here assumes that blood is a Newtonian fluid, with fixed viscosity μ. As 

discussed in the next section, blood has significant non-Newtonian properties. It should be 
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noted that the result in Eq. (23) regarding the distribution of shear stress in the fluid does not 

depend on the assumption that the fluid is Newtonian. For non-Newtonian fluids, a similar 

method of analysis can be used to compute the dependence of flow rate on pressure gradient, 

with  replacing the constant μ in Eq. (25).

 Bulk viscosity of blood

Blood is a suspension containing about 45% by volume of cellular components. The 

suspending medium, plasma, is a solution of proteins and electrolytes and has nearly 

Newtonian viscous properties. The cellular components include red blood cells 

(erythrocytes), several types of white blood cells (leukocytes), and platelets. Although the 

white blood cells and platelets perform vital biological functions, their volume fraction is 

normally very small and they do not contribute appreciably to the bulk viscosity of blood. 

The red blood cells have a large effect on blood viscosity, which is dependent on the volume 

fraction of red blood cells (i.e. hematocrit). The non-Newtonian properties of blood result 

almost entirely from the biophysical behavior of red blood cells in suspension.

In mammals, mature red blood cells lack a nucleus. Their interiors consist of a concentrated 

solution of the oxygen-carrying protein hemoglobin. From a hemodynamic perspective, they 

may be viewed as fluid-filled capsules. The cell membrane is very flexible, and the cells are 

highly deformable as a result. Red blood cells in flowing blood do not generally retain the 

characteristic biconcave disk shape that they have under static conditions. In humans and 

some other mammals, red blood cells under no-flow or low-flow conditions can adhere to 

each other. This process of aggregation leads to the formation of stacks of cells known as 

rouleaux. Both deformability and aggregation contribute to the non-Newtonian properties of 

blood.

The bulk viscosity of a suspension is the viscosity observed when the suspension flows in a 

region whose dimensions are much larger than the suspended particles. In this case, the 

suspension can be regarded as a continuum. The standard procedure to determine viscosity 

as a function of shear rate is to place the fluid in a steady shear flow, as in Figure 3, measure 

the shear stress and the shear rate, and obtain viscosity as their quotient. For practical 

reasons, rotational viscometers are generally used, with a shear flow created in the space 

between two surfaces, one of which is rotating and the other is stationary. The two main 

types of rotational viscometer are based on coaxial-cylinder (Couette) and cone-and-plate 

geometries (40).

The dependence of the bulk viscosity of human blood on shear rate and hematocrit was 

examined by Chien et al. (14) using a coaxial-cylinder viscometer. The dependence of the 

logarithm of viscosity on hematocrit was fitted using a fifth-order polynomial function for 

each shear rate tested, ranging from 0.052 to 52 s−1. Figure 6 shows the resulting functions 

for human blood, plotted from the polynomial coefficients as tabulated (14). Viscosity shows 

a strong dependence on hematocrit at all levels of shear rate. At the higher levels of shear 

rate examined (5.2 and 52 s−1), the dependence is almost exponential for hematocrits from 

zero to 80%, as indicated by the almost linear variation with hematocrit in this semi-log plot. 
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These results also show a large increase in the viscosity of blood at very low shear rates 

(0.52 and 0.052 s−1).

The factors underlying the dependence of blood viscosity on shear rate were explored by 

Chien (13). Viscosity measurements were made for shear rates from 0.01 to 1000 s−1, using 

suspensions of normal red blood cells in heparinized plasma, normal red blood cells in 11% 

albumin-Ringer solution, and chemically hardened red blood cells in 11% albumin-Ringer 

solution. All suspensions were adjusted to a hematocrit of 45%. The results were given in 

terms of relative viscosity, i.e., measured viscosity divided by suspending medium viscosity, 

as shown in Figure 7.

For normal cells in plasma, a strong increase of viscosity with decreasing shear rate was 

observed, a phenomenon known as shear-thinning, as also shown in Figure 6. The albumin-

Ringer solution had the same viscosity as plasma, but did not cause red blood cell 

aggregation. The increase in viscosity at low shear rates was much less in this suspending 

medium. This result indicates that aggregation is the main cause of the increase in normal 

blood viscosity at very low shear rates. For the cells that were hardened (using 0.5% 

glutaraldehyde solution) the viscosity was almost independent of shear rate and higher than 

the viscosity of normal red blood cells in the same medium. This result shows that the 

deformability of red blood cells is mainly responsible for the reduction in blood viscosity at 

higher shear rates.

These findings can be understood as follows. In general, the increase of viscosity of a 

suspension, relative to the viscosity of the suspending medium, reflects the extent to which 

the suspended particles interfere with the shear flow, i.e. impede the ability of fluid at 

different points across the flow to move at different velocities. The aggregation of red blood 

cells at low shear rates leads to the formation of rouleaux and networks of rouleaux. Being 

larger than individual red blood cells, these aggregates extend further across the shear flow 

and create more interference with the flow. However, aggregates can be broken up by 

relatively low levels of shear stress. Therefore, the effect of aggregation decreases strongly 

with increasing shear rate, and is negligible for shear rates larger than 10 s−1 in normal blood 

(Figure 7). The deformation of red blood cells in flow also depends on the shear rate. At 

very low shear rates, fluid shear stresses are very low and the cell is only slightly deformed. 

The viscosity at very low shear rates for non-aggregating cells approaches that of hardened 

cells, which are almost undeformable for the range of shear rates considered. With 

increasing shear rates, individual cells are more readily deformed by flow forces. Due to 

their fluid interiors and highly flexible membranes, they behave analogously to fluid drops, 

aligning with the flow and continuously deforming so that their impact on the suspension 

viscosity is reduced (23). As a consequence, the apparent viscosity of blood continues to 

decrease with increasing shear rate above 10 s−1. Thus, both aggregation and deformation of 

red blood cells contribute to the reduction of blood viscosity with increasing shear rate, as 

shown in Figure 7.

In arteries and veins with normal blood flow rates, typical shear rates (in s−1) are in the 

range of hundreds or thousands. As Figure 7 indicates, normal human blood viscosity 

approaches an almost constant value for shear rates above about 100 s−1. Therefore, it is 
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appropriate to treat blood as a Newtonian fluid for many situations of interest, such as the 

analysis of blood flow in arteries. However, if the flow rate in a vessel drops to a very low 

level, or if very low shear rates are present in local regions of the flow, then non-Newtonian 

effects may be significant.

The above discussion applies to the flow of blood in vessels with diameters much larger than 

the size of red blood cells, where blood can be considered to behave as a continuum. As 

vessel size decreases, non-continuum effects become increasingly important. For example, 

the flow resistance of vessels with diameters below about 300 μm deviates significantly from 

that predicted by Eq. (31) as a consequence of such effects. This and related phenomena 

occurring in the microcirculation are discussed below.

 Distribution of flow parameters in the circulatory system

The circulatory system consists of an immense number of blood vessels, connected together 

in a branched network. Data on the number and geometry of the vessels of the canine 

systemic circulation (60) are represented graphically in Figure 8, according to class of vessel 

from the aorta to the vena cava. Several notable features are evident. Vessel lengths and 

vessel diameters both decrease by about three orders of magnitude from the aorta to the 

capillaries. Despite the decrease in the cross-sectional area of individual vessels by a factor 

of 106, the presence of about 109 capillaries has the consequence that the total cross-

sectional area of the capillaries is about 1000 times larger than that of the aorta. Since the 

same cardiac output that flows through the aorta must also flow through the capillaries, the 

velocity is about 1000 times slower in the capillaries. Figure 8 includes velocity data based 

on an estimated cardiac output for a dog of 2 l/min, ranging from about 40 cm/s in the aorta 

to less than 1 mm/s in the capillaries.

Although the data in Figure 8 may appear almost symmetric between the arterial and venous 

systems, some significant asymmetries exist. In particular, the venous vessels are larger than 

corresponding arterial vessels, with typically about twice the diameter (see Figure 8). The 

blood volume in the circulation, and therefore the transit time of blood, is therefore strongly 

weighted towards the venous side of the vasculature. The flow rates and lengths of 

corresponding arterial and venous vessels are necessarily virtually equivalent, because they 

must carry the same flows over the same distances. Therefore, according to Poiseuille’s law 

(see Eq. (31)), the flow resistance is much larger in the arterial side of circulation than in the 

venous side, and thus the pressure drop is concentrated on the arterial side, specifically in 

the small arteries and arterioles. Experimental data on the pressure distribution through the 

vasculature as a function of vessel diameter are shown in Figure 9, illustrating this arterio-

venous asymmetry. If the system were symmetric, the capillary pressure would be the mean 

of arterial and venous pressures, i.e. about 50 mmHg. A notable consequence of the 

asymmetry is that capillary pressure is much lower, about 30 mmHg. Since the capillaries 

have very thin walls with a significant permeability to fluid, the low capillary pressure is 

important for the maintenance of tissue fluid balance. Also, the fact that most of the flow 

resistance resides in the small arteries and arterioles is significant with regard to the 

regulation of blood flow, because it implies that active control of the diameters of these 

vessels has the potential to modulate blood flow over a wide range.
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On the arterial side of the circulation, the decline in flow velocity closely parallels the 

decline in diameter, as indicated in a logarithmic plot (Figure 8). This implies that the ratio 

of velocity to diameter remains approximately constant. From Eqs. (22), (24) and (30), the 

wall shear stress in a cylindrical tube is given by

(32)

and it follows that the wall shear stress remains roughly constant throughout the arterial tree, 

down to the capillaries. This finding is consistent with the concept that blood vessels sense 

and respond to levels of wall shear stress, and that this mechanism plays an important role in 

determining the structural diameter of blood vessels (91). The typical values of wall shear 

stress in arteries and arterioles varies with size of mammalian species, from almost 100 

dyn/cm2 (10 Pa) in mice and rats to less than 10 dyn/cm2 (1 Pa) in dogs and humans (33). 

