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Our study aims to identify the clinical breakpoints (CBPs) of second-line drugs (SLDs) above which standard therapy fails in
order to improve multidrug-resistant tuberculosis (MDR-TB) treatment. MICs of SLDs were determined for M. tuberculosis
isolates cultured from 207 MDR-TB patients in a prospective cohort study in China between January 2010 and December 2012.
Classification and regression tree (CART) analysis was used to identify the CBPs predictive of treatment outcome. Of the 207
MDR-TB isolates included in the present study, the proportion of isolates above the critical concentration recommended by
WHO ranged from 5.3% in pyrazinamide to 62.8% in amikacin. By selecting pyrazinamide as the primary node (CBP, 18.75 mg/
liter), 72.1% of sputum culture conversions at month four could be predicted. As for treatment outcome, pyrazinamide (CBP,
37.5 mg/liter) was selected as the primary node to predict 89% of the treatment success, followed by ofloxacin (CBP, 3 mg/liter),
improving the predictive capacity of the primary node by 10.6%. Adjusted by identified confounders, the CART-derived pyrazin-
amide CBP remained the strongest predictor in the model of treatment outcome. Our findings indicate that the critical break-
points of some second-line drugs and PZA need to be reconsidered in order to better indicate MDR-TB treatment outcome.

Mycobacterium tuberculosis is a major public health problem
worldwide (1). The emergence of multidrug-resistant

(MDR) M. tuberculosis strains has complicated treatment and is
associated with increased treatment failure (2). A reduction in the
efficacy of second-line drugs (SLDs) against MDR tuberculosis
(MDR-TB) strains with resistance to SLDs has been described in
observational studies (2, 3). Subtle changes in drug susceptibility
may be predictive of clinical failures, especially when the drug
susceptibility testing (DST) result is at the borderline of the sus-
ceptibility range.

Susceptibility testing for M. tuberculosis is increasingly being
utilized in diagnostic laboratories to guide TB treatment. How-
ever, there has been considerable debate regarding the critical con-
centrations used to define resistance of antituberculosis drugs (4,
5). Until now, the standard approach for identifying antibiotic
susceptibility breakpoints has been the epidemiological cutoff
method. This method is based on the MIC distribution of a drug,
which identifies the upper 95% cutoff point on the Gaussian curve
of wild-type susceptible M. tuberculosis isolates (6–8). However,
Gumbo, using Monte Carlo simulations, concluded that current
critical concentrations of first-line drugs were overoptimistic, and
new susceptibility breakpoints should be defined considering mi-
crobiologic and clinical outcomes (4). Therefore, clinical outcome
studies including MIC results are needed. The aim of this study
was to identify the clinical breakpoints (CBPs) in a cohort of
MDR-TB patients in China and to develop a decision tree to better
predict treatment outcomes of MDR-TB patients.

MATERIALS AND METHODS
Study design. We conducted a prospective cohort study including
MDR-TB patients who visited two MDR-TB designated hospitals in
China for treatment between January 2010 and December 2012. Patients

were included if they had a positive acid-fast bacillus smear, were defined
as MDR-TB by the DST results before receiving fluoroquinolone-con-
taining regimens, and gave informed consent. Patients who were preg-
nant, were below 18 or above 65 years of age, had impaired liver or renal
function, were receiving treatment with SLDs in the previous 6 months, or
were infected with extensively drug-resistant M. tuberculosis strains were
excluded. The patients were followed up monthly during the fluoroquin-
olone-containing treatment, which was given as a directly observed treat-
ment short course (DOT).

Species identification and drug susceptibility testing. Sputum sam-
ples were decontaminated and digested with 2% NaOH. The mixture was
concentrated by centrifugation and inoculated on Lowenstein-Jensen (LJ)
medium. Species identification of mycobacteria was performed by con-
ventional biochemical tests (9).

DST for first-line anti-TB drugs was performed using the proportion
method (10) on LJ medium with the following drug concentrations: iso-
niazid (INH), 0.2 mg/liter; rifampin (RIF), 40.0 mg/liter; streptomycin
(STR), 4.0 mg/liter; and ethambutol (EMB), 2.0 mg/liter. Furthermore,
MIC testing for SLDs and pyrazinamide (PZA) was performed on the
mycobacterial growth indicator tube (MGIT) 960 platform according to
standard manufacturer protocols. Briefly, bacterial suspensions were
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transferred to serially 1:2 diluted MGIT tubes with a range of 1 to 32
mg/liter for ofloxacin (OFX) and levofloxacin (LVX), a range of 0.5 to 256
mg/liter for capreomycin (CAP), amikacin (AMK), and kanamycin
(KAN), and a range of 6.2 to 400 mg/liter for PZA. Control plates without
any antibiotic were inoculated with 1:100 diluted bacterial suspensions.
The MIC was defined as the lowest antibiotic concentration that showed
less than 100 growth units when the 1:100 diluted control reached 400
growth units. Duplicates of the pansusceptible M. tuberculosis H37Rv ref-
erence strain were included in each run as an inter- and intrareplication
quality control. The MIC determination was also repeated twice for 10%
(n � 20) of in vitro randomly selected isolates (45% resistant to FQs and
40% resistant to second-line injective drugs) to ensure reproducibility.
We used the critical concentrations for MGIT-based DST recommended
by WHO guidelines, and the substances mentioned above were bought
from Sigma-Aldrich (St. Louis, MO). As there were no published WHO-
recommended critical concentrations for KAN DST by MGIT 960 at the
time of the study, we used 2.5 mg/liter based on the existing literature (11).

Outcome definition. Treatment outcome was evaluated by two end-
points: (i) sputum culture conversion within 4 months (early sputum
culture conversion); (ii) cure or treatment completion by 2 years (treat-
ment success) after commencement of second-line treatment. Sputum
samples were cultured on LJ media by the TB laboratory in the TB desig-
nated hospital. Sputum culture conversion was defined as two consecutive
negative cultures of samples taken at least 30 days apart with no subse-
quent recurrence of a positive culture (12). In accordance with WHO
guidelines (13) and the Global Fund program protocol, cure was defined
as completion of treatment with at least five consecutive negative cultures
from sputum samples, collected at least 30 days apart in the last 12 months
of treatment. Treatment completion was defined as treatment done with
fewer than five consecutive negative cultures in the last 12 months of
treatment. Second-line treatment referred to the use of a treatment regi-
men comprised of one or more drugs (except streptomycin) listed in
groups 2 to 5 of the WHO classification (14).

CART analyses. We utilized classification and regression tree (CART)
analysis to identify the MIC threshold predictive of treatment outcome for
each SLD and to develop the decision tree to predict sputum culture
conversion after 4 months of treatment as well as treatment outcome.
CART analysis is a nonparametric method that uses binary recursive par-
titioning to assign patients to homogenous groups and then presents re-
sults in the form of intuitive and easy-to-interpret decision trees (15–17).
Furthermore, CART analysis has the advantage of handling missing data
by identifying and using surrogate variables to minimize ascertainment
bias (18). CART analysis searches through potential predictors and all
possible cutoff values of the variables to identify the best predictor for
classifying between patients with and without the designated outcome
(i.e., sputum culture conversion after 4 months of treatment and treat-
ment outcome). This results in an upside-down tree whose root node is
the primary predictor. We utilized the Gini criterion function for splitting
nodes and attaining the minimum cost tree. The resulting trees were
pruned to avoid overmatching. The optimal trees were then chosen based
on relative misclassification costs, complexity, and parsimony. We per-
formed 10-fold validation of the results as previously described (5). We
applied receiver operating characteristic (ROC) analysis and 10-fold
cross-validation to evaluate the goodness-of-fit for each model as previ-
ously described (5). In the cross-validation, the data set was randomly
split into learning and test databases, and CART analysis was performed
using Salford Predictive Miner System software (San Diego, CA, USA).

Data collection and analysis. Age, sex, history of prior TB, year of
diagnosis, dispensing of TB drugs, and site of TB disease were obtained
from the provincial reportable diseases registry. Information on deaths
and causes was obtained from the death registration system. Furthermore,
hospital medical records were reviewed to obtain additional clinical, epi-
demiological, treatment, and outcome data. Absent clinical outcomes
were due to lack of patient examination or loss to follow-up during the
treatment phase. Duration of treatment was defined as months from the

first to the last antituberculosis drug dispensed. Multivariate models were
reviewed for appropriateness using the Hosmer-Lemeshow goodness-of-
fit test. IBM SPSS 20.0 (IBM Corp., Armonk, NY) was used to perform
univariate analysis and multivariate binary logistic regression analysis.