On the venous side, the curves representing velocity and diameter are closer together (Figure 

8), implying that levels of wall shear stress are significantly lower in the venous circulation 

(82).

The data presented in Figure 8 imply an enormous range of Reynolds numbers in the 

circulatory system. By convention, the Reynolds number for tube flow is based on the tube 

diameter, i.e. Re = ρVD/μ. For the canine parameters shown, with blood viscosity of 3 cP 

and blood density 1.06 g/cm3, the Reynolds number ranges from about 740 in the aorta, with 

a diameter of about 1 cm and a mean blood velocity of about 21 cm/s, to 8 × 10−4 in the 

capillaries with a diameter of about 8 μm and a velocity of about 0.28 mm/s. The variation is 

over about six orders of magnitude. In the capillaries, inertial effects are negligible, whereas 

in the large arteries, inertial effects are dominant and viscous effects are smaller but 

significant. Because flow is pulsatile in arteries, the peak Reynolds number may greatly 

exceed the values based on mean velocity. In larger animals and in humans, the Reynolds 

number in the aorta can reach the low thousands. The significance of these values with 

regard to the occurrence of flow instability and the development of turbulent flow is 

discussed in a later section.

 Blood flow in arteries

From a hemodynamic perspective, the flow of blood in arteries has several prominent 

characteristics. (i) It is strongly pulsatile, as a consequence of the alternation between 

ejection and filling phases during the cardiac cycle. (ii) Artery walls have compliant elastic 

properties, and the fluctuation of pressure during the cardiac cycle leads to a time-dependent 

variation in arterial diameter. (iii) The combination of pulsatile flow and compliant vessels 

results in propagation of the cardiac pulse as a traveling wave along arteries. (iv) Arteries 

have complex shapes, including taper, curvature, branching, and local variations in diameter. 

These geometrical characteristics may be altered in pathological states, such as when 

aneurysms or stenoses develop. (v) The Reynolds numbers of arterial flow are high, in the 

range of hundreds to low thousands. In this range of Reynolds numbers, flow fields can be 

complex and sensitive to geometrical irregularities, with the possibility of flow instability 
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and turbulence. Given this range of characteristics, no single theoretical framework exists for 

describing all aspects of blood flow in arteries. In the following sections, key aspects of 

blood flow in arteries are considered, including physical arguments and theoretical analyses 

relevant to each aspect.

 Mechanical properties of artery walls

The arterial wall is a layered structure that must provide not only a conduit for passage of 

blood but also sufficient mechanical strength to resist the forces generated by blood 

pressure. The wall is customarily described in terms of three main layers, tunica intima, 

tunica media, and tunica adventitia (89). The innermost layer, the intima, consists of 

endothelial cells and basement membrane, and may also include other fibrous structures. 

The intermediate layer, the media, consists of smooth muscle cells and varying arrangements 

of collagen and elastin fibers. In the larger arteries, elastin is arranged in several sheets 

known as elastic laminae. Although smooth muscle cells are capable of contraction, they 

generally behave passively in the large arteries. In small arteries and arterioles, the 

contractile properties of vascular smooth muscle cells in the media are essential for the 

regulation of blood flow. The outermost layer, the adventitia, contains elastin and collagen as 

its main structural elements, as well as nerves and small blood vessels (vasa vasorum) that 

supply the wall. It serves to connect the artery mechanically with surrounding tissues. The 

biological components of the wall and their morphological and material properties are 

discussed in more detail elsewhere (17,89). Here, we focus on the mechanical properties of 

the wall, the deformations generated by pulsatile blood pressure, and their significance with 

regard to the propagation of the pressure pulse.

 Stress in the artery wall: Thin-wall theory—For a basic analysis of the stress 

generated in an artery wall by blood pressure, it is helpful to consider first the thin-wall case, 

in which the thickness of the wall is assumed to be much smaller than the vessel radius. The 

tension generated in the wall can be computed by considering the forces acting on the part of 

a vessel segment that lies above a plane containing the center-line, as shown in Figure 10A. 

If the segment has length L and radius r, the transmural pressure difference Δp = pi − po acts 

on an area 2RL and generates a net upward force of 2RLΔp. This force must be balanced by 

the tension T in the wall, which is expressed as force per unit length, and generates a 

downward force 2LT. Equating these forces leads to the well-known “Law of Laplace” for a 

cylinder

(33)

If the wall has thickness h, then the circumferential tensile stress generated in the wall is 

given by σ = T/h, i.e.

(34)
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For a typical artery, the ratio r/h is much larger than 1, and the dominant stress is therefore 

not the radial force exerted by blood pressure, but the resultant circumferential stress 

generated within the artery wall.

If it is assumed that the vessel is an incompressible isotropic material with Young’s modulus 

E, and is tethered so that it cannot move longitudinally, then it can be shown (see below) that 

the change in radius Δr due to a small change in pressure Δp is given by

(35)

The ratio of wall thickness to radius varies considerably according to the type of vessel. In 

the arteries h/r is in the range 0.1 to 0.2, whereas veins have thinner walls, with h/r in the 

range 0.02 to 0.05 (12). A compilation of data from multiple studies (84) shows that h/r 
values increase with decreasing vessel diameters in the microcirculation, with smaller ratios 

in venous vessels than in corresponding arterial vessels. In capillaries, h/r is almost 0.5. 

Calculations of the circumferential stress in vessel walls according to Eq. (34) show that the 

stresses are approximately equal in arterial and venous vessels of the same diameter, but 

decrease strongly with decreasing vessel diameter (84).

 Stress in the artery wall: Thick-wall theory—Given this range of h/r values, it is 

relevant to consider the behavior of a pressurized thick-walled artery, i.e. without assuming 

that h/r is small. We start by analyzing the case of small strain, assuming that the wall is an 

isotropic elastic material. We assume that the artery is stress-free in a reference 

configuration with initial inner radius Ri and outer radius Ro, and is loaded by a transmural 

pressure difference Δp = pi − po, such that it expands to a final inner radius ri and outer 

radius ro. We further assume that the wall material is effectively incompressible, and that the 

artery is tethered longitudinally so that its length is fixed. This analysis could be performed 

using the general governing equations as described earlier. The alternative approach adopted 

here is based on a force-balance argument analogous to that used above for the thin-walled 

case, which provides some physical insight into the mechanics of the system.

A material point in the wall with initial radius R where Ri ≤ R ≤ Ro has final radius r(R) 

where ri ≤ r(R) ≤ ro. The fact that vessel length and wall volume are both conserved implies 

that vessel wall-cross-section area is also conserved during the deformation. Applying this 

condition to the annular region with initial inner radius Ri and outer radius R shows that π(r2 

− ri
2) = π(R2 − Ri

2), which implies that r2 − R2 = ri
2 − Ri

2. Differentiating with respect to R 

gives dr/dR = R/r. Also, (r + R)(r − R) = (ri + Ri)(ri − Ri) which implies r(r − R) ≈ ri(ri − Ri) 

because r ≈ R and ri ≈ Ri when the strain is small. In cylindrical coordinates (r,θ,z), the 

non-zero components of the Cauchy (small-deformation) strain tensor are therefore

(36)
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These components sum to zero, which confirms that the deformation conserves volume. 

Then from Eq. (21) the non-zero components of Cauchy stress are

(37)

where  is an unknown isotropic stress. Next, we consider the mechanical equilibrium of 

a thin shell within the wall, of radius r and thickness dr, again considering only the upper 

half of the vessel (Figure 10B). Similarly to the thin-wall case, the resultant forces per unit 

length generated by the stress σrr acting on the inner and outer curved surfaces are −2rσrr(r) 
and 2(r + dr)σrr(r + dr), and the force per unit length resulting from the circumferential stress 

σθθ is −2σθθ (r)dr. All these forces must sum to zero, i.e.

(38)

Dividing by 2dr and taking the limit dr → 0 gives

(39)

which may be integrated to give

(40)

where c is a constant and σ0(r) = c. The radial component of stress must match the applied 

pressures at the inner and outer surfaces, i.e. σrr(ri) = −pi and σrr(ro) = −po, and it follows 

that

(41)

and that the change in inner diameter of the vessel as a function of the pressure difference 

Δp = pi − po is given by

(42)

using the fact that G = E/3 when ν = 1/2. Eq. (35) above for a thin-walled tube can be 

deduced by setting ro − ri = h and ri ≈ r ≈ ro in this equation.
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Equation (42) can also be used to deduce the Young’s modulus E from measurements of 

vessel distension under pressure. For such measurements, the change of outer diameter is 

usually observed, and the corresponding equation is (71)

(43)

Combining these results shows that

(44)

In particular, pressurization of a vessel with isotropic elastic properties gives rise to axial 

tensile stress σzz in the vessel wall if its length is held constant. The analysis of a pressurized 

thick-walled tube is treated in more detail in the classic book (57).