RESULTS
Demographics and clinical characteristics. All pulmonary TB
cases were reviewed during the study period. In total, 226 patients
with MDR-TB were identified during the period. Of these, six
patients were immediately transferred to other hospitals and 13
had received SLDs previously. As a result, 207 diagnosed MDR-TB
patients were included in the study (Table 1). The mean (� stan-
dard deviations [SD]) age was 50.1 years (�16.9), and 66.7% of
the patients were male. Of the 207 studied MDR patients, 72
(34.8%) were previously treated with first-line anti-TB drugs. The
most common comorbidity was cardiovascular disease (15.9%),
followed by diabetes (11.1%).

Treatment outcome. With regard to sputum culture conver-
sion, 121 patients (58.5%) still had a positive culture or smear
after the first 4 months of treatment. As for treatment outcome of
the 207 patients, 22 patients (10.6%) were lost to follow up and 68
patients (32.9%) had treatment failure (43 patients were persis-
tently sputum smear positive, 2 patients died due to TB, and 23
patients relapsed). During the follow-up period, another four pa-
tients died, three from cardiovascular disease and one from lung
cancer.

MIC distribution of the M. tuberculosis isolates for SLDs and
PZA among the MDR-TB patients. The MIC distributions for
SLDs and PZA are presented in Fig. 1. The median OFX and LVX
MICs were 2 mg/liter (range, 1 to 32 mg/liter) and 1 mg/liter
(range, 0.25 to 16 mg/liter), respectively, with 49.0% and 13.0% of
the M. tuberculosis isolates above the respective DST critical con-
centrations of 2 mg/liter for OFX and 2 mg/liter for LVX. As for
the injectable drugs, the median MICs were 2 mg/liter (0.5 to 128
mg/liter) for KAN, 4 mg/liter (0.5 to 128 mg/liter) for AMK, and 1
mg/liter (0.5 to 128 mg/liter) for CAP, while 48.3%, 62.8%, and
15.5% of the M. tuberculosis isolates were above the DST critical
concentrations for KAN (2.5 mg/liter), AMK (1 mg/liter), and
CAP (2.5 mg/liter), respectively. For PZA, the median MIC was 25
mg/liter (6.2 to 400 mg/liter), and 5.3% of M. tuberculosis isolates
were above the DST critical concentration of 100 mg/liter.

Our tentative CBPs with respect to sputum culture conversion
by 4 months and treatment outcome are summarized in Table 2.
The CBPs for OFX (3 mg/liter), LVX (1.5 mg/liter), and CAP (5

TABLE 1 Clinical and demographic factors of 207 patients treated for
multidrug-resistant tuberculosis

Characteristic Valuea (n � 207)

Female 69 (33.3)
Age, yrb 50.1 � 16.9
Prior tuberculosis treatment 72 (34.8)
Pulmonary cavity 56 (27.1)
Severe pulmonary disease on CXR 35 (16.9)
Extra pulmonary tuberculosis 36 (17.4)

Comorbidities 58 (28.0)
Cardiovascular disease 33 (15.9)
Diabetes mellitus 23 (11.1)

a Data are presented as number (percent) unless otherwise specified.
b Continuous variable; means � standard deviations are presented.
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mg/liter) were close to WHO-recommended DST critical concen-
trations, while the CBP for PZA (37.5 mg/liter) in our study was
lower than the WHO-recommended DST critical concentration.

Identification of MIC decision tree to predict treatment out-
come. Since combination therapy is used for MDR-TB treatment,
we included all of the MIC values of SLDs and PZA to illustrate a
decision tree to predict treatment outcome (Fig. 2). By selecting

PZA as the primary node (CBP, 18.75 mg/liter), 72.1% of the
sputum culture conversion at month four could be correctly pre-
dicted. As for the treatment outcome, pyrazinamide was selected
as the primary node (CBP, 37.5 mg/liter) to predict 89% of pa-
tients with treatment success, followed by OFX (CBP, 3 mg/liter)
improving the predictive capacity of the primary node by 10.6%.
The strongest predictor in treatment outcome of MDR-TB was a

FIG 1 MIC distribution of second-line drugs for M. tuberculosis isolates from 207 MDR-TB patients. The Gaussian distribution is skewed toward the right and
is different from the MIC distribution summarized by EUCAST. Footnotes: a, the critical concentration of DST recommended by WHO except kanamycin,
which was derived from existing literature (11); b, the suggested clinical breakpoints derived by CART analysis.
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MIC of 37.5 mg/liter for PZA with a variable importance of
100.0%, while the variable importance of the second node of OFX
was just 9.1%. Overall, the decision tree was capable of predicting
83.5% of the failure to sputum culture conversion by month four
and predicting 85.3% of the treatment failure, with a specificity of
72.1% and 94.9%, respectively. Based on the test samples, the
ROC scores of short-term and long-term treatment efficacy in the
CART model were 0.777 and 0.946, respectively.