 Other factors affecting arterial compliance—It should be emphasized that the 

actual behavior of arteries deviates in important respects from the assumptions made in the 

above analyses, including the assumptions of linear elastic material properties, small strain, 

isotropy, and the existence of a stress-free reference state. The departures of real arterial 

properties from these idealized assumptions are discussed next.

Mechanical testing of circumferential strips of arterial walls shows nonlinear passive elastic 

properties (17,107). As the extension (strain) is increased, tension (stress) increases slowly 

at first and then more rapidly, often with a roughly exponential dependence on strain. This 

behavior can be understood in terms of the mechanical properties of the wall structural 

elements. The molecular structure of elastin allows it to be stretched to more than twice its 

unstressed length, and its tension increases relatively smoothly with strain. By contrast, 

collagen fibers are very stiff, but are curved or crimped in the unstressed state of the vessel 

wall. As the wall is stretched, a relatively low stress is sufficient to straighten collagen fibers, 

but once they are straightened their high elastic modulus causes a large increase in the 

effective stiffness of the wall (17).

The linear theory described above can be adjusted to describe deformations of materials with 

nonlinear elastic properties, as long as the deformations are small. For instance, the change 

in outer diameter associated with a small change in internal pressure can be described by Eq. 

(43), but with E redefined as the incremental Young’s modulus, which is determined by the 

slope of the graph of pressure vs. radius, or more generally the slope of the stress-strain 

relationship. While this is a useful approximation for some applications, it may not provide 

an accurate description of the response of arteries to the changes of pressure during the 

cardiac cycle, because the strains are too large. For human arteries, the change in diameter 

from diastole to systole, expressed as a percentage of diameter, is typically about 9%, with a 
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range from about 6 to 12% (71). Because of the strongly nonlinear elastic properties of the 

wall, experimental pressure-diameter curves are nonlinear over the range of pressures in the 

pressure pulse (17), and the incremental elastic modulus increases significantly from diastole 

to systole. The implications of this behavior for the propagation of the pressure pulse are 

discussed below.

The layered structure of the wall gives rise to significantly anisotropic mechanical 

properties, with different elastic moduli in the axial and circumferential directions. The 

anisotropy is strongly dependent on the degree of stretch in those two directions, again 

illustrating the nonlinear properties of artery walls (94,114). The anisotropy of wall 

mechanics results from the non-random orientations of fiber and sheet structures within the 

wall. In general, the stiffness is higher in directions in which fibers are preferentially 

oriented. Theoretical models have been developed that relate the anisotropic properties of 

the wall to the distribution of fiber orientations (39).

A further deviation from the model described above relates to the assumption of a stress-free 

reference configuration. When excised arteries are slit open lengthwise, the cut edges 

generally spring apart, showing the existence of residual stresses in the intact unloaded 

configuration (29,111). This phenomenon can be interpreted as follows (29). As shown by 

Eq. (36), the strain generated by pressurization of an artery declines with the inverse square 

of radial position r. If the strain was zero in the unloaded state, this would lead to a large 

radial gradient of strain in the loaded state. The observed behavior implies the presence of 

residual strain in the unloaded state that is negative at the inner surface and positive at the 

outer surface. When this is superimposed on the changes in strain with pressurization, it 

results in a more uniform strain state. Underlying this interpretation is the assumption that 

processes of structural adaptation within the vessel wall lead to equalization of stresses and 

strains across the wall in the loaded state (10).

When arterial diameter is graphed as a function of pressure during the cardiac pulse, the 

plotted values form a loop. For a given diameter, the pressure is higher during the increasing 

phase than during the decreasing phase (17,66). This shows that the arterial wall is not 

purely elastic and behaves as a viscoelastic material. Energy is dissipated in the wall during 

each pulse. In a detailed theoretical and experimental analysis of the interaction of a 

viscoelastic wall with pulsatile blood flow (9), it was shown that a Kelvin-Voigt model 

provided an adequate description of the wall’s properties.

 Pulse propagation in arteries

As a result of the compliance of the arteries, the pressure pulse produced by the heart is not 

transmitted immediately to all parts of the arterial system, but is propagated along the 

vessels in the form of a traveling wave. The mechanism of this wave propagation is 

illustrated schematically in Figure 11. In essence, as a pulse of increased pressure travels 

along an artery, a negative pressure gradient (with pressure decreasing in the forward 

direction) is set up at the leading edge, which accelerates the blood. This causes a spatial 

gradient of flow rate with a larger flow rate entering than leaving a short segment of the 

vessel. By conservation of mass, this requires an expansion of the vessel, and so the pulse is 

propagated. The same mechanism also permits the propagation of a pulse wave in the 
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opposite direction, which can arise because of reflection of the primary wave generated by 

left ventricular systole. The speed of these waves depends primarily on the ratio between the 

elastic stiffness of the wall and the inertia of the fluid.

The theoretical analysis of pulse wave propagation has a long history (72). As early as 1755, 

the great Swiss mathematician Leonhard Euler formulated the key equations needed for an 

analysis of this problem (19), although he was apparently frustrated by the difficulty of 

solving these equations (72). Below, we set out the equations essentially as he wrote them, 

and show how they may be solved in approximate form to obtain a prediction of the pulse 

wave velocity (28). First, however, we consider the representation of the pulse in the aorta 

by the simpler lumped-parameter “Windkessel” model.

 Windkessel model for the aorta and large arteries—Stephen Hales in 1733 (35) 

recognized the role that the compliance of the aorta and large arteries plays in creating a 

more steady blood flow rate to the tissues than the sporadic ejection provided by the heart. 

He likened this process to the air chamber (Windkessel) on fire-engines of the time, where 

the alternate compression and decompression of the air in the chamber produced a relatively 

steady flow, despite the irregularity introduced by the reciprocating pump driving the flow. 

This idea was developed mathematically by Frank (25), who expressed the flow from the left 

ventricle into the aorta as the sum of a flow proportional to the pressure, representing the 

resistance of the vessels, and a flow proportional to the time derivative of pressure, 

representing the compliance of the vessels. Such an approach is often called a “lumped-

parameter” model. In terms of the electrical analogy introduced earlier, the Windkessel 

model is simply a resistance and a capacitance in parallel. Despite its simplicity, this model 

is quite successful in representing the exponential decay of arterial pressure during diastole 

(64,101). As such, it provides a useful theoretical description of the afterload on the left 

ventricle, and can also be constructed as a physical device for use in experiments on isolated 

hearts or artificial pumping devices.

The lumped-parameter approach can be extended to construct more elaborate models (117). 

In time-varying flows, the acceleration and deceleration of fluid requires pressure drops in 

addition to those present in a steady flow. In the electrical analogy, these can be represented 

as inductances. As already mentioned, the variation of volume contained in a compliant 

vessel is represented by including a capacitance. By combining multiple elements consisting 

of resistances, inductances and capacitances, electrical circuit configurations can be 

developed to represent time-dependent blood flow in extensive tree-type models of the 

arterial system (66). The properties of these circuits can be analyzed using standard 

theoretical methods of electrical engineering. This type of lumped-parameter representation 

of circulatory hemodynamics is particularly useful for investigating the mechanical 

interactions of the systemic and/or pulmonary circulations with the heart (110) or with 

regulatory mechanisms (18). Such lumped-parameter models are limited in that that they do 

not readily represent the effects of pulse-wave transmission and reflection in arteries, the 

nonlinear elastic characteristics of artery walls and nonlinear fluid dynamic effects.

 One-dimensional theory of pulse wave propagation—In order to represent pulse 

wave propagation in arteries, analyses with one spatial dimension are generally used (1). A 
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simplified one-dimensional analysis is presented here, neglecting the effects of blood 

viscosity and the no-slip condition at the walls. The fluid velocity along the artery is 

expressed as v(x,t), where x is distance along the artery and radial variations in v are 

neglected. The cross-section area of the artery is A(x,t) = π[a(x,t)]2 where a(x,t) is the 

radius, and the volume flow rate is Av. Since blood is effectively incompressible, any 

increase in volume flow rate with position x implies that the cross-section area must be 

decreasing with time at that position, and vice versa. In mathematical form, this leads to the 

equation for conservation of mass

(45)

The equation for conservation of momentum follows from Eq. (12) under the assumption of 

unidirectional flow:

(46)

The elastic behavior of the wall is represented by assuming that the radius depends on the 

internal pressure (relative to the external pressure), i.e., a = a(p). Viscoelastic effects are 

neglected. This set of nonlinear equations can be solved using the method of characteristics 

(101), providing the solution that Euler had been unable to find (72).

For the present discussion, a solution is given under further simplifying assumptions. The 

approximate mathematical approach known as linearization is used, in which it is assumed 

that all variables have small variations about their reference values, which are a0 for radius, 

p0 for pressure and zero in the case of velocity. The governing equations are then simplified 

by neglecting any terms involving products of these small variations. With this approach, 

Eqs. (45) and (46) reduce to

(47)

(48)

where the compliance of the artery is represented by

(49)

Eqs. (47) and (48) may be combined to give a single partial differential equation governing 

the pressure:
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(50)

This is the wave equation in one spatial dimension, which arises in several areas of physics 

including acoustics and electromagnetics. It is well known to have a general solution

(51)

where c = (a0/γρ)1/2 is the wave speed, often referred to as the pulse wave velocity in the 

context of arterial flow. The unknown functions f and g represent waves traveling in the 

positive and negative x directions respectively.