Evaluation of decision tree in a multivariate model of
MDR-TB treatment outcome. Since several factors affect treat-
ment outcome, we compared the distribution of these factors be-
tween patients with M. tuberculosis isolates with an MIC above our
CART analysis-derived breakpoints and those below (see Table S1
in the supplemental material). The two groups of patients had
very similar risk factors, except for pulmonary cavities and severe
pulmonary disease on chest X-ray (CXR), which were more fre-
quent in the group of patients with M. tuberculosis isolates with
higher MICs. After adjusting for these variables, any differences in
the sputum culture conversion by 4 months and treatment out-
come can be attributed to the CART analysis-derived susceptibil-
ity breakpoints.

Adjusted for cavity and severe pulmonary disease on CXR in
the binary logistical regression model and comparing the groups
of patients with M. tuberculosis isolates with MICs higher and

lower than the CART-derived breakpoints (Table 3), the CBPs of
PZA (odds ratio [OR], 0.07; 95% confidence interval [CI], 0.04 to
0.15), OFX (OR, 0.48; 95% CI, 0.27 to 0.84), and AMK (OR, 0.46;
95% CI, 0.26 to 0.81) were the most statistically significant indi-
cators for sputum culture conversion after 4 months of treatment.
The association between the CBPs of PZA, OFX, LVX, KAN, and
MDR-TB treatment success was strong, and the odds ratios (95%
CI) for these drugs were 0.01 (0.003 to 0.03), 0.30 (0.15 to 0.57),
0.30 (0.13 to 0.69), and 0.29 (0.15 to 0.55), respectively. Further-
more, the CART decision tree remained the strongest indicator for
4-month-treatment sputum conversion (OR, 0.07; 95% CI, 0.04
to 0.15) as well as treatment success (OR, 0.01; 95% CI, 0.002 to
0.02). Additionally, M. tuberculosis isolates with MICs below the
DST critical concentrations for PZA, OFX, and AMK were asso-
ciated with a higher rate of sputum culture conversion after 4
months of treatment and treatment success, although the associ-
ation was weaker than our suggested CBPs. Furthermore, the DST
critical concentrations of CAP and KAN were more likely to pre-
dict sputum culture conversion after 4 months of treatment than
the treatment outcome.

Other factors associated with treatment outcome. The fre-
quency of elderly patients (�65 years) in the treatment failure
group and the treatment success group was not significantly dif-
ferent (22.1% versus 21.4%; P � 0.912). Patients with previous
treatment history were more frequent in the treatment failure
group than in the treatment success group, and this was statisti-
cally significant (42 [61.8%] versus 29 [24.8%]; P � 0.000). Fur-
thermore, the severity of the disease was also significantly associ-
ated with treatment failure.

DISCUSSION

Susceptibility testing is an important guide for clinicians to eval-
uate the patient’s likely response to a particular drug (22). The
critical concentration of SLDs recommended by the WHO are
based on wild-type, susceptible M. tuberculosis isolates. However,
our research indicates that the MIC distribution of MDR-TB iso-
lates shows disparity with the MIC distribution summarized by
EUCAST (Fig. 1). These differences may be caused by phenotypic
characteristics or genetic mutations in MDR-TB isolates. Consid-

TABLE 2 CART analysis-derived MIC clinical breakpoints for M.
tuberculosis isolates from 207 MDR-TB patientsa

2nd drug

Sputum culture conversion
after 4 mo Treatment success

MIC CBP
(mg/liter) Se Sp

MIC CBP
(mg/liter) Se Sp

Pyrazinamide 18.75 0.721 0.835 37.5 0.889 0.926
Ofloxacin 3 0.616 0.567 3 0.650 0.627
Levofloxacin 5 0.930 0.174 1.5 0.906 0.265
Capreomycin 48 0.977 0.107 5 0.880 0.250
Amikacin 3 0.523 0.661 96 0.983 0.118
Kanamycin 96 0.977 0.132 6 0.658 0.618
a Se, sensitivity; Sp, specificity.