For an axially tethered tube with radius a0 and a thin wall of thickness h, composed of an 

incompressible material with Young’s modulus E, Eq. (35) shows that

(52)

and the wave speed is

(53)

This differs from the commonly stated result

(54)

by a factor of 2/√3 = 1.155. The difference arises because the latter result assumes that the 

wall is not tethered in the axial direction, whereas the present analysis assumes that it is 

tethered. The assumption of tethering is probably more appropriate. However, it should be 

recognized that both results are in any case approximations, because they do not take 

account of the nonlinear and anisotropic elastic properties of the artery wall. Eq. (54) was 

first stated in 1808 by Thomas Young (121), and is known as the Moens-Korteweg formula 

because of subsequent work by those two authors (72). Estimates of the quantities in this 

equation for the canine aorta are E = 4.8 × 105 Pa, h/2a0 = 0.07 and ρ = 1060 kg/m3, giving c 
= 5.6 m/s (12).

Observed wave speeds in arteries have been tabulated for various species and anatomical 

locations (71). In the human aorta, values of 4–6 m/s are typical, with values of 7–9 m/s in 

the radial, femoral and iliac arteries. With aging, the aorta undergoes substantial structural 
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changes, becoming both larger and stiffer. As shown by Eq. (53), these changes have 

partially compensating effects on wave speed. The net effect is an approximate doubling of 

the wave speed between age 20 and old age in healthy subjects (47).

The theory developed above contains numerous simplifications, based on assumptions that 

are in many cases not well justified under realistic physiological conditions (12,28). As 

already discussed, the elastic properties of artery walls are strongly nonlinear, such that the 

effective (incremental) compliance of the wall may vary during the cardiac pulse, being 

lower at the peak of pressure (systole) and higher at the trough of pressure (diastole). The 

wave speed then is higher at the peak of pressure than at the trough, causing steepening of 

the leading edge of the pressure pulse wave. Arterial diameters are not uniform, but decrease 

with distance downstream, causing amplification of the pulse wave. The linearized analysis 

is based on the assumption that the blood flow velocity is small compared to the pulse wave 

velocity. However, the peak velocity during systole may be about 1 m/s, which is not very 

small compared to a wave velocity in the range 4–6 m/s. In the above analysis, a uniform 

velocity is assumed across the vessel cross-section, whereas in reality the effects of fluid 

viscosity and the no-slip condition lead to steep spatial gradients in blood velocity near 

vessel walls, as discussed below, resulting in viscous energy dissipation. The viscoelastic 

properties of the wall, as already mentioned, also contribute to the dissipation of the energy 

in the pulse wave. Theoretical approaches for analyzing these more complex aspects of pulse 

wave propagation have been reviewed elsewhere (112).

Aortic stiffness is considered to be an important indicator of cardiovascular risk (67), but is 

difficult to assess directly in human subjects. Pulse pressure and aortic pulse wave velocity 

are related quantities that are markers of cardiovascular risk (2) and can be measured 

noninvasively by techniques such as tonometry and ultrasound. According to the Moens-

Korteweg equation, pulse wave velocity is proportional to the square root of arterial 

stiffness, and it is considered one of the more reliable ways to assess this parameter (50). 

However, caution should be used when making such assessments, because pulse wave 

velocity is equally dependent on arterial diameter, and because the apparent stiffness is 

dependent on the pressure to which arteries are exposed, as a result of their nonlinear elastic 

properties.

 Reflection of pulse waves and pulse pressure amplification—The solution to 

the wave equation given in Eq. (51) is a superposition of waves of arbitrary shape traveling 

in both directions. In arteries, the dominant wave travels away from the heart, but reflected 

components are generated at branch points and as a result of variations in vessel diameter or 

stiffness. Insight into the generation of reflected waves can be gained by considering the 

case of a traveling wave reaching a diverging arterial bifurcation (12), with the parent vessel 

labeled 0 and the two branches labeled 1 and 2 as in Figure 12. The vessels are assumed to 

have cross-sectional areas A0, A1 and A2 and wave speeds c0, c1 and c2. Suppose that pI(t), 
p1(t), p2(t) and pR(t) are the pressures at the bifurcation associated with the incident wave, 

the two transmitted waves and the reflected wave, respectively. Then matching of pressures 

in the branches requires that
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(55)

Likewise, suppose that the velocities associated with the incident wave, the two transmitted 

waves and the reflected wave are vI(t), v1(t), v2(t) and vR(t), where vR(t) is directed in the 

upstream direction. Conservation of flow then dictates that

(56)

For a forward wave, p = f(x − ct) and Eq. (48) shows that

(57)

This condition applies to the incident wave at the bifurcation, and so  where the dot 

denotes the time derivative. The same condition holds for the other three wave components, 

taking account of the fact p = g(x + ct) for the reflected wave, and that its velocity refers to 

the upstream direction. Taking the time derivative of Eq. (56) and using these conditions 

gives

(58)

where Z0 = ρc0/A0 is termed the impedance of segment 0, and Z1, Z2 are defined similarly. 

The time derivative of Eqn. (55) gives

(59)

Eqs. (58) and (59) can be solved to give the transmitted and reflected pressure waves

(60)

where Tw and Rw are the wave transmission and reflection coefficients and Tw − Rw = 1. In 

the special case for which Z0
−1 = Z1

−1 + Z2
−1, the impedances are said to be matched. Then 

Rw = 0, there is no reflected wave and the full pressure wave is transmitted to the 

downstream vessels. The inverse of impedance, Z0
−1, is known as the admittance, and the 

criterion for matching is that the sum of the downstream admittances equals the upstream 

admittance. Such matching occurs, for example, if the wave speeds satisfy c0 = c1 = c2 and 

the areas satisfy A0 = A1 + A2. In general, however, this condition is not satisfied, and a 
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reflected wave is generated. If the downstream admittances are less than the upstream 

admittance, Rw > 0 and the reflected pressure wave has the same sign as the incident wave. 

In this case, the transmitted pressure wave has higher amplitude than the incident wave. 

Conversely, if the downstream admittances are greater, the reflected wave is inverted and the 

transmitted wave has lower amplitude. Both cases are possible; at the aortoiliac bifurcation 

in humans, the reflection coefficient varies from positive values in youth to negative values 

in old age (32).

Equation (60) can also be used to describe the behavior at a transition in the diameter or 

stiffness of a single vessel, simply by omitting the term Z2
−1. In that case, a decrease in 

admittance gives rise to a reflected pressure wave with the same sign as the incident wave 

and a transmitted pressure wave with increased amplitude. Furthermore, the same argument 

can be applied to the case where admittance gradually decreases along the vessel, such that 

an incremental contribution to the reflected wave is generated at each increment of distance 

along the vessel for which the admittance is varying. For instance, in a tapered vessel with 

continuously decreasing cross-sectional area and constant or increasing wave speed along its 

length, admittance continually decreases, such that a positive reflection is generated in a 

distributed manner along the vessel and the amplitude of the transmitted wave increases with 

distance.

The mechanism just described is largely responsible for the increase in the amplitude of the 

pressure pulse with distance peripherally along the arterial tree (71), a phenomenon known 

as pressure pulse amplification (3). The effect is strongest in young individuals and 

diminishes with age (71). This amplification has been discussed both in terms of an increase 

in arterial impedance (58) and in terms of the generation of reflected waves and their 

summation with the forward wave (92). As the above arguments indicate, these explanations 

are equivalent, since a reduction in admittance is responsible both for the generation of a 

positive reflected pressure wave (Rw > 0) and the increase in amplitude of the transmitted 

wave (Tw = 1 + Rw > 1). A second factor contributing to pulse pressure amplification is the 

nonlinearity of the elastic properties, leading to steepening of the leading edge of the 

pressure pulse (42). The decrease in pulse pressure amplification with age can be explained 

in terms of the increasing stiffness of the aorta, which as mentioned earlier, leads to an 

approximate doubling of wave speed. This has the effect of more closely matching the 

impedances of the aorta to more distal arteries, thereby reducing the amplification at distal 

sites. However, this does not necessarily weaken the reflections returned to the heart, as 

discussed below.

It has long been generally considered that the entrances to high-resistance arterioles and/or 

the branching points of major arteries, such as the aortoiliac bifurcation, are the main sites 

for reflection of the pulse wave (71). However, recent work indicates that the reflections 

returning to the aortic root are generated in a spatially distributed manner along the aorta and 

do not have discrete sites of origin (16,99). Such behavior is consistent with the theory of 

wave reflection in a vessel with spatially varying impedance, as outlined above. The 

existence of such a phenomenon has in fact been known and discussed for many years (71).
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The presence of reflected waves is evident in the pressure waveform observed in the 

ascending aorta. The earliest time of arrival of the reflected wave is generally apparent as an 

upwards inflection in the pressure waveform in the ascending aorta. This arrival time varies 

substantially with age, due to changes in arterial size and stiffness as mentioned earlier (71). 

In adolescents, the reflected wave arrives during diastole. However, with increasing age, 

components of the reflected wave arrive earlier in systole, and the arrival time is near the 

beginning of systole in elderly subjects. This has the important effect of increasing the 

afterload on the heart. The effect of the reflected wave on the systolic pressure pulse can be 

quantified by computing an augmentation index, which is obtained by taking the difference 

between the peak pressure and the pressure at the inflection point and dividing by the pulse 

pressure (systolic minus diastolic). The augmentation index has often been considered as an 

indicator of arterial stiffness. However, given that the site of the reflections leading to the 

augmentation of pulse pressure is not well defined, and that left ventricular contractility 

influences the pressure wave (100), the augmentation index cannot be considered a direct 

measure of stiffness (50).

 Relationship between wave theory and Windkessel theory—Despite the 

extensive development of one-dimensional wave theories, the Windkessel model continues 

to be widely used (117). The relationship between these two theories has been examined in a 

number of studies. In the “reservoir-wave” approach (109), the arterial pressure is separated 

into a time-dependent but spatially independent “reservoir pressure” component that 

corresponds to the Windkessel, and a wave component including forward and backward 

propagating waves. Subsequent work (70) showed that it is not necessary to invoke a 

separate “reservoir” component of pressure to explain the occurrence of the Windkessel 

phenomenon in a wave theory. For example, the aorta during diastole can be modeled as a 

segment closed at the upstream end and with an abrupt transition to higher impedance at the 

downstream end. The superposition of multiple reflections occurring within this segment 

during diastole leads to the generation of an approximately exponential decay in pressure, 

corresponding to Windkessel behavior. This behavior persists if the abrupt transition in 

impedance is replaced with a gradual increase along the segment, as discussed above. These 

studies have clarified the relationship between the two theories, and provide a theoretical 

basis for deciding whether Windkessel models are appropriate in a given application.

 Fluid mechanical phenomena in arteries

In the above analysis of pulse wave propagation, the blood flow velocity in an artery was 

assumed to be uniform in the cross-section of the vessel. In reality, velocity profiles in 

arteries are highly variable and affected by several fluid mechanical factors including the no-

slip condition at vessel walls, effects of fluid inertia, the strongly time-varying flow, the 

curvature and non-uniform diameter of vessels, and the presence of bifurcations. This fluid 

mechanical complexity has significant biological implications. The growth and remodeling 

of artery walls is strongly influenced by the mechanical stresses that they experience, 

particularly circumferential stress and wall shear stress (49,69). Furthermore, wall shear 

stress has an important influence on the development of atherosclerotic lesions, which 

develop preferentially in regions of low or fluctuating shear stress (59). The spatial and 

temporal distribution of wall shear stress in arteries is sensitive to the geometry of the 
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vessels as well as the pulsatile nature of the flow. The complex interaction between vascular 

geometry, blood flow and biological responses has been the subject of a large amount of 

analysis. Some basic aspects are discussed in the following sections.

 Pulsatile flow in arteries—The derivation of the Poiseuille formula for flow in a 

cylindrical tube, given above, is based on the assumption of steady flow. In arteries, the 

presence of a strong oscillatory component of flow due to cardiac pulsatility leads to 

significant differences between arterial flow and steady Poiseuille flow, with regard for 

example to the relationship between pressure drop and flow rate, the velocity profile in the 

blood, and the shear stress acting on vessel walls. To characterize the relevant phenomena in 

pulsatile flow, it is helpful to introduce a dimensionless parameter analogous to the Reynolds 

number. Suppose that the fluid flow has a typical velocity V, a typical length L and a typical 

timescale of variations T. In this case, the relevant inertial term is the time-derivative term in 

Eq. (12), and the magnitudes of the inertial and viscous terms may be estimated as

(61)

and the ratio of the inertial term to the viscous term is

(62)

If we consider flow in a tube with radius a to be periodic with angular frequency ω (= 2πf 
where f is frequency), then we let L = a and T = 1/ω and define a non-dimensional parameter

(63)

which is known as the unsteadiness parameter or Womersley number. As with the Reynolds 

number, low values of α imply that the flow is dominated by viscous effects, whereas high 

values of α imply that inertial effects are important.

The flow waveform generated by the heart is complex, but useful insight may be obtained by 

considering flow in a uniform cylindrical tube, driven by a sinusoidally varying pressure 

gradient, with angular frequency ω. For problems of this type, it is helpful to use the 

complex exponential function

(64)

The imposed pressure gradient can then be written as

(65)
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where Re here denotes the real part of a complex number (and not the Reynolds number). 

The equations of motion, Eq. (12), can be solved exactly in terms of Bessel functions (64), 

and the fluid velocity is given by v(r,t) = Re[v′ eiωt] where

(66)

and J0 is a Bessel function of the first kind. Examples of resulting velocity profiles at 

multiple time points over half of a cycle of the oscillation are shown in Figure 13, for several 

values of α. When α = 1, the velocity profiles are nearly parabolic and the velocity varies 

with time almost in phase with the pressure gradient. In this case, the flow is quasi-steady, 

i.e. approximately the same as the steady flow that would be obtained with the pressure 

gradient fixed at its instantaneous value. The wall shear stress, which is proportional to the 

velocity gradient near the wall, then varies in phase with pressure gradient. As α is 

increased, the velocity profiles become increasingly blunted in the interior of the tube and 

fluid velocity has increasingly sharp variations in amplitude and phase near the wall. The 

variation of velocity with time in the central region and the variation of wall shear stress 

with time both lag the variation of pressure gradient. When α is large, the interior velocity 

lags the pressure gradient by π/2 (90°) and the wall shear stress lags the pressure gradient by 

π/4 (45°). Conversely, when α is small, both the interior velocity and the wall shear stress 

are in phase with the pressure gradient.

The pressure generated by the heart in the root of the aorta is approximately periodic, but 

has a more complicated variation with time than a simple sinusoidal function. By means of 

Fourier analysis, such a pressure waveform can be represented as the sum of a steady 

component, a sinusoid at the fundamental frequency, and harmonics at higher frequencies. 

The resulting flow in a uniform tube driven can be computed by superimposing the velocity 

profiles generated by Poiseuille flow for the steady component and by the above analysis for 

the oscillatory components.

For a specific example, we consider a human aorta of diameter 2.7 cm with heart rate of 60 

bpm, blood viscosity of 3 cP and blood density 1.06 g/cm3. The angular frequency of the 

fundamental frequency component is then ω = 2π s−1, and α = 1.35(2π1.06/0.03)1/2 = 20.1. 

The velocity profiles therefore correspond to the rightmost panel in Figure 13. Inertial 

effects are dominant and the pressure gradient drives the acceleration of the flow. The 

velocity profile is almost uniform across the diameter of the tube, with narrow viscous 

boundary layers at the walls. The higher harmonic components of the waveform correspond 

to even higher values of α, and would show similar behavior. Both the spatial and temporal 

variations of the flow are very different to the predictions of Poiseuille flow, and also differ 

from a uniform velocity profile, without radial variation in velocity, as assumed in the above 

discussion of wave propagation in arteries. For a second example, we consider a small artery 

of diameter 1.35 mm, with other parameters as above. Then α = 0.0675(2π1.06/0.03)1/2 = 

1.006, so the flow is quasi-steady, corresponding to the leftmost panel of Figure 13. Thus, 

the effects of flow pulsatility on velocity profiles in arteries vary widely within the arterial 

system according to vessel diameter.
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In most arteries, the maximum forward flow occurs during systole, but this is not the case in 

the coronary arteries. The major coronary arteries run over the outer surface of the heart, but 

their branches penetrate the myocardium where they are subjected to strong compressive 

forces during systole. This has the effect of impeding or even reversing arterial flow, so that 

the coronary inflow mainly occurs during diastole, while venous drainage is increased 

during systole (6,116).

The measurement of blood pressure using the standard method with an inflated cuff wrapped 

around the arm represents another common situation where pulsatile blood flow is strongly 

affected by external pressure. When the cuff is fully inflated, the brachial artery is collapsed 

and flow ceases. As the cuff pressure is decreased, a stage is reached at which the artery 

opens transiently during systole, permitting a burst of flow with each heartbeat. The length 

of this interval of flow increases with further decrease in cuff pressure, until the flow 

continues throughout the cycle. Characteristic (Korotkoff) sounds are associated with the 

transient flow during each beat and can be detected with a stethoscope and used to determine 

the pressures associated with systole and diastole in the patient. The sounds are generated as 

a result of mechanical instability generated by the interaction of the flowing blood with the 

deformable and partially collapsed wall of the artery (5,12,73).

The above analysis of pulsatile flow is strictly applicable to straight uniform rigid tubes, 

whereas arteries are in reality curved, non-uniform and deformable. The fluid mechanical 

effects of oscillatory flow therefore occur in arteries in combination with the fluid 

mechanical effects resulting from the non-uniformities in arterial geometry, as discussed 

next.

 Entrance effects—One of the assumptions underlying the analysis leading to 

Poiseuille’s law, Eq. (22), is that effects of the conditions at the entrance to the tube are 

negligible. Thus, the flow is assumed to be fully developed, in the sense that the distance 

from the entrance is large enough that the velocity profile is no longer varying with distance 

along the tube. The distance that must be traveled for this condition to be satisfied within a 

small tolerance is referred to as the entrance length (12).

The development of the parabolic flow profile with distance along a tube is illustrated in 

Figure 14, assuming steady flow, for the case when the fluid enters the tube with almost 

uniform velocity over the cross-section. The no-slip condition at the wall implies that the 

fluid immediately adjacent to the wall has zero velocity, creating a sharp gradient in velocity 

at the wall. Viscosity acts to smooth out this velocity gradient as the fluid travels along the 

tube, creating an increasingly wide region of reduced velocity. This is an example of the 

fluid mechanical phenomenon known as a “boundary layer” in which the combined effects 

of fluid viscosity and the no-slip condition produce a region of sharp velocity transition 

adjacent to a solid surface. Scaling arguments show that the thickness of the layer grows 

approximately in proportion to the square root of distance along the tube. Since the total 

flow rate in the tube is a constant, the increase in the width of the boundary layer containing 

slower moving fluid implies an increase in fluid velocity in the central region. This 

acceleration is associated with an increased pressure gradient, relative to that needed to drive 

the fully developed Poiseuille flow. The boundary layer thickness increases until it is 
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comparable to the vessel radius, at which point the flow profile is parabolic and the flow is 

considered fully developed.

The entrance length depends on the rate at which the boundary layer spreads, which is 

determined by the viscosity of the fluid. It follows that the entrance length increases with the 

Reynolds number (Re). For laminar flows, with Re in the range of about 10 to 2000, the 

entrance length is linearly related to Re and is given approximately by Le ~ 0.03 Re D where 

D is the diameter (12). At very low Re, the entrance length decreases to a lower limit of 

about 0.65D (28). In the case of a human aorta with D = 2.5 cm and Re = 2000, Le = 150 

cm, and the whole length of the aorta lies within the entry length, so that fully developed 

Poiseuille flow would not be attained in steady flow. However, for small arteries with 

diameters in the range of 1 mm, Re is of order 10–30 and the entrance length is much less 

than the length of the artery, so fully developed flow can be assumed.

The concept of entrance length is less precisely defined under conditions of oscillatory flow. 

One estimate of the entrance length (12) is obtained by considering the distance at which the 

thickness of the growing boundary layer (as shown in Figure 14) equals the thickness of the 

oscillatory viscous boundary layer (see Figure 13 for α = 20), giving Le = 3.4V/ω. Beyond 

this distance, the thickness of the boundary layer is determined by the oscillatory nature of 

the flow and not by the distance from the entrance. For the human aorta with a heart rate of 

60 bpm and a mean velocity of 20 cm/s, this gives an entrance length of about 10 cm for the 

oscillatory component of the flow. For pulsatile flow, consisting of an oscillatory component 

superimposed on a steady mean component, the oscillatory component may be fully 

developed while the mean component remains subject to strong entrance effects.

 Flow in curved, helical and branching arteries—When blood flows through a tube 

that has a curvature in a single plane, the change in flow direction involves a change in 

momentum, which is driven by a pressure gradient across the vessel cross-section, with 

higher pressure at the outside of the curve. The net effect is that fluid near the center-line is 

driven outwards in the curve, whereas slower-moving fluid near the walls is driven toward 

the inside of the curve. This sets up a secondary flow in the vessel cross-section, consisting 

of a pair of vortices (12,28). A further consequence is that the location of peak axial velocity 

is displaced toward the outer wall, so that the wall shear stress is increased there and reduced 

on the inner wall (12).

The thoracic aorta has a strong curvature, as it ascends from the heart and then descends to 

the abdomen. However, its path is more complex than the planar curve described above, and 

has a significant helical component. This, together with the swirl of the blood flow generated 

within the left ventricle, generates a helical flow in the aorta (44). The presence of such 

swirling flows in major arteries and in the heart may have significant fluid mechanical 

effects by reducing energy dissipation (43), and may also lead to more uniform shear stress 

acting on artery walls and enhanced transport of solutes between flowing blood and the 

vessel wall (15).

Flow through bifurcations (branch points) in the arterial tree results in complicated 

distributions of fluid velocities and wall shear stresses, as illustrated in Figure 15 for flow 
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through the human carotid bifurcation (68). In this example, the relatively high velocity at 

the center-line of the parent vessel impinges on the flow divider (the surface where the two 

branches meet). As a consequence, the velocity profiles in the branch vessels are markedly 

asymmetric, with higher velocities and shear stresses in the regions close to the flow divider. 

On the opposite sides of the vessels, the velocities and wall shear stresses are much lower. 

Depending on the specific characteristics of the flow and the bifurcation geometry, flow 

separation may occur in these areas. In flow separation, the streamlines of fluid moving 

adjacent to the wall separate from the wall and reattach at downstream points, leading to a 

region of recirculating flow, with reversed shear stress at the wall. Regions of swirling flow 

may also be generated, as indicated in Figure 15.

 Flow instability and turbulence—As discussed earlier, the Reynolds number is 

useful in describing the characteristics of a fluid flow, providing an indication of the relative 

importance of inertial and viscous effects in the fluid. In general, low Re implies stable 

laminar flow, whereas instability and turbulence are possible at high Re. Flow in a long 

straight cylindrical tube remains laminar up to a Reynolds number of about 2400, beyond 

which turbulence is observed (12). The fact that the transition occurs at this high Re is 

suggestive of the fact that Poiseuille flow is relatively stable and only a small amount of 

viscosity is needed to prevent instability and the development of turbulence.

In other geometries, unstable flow and transition to turbulence can occur at much lower 

Reynolds numbers. In general, any flow system with the character of a jet, where a stream of 

faster moving fluid enters a wider region of slower moving fluid, is prone to instability. For 

instance, when a fluid flows through a narrow orifice, the flow streamlines typically separate 

from the downstream edge of the orifice, and regions of recirculating flow are formed on 

each side of the resulting jet. The critical Reynolds number for flow instability and 

turbulence for such a flow is in the range 300–400 (12). Such conditions can occur in the 

entrance to the aorta, if the aortic valve is stenosed, or on the downstream side of a stenosis 

within an artery. Turbulence often results in the generation of characteristic sounds that are 

useful for the diagnosis of vascular or cardiac abnormalities.

 Blood flow in veins

In the veins, blood pressure and flow velocity are relatively low, with increased possibility of 

thrombus formation, and valves maintain the flow direction. As previously discussed and as 

indicated in Figure 8, the veins have typically about twice the diameter of corresponding 

arteries. An increase of diameter by a factor of two implies a 4-fold reduction in flow 

velocity, a 16-fold reduction in flow resistance (Eq. (31)), and an 8-fold reduction in wall 

shear stress (Eq. (32)), in veins relative to corresponding arteries. Significant nonlinear 

rheological effects as a result of aggregation of red blood cells are more likely to occur in 

veins than in arteries as a consequence of the lower shear stresses and shear rates (45). The 

walls of veins are thinner than those of corresponding arteries, as expected considering the 

much lower pressures that they experience. The level of cardiac pulsatility in venous blood 

flow is generally much lower than in the arteries, because the time varying components of 

flow are largely damped out during passage through the microcirculation. Nonetheless, 

pulsatility with respect to both pressure and flow can be observed in venules (52,124). A 
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pulsatile component of pressure can be observed in the superior vena cava, resulting from 

the oscillatory intake into the right atrium of the heart (118). These and other aspects of 

venous hemodynamics are discussed by Fung (28).

Gravity has the effect of increasing the hydrostatic pressure in a column of blood by about 

0.8 mmHg per cm of height. In a standing human, the resulting hydrostatic pressure 

difference of 80 to 100 mmHg between the ankle and the right atrium increases the pressure 

available to drive arterial flow to the lower extremities, but must be overcome in order for 

blood to return to the heart in the veins. In the absence of any pumping mechanism other 

than the heart, the pressures in the veins and in the microcirculation of the lower limbs are 

greatly elevated relative to the rest of the body when standing. Possible consequences 

include distension of the veins, which can cause orthostatic hypotension and fainting, and 

increased fluid filtration from microvessels, which can cause edema (51). The primary 

mechanism available to counteract these effects is the cyclic contraction of the muscles in 

the legs combined with the presence of valves in the veins, which generates a pumping 

action to drive blood out of the limbs and reduce intravascular pressures. The pressure 

changes in the thorax associated with respiration provide an additional pumping effect.

The valves in the veins consist of a pair of thin leaflets attached to the vessel walls with 

edges that are oriented in the direction of normal flow (towards the heart). When the 

pressure difference across the valve is positive, i.e., such that it drives flow in the normal 

direction, the leaflets are pushed apart and flow is not impeded. However, a reversed 

pressure difference pushes the leaflets together and flow is blocked. Damage to the valves 

can occur during aging and as a consequence of elevated venous pressure or deep vein 

thrombosis, both of which can be caused by extended inactivity and/or lack of mobility.

The system of veins in the leg includes both deep and superficial veins that run the length of 

the leg. These are connected together at intervals by several perforator veins, with valves that 

direct flow from the superficial veins to the deep veins. Since the superficial veins are not 

subject to the pumping action of the leg muscle, the perforator veins are important for 

maintaining blood flow from superficial veins to deep veins where it can be pumped back to 

the heart. Because of this arrangement, the consequences of venous valve failure depend on 

the location of valves that are not competent (88,103). Failure of the valves in only the 

superficial veins does not necessarily lead to impairment of venous return and edema, 

because the perforating veins continue to drain the superficial veins. However, if the valves 

in the perforators also fail, then a reflux in the superficial veins can occur, in which blood 

from the deep veins exits through the perforators and flows in the retrograde direction in the 

peripheral veins. This can lead to varicose veins, leg edema, and eventually ulcer formation. 

Such a local circulatory loop in the veins was identified in 1891 and described as a “private 

circulation” (108).

 Blood flow in the microcirculation

Vessels with diameters less than about 300 μm form the microcirculation. Blood flow in the 

microcirculation has several distinctive features (80). As a consequence of the small 

diameters and low flow velocities, the Reynolds number is very small, typically much less 

Secomb Page 36

Compr Physiol. Author manuscript; available in PMC 2017 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



than one. The flow is laminar and governed by the equations of Stokes flow, i.e. flow at 

effectively zero Reynolds number. Inertia-dependent phenomena such as flow instability, 

flow separation, turbulence, and generation of secondary flows in curved tubes do not occur. 

On the other hand, the suspension characteristics of blood strongly influence flow in the 

microcirculation. Whereas blood can be considered as a continuum with nonlinear 

rheological properties in vessels with diameters much larger than the dimensions of 

individual blood cells, this is not the case in microvessels. Prominent non-continuum effects, 

including reduction of intravascular hematocrit, variation of the apparent viscosity of blood 

with tube diameter, and unequal partition of hematocrit between branches of diverging 

microvascular bifurcations, are generated as a result of the finite size of the suspended 

elements relative to vessel diameters.

A key phenomenon underlying these non-continuum effects is the tendency for red blood 

cells flowing near vessel walls to migrate away from the walls, forming a cell-free or cell-

depleted layer. This migration occurs as a consequence of the deformability of red blood 

cells. Opposing the migration away from the walls is the tendency for particles in a 

concentrated suspension subjected to a shear flow to migrate across the flow (towards the 

walls) in the direction of decreasing concentration, a phenomenon known as shear-induced 

dispersion. The eventual thickness of the cell-free layer is governed by the balance between 

these two effects (97). Although detailed numerical simulations of multiple suspended 

particles are able to predict formation of the layer (22), the underlying mechanical processes 

remain incompletely understood and are currently an active area of research (31,37,75).

Insight into the effects of the cell-free layer can be obtained by considering a simple two-

phase model of blood flow (113), in which a cylindrical core region of viscosity μc centered 

on the tube axis is surrounded by a cell-free layer of lower viscosity μp, where λ = 1 − δ/a is 

the ratio of the core radius to the tube radius, δ is the width of the cell-free layer and a is the 

tube radius (Figure 16). The analysis presented in Eqs. (23–27) can be used to calculate the 

velocity profile in the tube, which consists of segments of parabolas, with a blunted profile 

in the central region where the viscosity is higher:

(67)

This model is analyzed in the following sections.

 Hematocrit reduction: The Fåhraeus effect

When blood flows in narrow tubes, the concentration of red blood cells within the tube (tube 

hematocrit, HT) is observed to be less than the concentration in the blood entering and 

leaving the tube (discharge hematocrit, HD). This reduction in hematocrit is known as the 

Fåhraeus effect (20) and can be explained by the fact that red blood cells are more 

concentrated towards the center of the vessel as a consequence of the formation of the cell-

free layer, and therefore travel faster than plasma on average and have shorter transit times. 

It can be shown that
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(68)

where Vrbc is the mean velocity of red blood cells within the tube, and Vbulk is overall the 

mean flow velocity (105). Experimental studies of flow in glass tubes led to an empirical 

relationship for the dependence of the Fåhraeus effect on tube diameter and hematocrit (77):

(69)

where D is measured in μm. The value of this ratio is close to one for a tube diameter near 3 

μm (the minimum that allows passage of intact red blood cells), drops to a minimum for a 

diameter of about 13 μm, and increases to approach one as diameter increases further. The 

minimum value of the ratio is about 0.72 for a discharge hematocrit of 0.45.

 Apparent viscosity in glass tubes: The Fåhraeus-Lindqvist effect

Another consequence of non-continuum effects when blood flows through narrow tubes is 

that the resistance to blood flow cannot be estimated simply by using Poiseuille’s law, Eq. 

(22), with the viscosity of blood set equal to its bulk value. To describe this phenomenon, it 

is useful to rearrange Eq. (22) and define the apparent viscosity of blood by

(70)

and the relative apparent viscosity by μrel = μapp/μp where μp is the viscosity of the plasma or 

other suspending medium. Experiments in which human blood was passed through narrow 

glass tubes showed a substantial decrease in the relative apparent viscosity as tube diameter 

is decreased below about 300 μm (Figure 17). This phenomenon is known as the Fåhraeus-

Lindqvist effect (21,62,77,98). In very small tubes, with diameter near about 3 μm, apparent 

viscosity increases steeply, because the cells fit tightly in the tube with a very narrow 

lubricating layer (36).

Based on an analysis of multiple experiments using glass tubes, empirical equations were 

established to describe the variation of μrel with diameter and hematocrit (77):

(71)

where
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(72)

is the relative apparent blood viscosity for a fixed discharge hematocrit of 0.45, and D is the 

lumen diameter in μm. The coefficient C giving the dependence on hematocrit is governed 

by:

(73)

The dependence of apparent viscosity on diameter when HD = 0.45 is shown in Figure 17 

(“In vitro experiments”).

The main cause of this reduction in apparent viscosity of blood in narrow tubes is the 

formation of a layer of cell-free or cell-depleted plasma near the tube wall, as already 

discussed. The sensitive dependence of apparent viscosity on the presence of such a layer 

can be demonstrated using the above two-phase model. By integrating the velocity profile, 

Eq. (67), to obtain the flow rate, and substituting in Eq. (70), it can be shown that

(74)

where λ = 1 − δ/a as before. A good fit to the empirical in-vitro curve for diameters 30 μm 

and above is obtained by assuming that the width δ of the cell-free layer is independent of 

tube diameter, with δ = 1.8 μm and , as shown in Figure 17 (96). Physically, the 

presence of a relatively narrow cell-free layer has a substantial impact on flow resistance, 

because it results in a lower viscosity in the region near the wall where the shear rate and 

hence the energy dissipation is highest. For a review of the mechanics of blood flow in 

smaller tubes, particularly in the diameter range of capillaries, see (97).

 Apparent viscosity in vivo

Direct measurements of the apparent viscosity of blood in microvessels in vivo are 

technically difficult, because of the need to measure pressure drops in individual vessels. A 

few such measurements (53,54) suggested that apparent viscosity in vivo was substantially 

higher than expected based on the in-vitro results. Based on a series of studies of the 

distribution of blood flow and hematocrit in microvascular networks of the rat mesentery, 

Pries et al. (86,87) deduced a modified empirical relationship to describe the dependence of 

apparent viscosity on vessel diameter and hematocrit in microvessels:

(75)
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where

(76)

gives the relative apparent blood viscosity for HD = 0.45 and the quantity C is given by Eq. 

(73) as before. The resulting variation of apparent viscosity HD = 0.45 is shown in Figure 17 

(“In vivo experiments”), showing a much higher apparent viscosity in vessels with diameter 

30 μm or less, relative to the in-vitro result.

Several explanations of this apparent discrepancy were proposed (86). The main cause was 

eventually found to be the presence of a relatively thick endothelial surface layer (ESL, or 

glycocalyx) consisting of macromolecules bound to the inner surface of endothelial cells, 

with widths of the order of 1 μm (85). In a subsequent analysis (79), the variation of ESL 

thickness with microvessel diameter and hematocrit was deduced. The resulting 

relationships for the dependence of Fåhraeus effect and apparent viscosity on diameter and 

hematocrit provide an alternative to the equations given above.

 Phase separation effect in bifurcations

When blood enters a diverging bifurcation in the microcirculation, the partition of the red 

blood cell flux between the two branches is not generally proportional to the partition of the 

total flow rate. A low-flow branch tends to draw flow mainly from the peripheral region of 

the blood stream in the parent vessel, which has a low hematocrit as a consequence of the 

cell-free layer. Therefore, the lower-flow branch generally receives a lower discharge 

hematocrit than is present in the parent vessel, while the higher-flow branch generally 

receives a higher hematocrit.

Based on observations of hematocrit partition in the rat mesentery, a set of empirical 

equations was proposed to describe the dependence of this phase separation phenomenon on 

the vessel diameters and on the hematocrit in the parent vessel (76). A slightly modified 

version of the equations was subsequently developed (79) to give physically reasonable 

results for extreme combinations of input hematocrit and vessel diameter. These equations 

relate the fraction FQE of red blood cells entering one branch to the fraction FQB of the total 

flow in the parent vessel entering that branch:

(77)

where logit x = ln(x/(1−x)]. The parameters A, B and X0 are given by:

(78)

(79)
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(80)

where Dα, Dβ and DF are the diameters of the two branches and the parent vessel and HD is 

the discharge hematocrit in the parent vessel.

The resulting behavior is illustrated in Figure 18 for two examples, assuming a discharge 

hematocrit in the parent vessel HD = 0.4. In a symmetric bifurcation with a parent diameter 

of 20 μm (Figure 18A), the minimal fraction of the flow that must enter a given branch for it 

to receive any red blood cells is X0 = 0.029. The fraction of red blood cells entering a given 

branch then increases nonlinearly with increasing overall flow fraction. Because the 

bifurcation is symmetric, the behavior is the same for both branches. In a second example 

(Figure 18B), a parent vessel 10 μm in diameter feeds branches with diameters of 7 and 9 

μm, giving X0 = 0.058. The red blood cell fractions in each branch again increase 

nonlinearly with overall flow fraction. For a given flow fraction, the smaller-diameter branch 

receives a higher hematocrit. This can be understood as a consequence of the fact that, for 

any given flow split in the bifurcation, the larger-diameter branch tends to receive flow more 

from the periphery of the parent vessel, whereas the smaller branch draws from a smaller 

part of the periphery of the parent vessel and more from the high-hematocrit central core 

region.

 Hemodynamics of microvascular networks

The above relationships describing the resistance to blood flow in a given segment and the 

distribution of hematocrit at diverging bifurcations provide a basis for analyzing blood flow 

in networks of microvessels (55,86). All relevant hemodynamic variables, including 

hematocrit, velocity, flow rate, pressure and wall shear stress, are found to have highly 

heterogeneous distributions (83) as a result of the structural heterogeneity of microvessel 

networks. This structural heterogeneity can be viewed as an inevitable consequence of the 

geometrical constraints and stochastic mechanisms involved in the growth of microvascular 

structures. Active biological processes of angiogenesis, structural adaptation and acute flow 

regulation must compensate for this inherent heterogeneity, in order to achieve adequate and 

efficient transport functions (81,82).

 Conclusion

The study of hemodynamics is a classical area of physiology, with key developments dating 

back to the sixteenth century. In the second half of the twentieth century, progress in 

instrumentation for measuring blood flow and pressure, together with increased capabilities 

for numerical computation, led to a period of rapid development in the study of arterial 

hemodynamics. During the same period, technical advances in intravital microscopy and 

measurement techniques also led to progress in characterizing and understanding 

microcirculatory blood flow. Venous hemodynamics has, however, remained comparatively 

neglected.
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In general, the physical and mechanical aspects of hemodynamics are understood to a 

considerable extent. The emphasis for future research is likely to be largely on the 

interaction between hemodynamics and biological processes involving active cellular 

responses. This interaction occurs in many ways, including the role of hemodynamic forces 

in vasculogenesis (8), angiogenesis (65) and vascular remodeling (48,78), the contributions 

of pressure and wall shear stress to local regulation of blood flow (11,41,46), the effects of 

local variations of wall shear stress in the development of atherosclerotic lesions (120,123), 

the effect of blood flow patterns on the formation of thromboses (104,120), the interaction 

between arterial hemodynamics and cardiac function and remodeling (56), the acute control 

of blood pressure (93), and the role of vascular responses in hypertension (95), to name 

some prominent examples. Progress in these areas will require advanced biophysical 

techniques to discover the mechanisms of cellular processes such as mechanotransduction, 

i.e., the mechanisms by which mechanical signals elicit biological responses in cells. The 

concepts of hemodynamics, and their basis in the understanding of fluid and solid 

mechanics, will retain their importance, as they provide the necessary framework for 

interpreting cellular responses in terms of the integrated structural and functional properties 

of the circulatory system.
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Figure 1. 
Schematic representation of the systemic circulation as a network of resistances. A. Basic 

elements of the systemic circulation. The pressure gradient between arterial pressure PA 

generated by the left heart and venous pressure PV drives blood through a network of blood 

vessels, consisting of the arteries, the microcirculation and the veins. Vascular segments are 

indicated by zigzag symbols, as in electrical circuits. The pulmonary circulation (not shown) 

has the same overall structure. B, C. Hemodynamic interactions within a network of 

resistances, with flow driven by a pressure difference P1 − P2. Arrays of dots signify 
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additional levels of branching in the network. B. Increased flow resistance in one segment 

(*) (e.g. due to constriction or occlusion) causes a decrease in flow along all flow pathways 

containing that segment (dashed lines). C. Decreased flow resistance along one flow 

pathway (*) (e.g. due to formation of a shunt pathway) causes increased flow on that 

pathway (heavy black lines) but reduced flow on parallel pathways (dashed lines).
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Figure 2. 
Illustration of concepts underlying the definition of the stress tensor in a material. A. The 

stress vector or traction T is defined as the force per unit area acting on a small surface ΔS in 

the material. In general, this vector has components parallel to the surface (shear force) and 

normal to the surface (normal force). B. The traction acting on an arbitrarily oriented surface 

can be fully described in terms of the stress tensor σ. Each component σij of the stress tensor 

represents the i component of the traction acting on a surface oriented perpendicular to the 

coordinate axis xj. C. The net force on a small cuboid of material resulting from a stress in 
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the material is zero if the stress is uniform, because the traction vectors acting on opposite 

faces of the cuboid are equal and opposite. However, if the stress distribution is not uniform, 

the traction vectors do not cancel and a net force is generated.
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Figure 3. 
Definition of simple shear flow of a fluid.
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Figure 4. 
Coordinate systems used to describe the deformation of a body in continuum mechanics.
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Figure 5. 
A. Definition of geometry and forces, used in derivation of Poiseuille’s law. B. Parabolic 

velocity profile in Poiseuille flow.
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Figure 6. 
Dependence of the bulk viscosity of human blood on hematocrit, for indicated shear rates. 

Curves are derived from polynomial expressions given by Chien et al. (14), based on 

measurements using a coaxial-cylinder viscometer.
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Figure 7. 
Dependence of the relative bulk viscosity on shear rate for three different types of red blood 

cell suspensions as described in the text. Vertical arrows indicate effect of aggregation to 

increase viscosity relative to non-aggregating cells at very low shear rates, and effect of 

deformation to decrease viscosity relative to rigid cells, an effect that increases with shear 

rate.
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Figure 8. 
Dimensions and numbers of vessels of various classification in the canine vasculature, based 

on observations of the mesenteric vascular bed by Mall (7,60). Also included is an estimate 

of flow velocity in each type of segment, assuming a cardiac output of 2 l/min. Dashed lines 

at lower right hand side of figure indicate diameters of arteries corresponding to the veins of 

each classification, to show the difference in diameters between arteries and veins.
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Figure 9. 
Intravascular pressure as a function of vessel diameter in different tissues and species. The 

“present data” refers to data obtained from mathematical model calculations for six 

mesenteric networks (82). The other data are from Zweifach (124), Gore (30), Richardson 

and Zweifach (90) and Fronek and Zweifach (26). Figure reproduced with permission from 

Pries et al. (82).

Secomb Page 58

Compr Physiol. Author manuscript; available in PMC 2017 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Analysis of stresses in a pressurized cylindrical tube. A. Thin-walled theory, for a segment 

of length L and radius r. Pressure forces acting on the wall (dashed arrows) must balance 

tension in the wall (solid arrows), implying the Law of Laplace, T = (pi − po)r. B. Thick-

walled theory. The balance of forces is applied to a thin cylindrical shell of radius r and 

thickness dr. See text for details.
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Figure 11. 
Schematic illustration of the mechanics of pulse propagation in an artery. Graphs show 

spatial variation of pressure and flow rate. Large arrow shows direction of propagation. Gray 

area represents artery, and small arrows indicate local fluid velocities. A. Short high-pressure 

pulse propagating in positive x-direction. At the leading edge of the pulse, fluid is 

accelerated by the negative pressure gradient. This produces a negative spatial gradient of 

flow rate. By conservation of mass, fluid accumulates in this region, and wall must move 

outwards. At the trailing edge of the pulse, fluid is decelerated by the positive pressure 
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gradient, producing a positive spatial gradient of flow rate, and inward wall movement. B. 

Short high-pressure pulse propagating in positive x-direction. Mechanism is as in A, but 

with reversed velocities. Note that an arbitrary (positive or negative) x-independent velocity 

can be superimposed on the indicated velocities without affecting the mechanism. The x-

scale is greatly compressed here for illustrative purposes. In reality, the systolic pulse wave 

is much longer than the diameter (and the length) of the artery.
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Figure 12. 
Analysis of wave propagation at an arterial bifurcation. An incident wave in branch zero 

gives rise to transmitted waves in branches 1 and 2 and a reflected wave in branch 0.
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Figure 13. 
Sequences of velocity profiles in a tube with a sinusoidally varying pressure gradient, for 

indicated values of unsteadiness parameter α. Velocity profiles represent one half of a 

complete cycle of the oscillation. Bottom profile corresponds to moment of maximum 

pressure gradient.
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Figure 14. 
Development of boundary layer (shaded area) in fluid entering a tube. Velocity profiles 

indicate approach to fully developed flow.
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Figure 15. 
Sketch of flow phenomena occurring during steady flow in a human carotid artery 

bifurcation, based on observations in a transparent postmortem sample (68). Dashed lines 

indicate fluid streamlines. Curves across vessel diameters indicate local velocity profiles. 

Shaded area indicates region of flow separation, with separation point at the upstream end 

and reattachment point at the downstream end.
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Figure 16. 
Two-phase model for blood flow in a microvessel, with radius a. A central core region 

containing red blood cells, with viscosity μc and radius λa, is surrounded by a cell-free or 

cell-depleted layer, with viscosity μp and width δ. A typical resulting velocity profile is 

shown.
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Figure 17. 
Variation of apparent viscosity with tube diameter for hematocrit HD = 0.45. The lower solid 

curve represents an empirical fit to experimental in-vitro data (77). The upper solid curve 

represents the dependence deduced from in-vivo experiments (87). The dashed curve 

corresponds to a two-phase model with cell-free layer width 1.8 μm, as discussed in the text.
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Figure 18. 
Red blood cell partition in diverging microvascular bifurcations. Curves giving red blood 

cell flux fraction in one branch as a function of overall flow fraction entering that branch are 

derived from empirically derived relationships as described in the text, assuming a discharge 

hematocrit of 0.4 in the parent vessel. Assumed diameters of parent vessel, DF, and 

branches, Dα and Dβ, are indicated on each plot. A. Symmetric bifurcation. B. Asymmetric 

bifurcation.
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