TABLE 3 Univariate and multivariate analysis of factors associated with multidrug-resistant tuberculosis treatment outcome

Drug DST CC
or CBP

Univariate logistic regression analysis Multivariate logistic regression analysisa

Sputum culture conversion
after 4 mo Treatment success

Sputum culture conversion
after 4 mo Treatment success

P OR 95% CI P OR 95% CI P OR 95% CI P OR 95% CI

CART Model 0.000 0.08 0.04–0.15 0.000 0.01 0.002–0.02 0.000 0.07 0.04–0.15 0.000 0.01 0.002–0.02
PZA CBP 0.000 0.08 0.04–0.15 0.000 0.01 0.003–0.03 0.000 0.07 0.04–0.15 0.000 0.01 0.003–0.03
PZA DST CC 0.000 0.32 0.18–0.58 0.000 0.24 0.13–0.45 0.000 0.32 0.18–0.59 0.000 0.23 0.12–0.45
OFX CBP 0.010 0.48 0.27–0.84 0.000 0.32 0.17–0.60 0.010 0.48 0.27–0.84 0.000 0.30 0.15–0.57
OFX DST CC 0.003 0.27 0.11–0.65 0.001 0.24 0.10–0.56 0.003 0.27 0.11–0.65 0.001 0.23 0.10–0.55
LVX CBP 0.034 0.36 0.14–0.93 0.003 0.29 0.13–0.66 0.032 0.35 0.13–0.91 0.005 0.30 0.13–0.69
LVX DST CC 0.275 0.57 0.21–1.56 0.388 1.81 0.47–6.91 0.262 0.56 0.21–1.54 0.554 1.51 0.38–5.98
CAP CBP 0.036 0.20 0.04–0.90 0.025 0.41 0.19–0.89 0.037 0.20 0.04–0.90 0.015 0.36 0.16–0.82
CAP DST CC 0.004 0.11 0.03–0.50 0.949 0.97 0.34–2.79 0.003 0.11 0.03–0.48 0.657 0.78 0.26–2.32
KAN CBP 0.015 0.16 0.04–0.70 0.000 0.32 0.17–0.60 0.015 0.16 0.04–0.69 0.000 0.29 0.15–0.55
KAN DST CC 0.002 0.26 0.12–0.60 0.173 0.61 0.30–1.24 0.001 0.25 0.11–0.59 0.071 0.50 0.24–1.06
AMK CBP 0.008 0.47 0.27–0.82 0.012 0.13 0.03–0.63 0.008 0.46 0.26–0.81 0.019 0.15 0.03–0.73
AMK DST CC 0.006 0.31 0.14–0.72 0.048 0.47 0.22–0.99 0.006 0.31 0.13–0.71 0.021 0.40 0.18–0.87
a Adjusted for the presence of pulmonary cavity and severe pulmonary disease on CXR.
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ering the low cure rates of MDR-TB patients, guiding treatment
merely based on efficacy of bacterial killing may not be sufficient.
Therefore, we performed CART analyses to identify tentative
CBPs of SLDs and develop a MIC decision tree to better predict
sputum culture conversion after 4 months of treatment as well as
the treatment outcome.

We propose that the CBPs of some of the SLDs, as well as PZA,
should be considered to be lower than the current standards. In
China, MDR-TB treatment is guided by DST results. However, the
current DST critical concentration is selected based on epidemi-
ological cutoff value (ECOFF) (5), which is used to define micro-
biological resistance. As indicated in our study, the MIC above
which therapeutic failure occurs is not necessarily linked to the
ECOFF derived from the MIC distribution. As previous authors
suggested (19), the DST critical concentration of PZA (100 mg/
liter) needs to be lowered, and we also propose the inclusion of an
intermediate category showing MICs at 64 to 128 mg/liter. In our
study, the CBPs for LVX and PZA were close to the mean MIC;
thus, half of the patients in our current study would be considered
to have isolates with LVX or PZA clinical resistance. Moreover,
our proposed breakpoints are based on the failure of patients to
respond to therapy and therefore are not defined by chromosomal
mutations in the classic resistance genes, as is the case with Gene-
Xpert or line probe assays, such as GenoType MTBDRplus and
MTBDRsl (Hain Lifescience, Nehren, Germany). Not all drug re-
sistance is due to mutations; the MICs for some M. tuberculosis
isolates are naturally high, while other mechanisms of drug resis-
tance, such as efflux pump induction, could also lead to drug
resistance (20, 21). Our results suggest that adjustment of critical
concentrations of some SLDs should be considered to better guide
MDR-TB treatment.

We assessed whether CBPs derived by CART analysis can im-
prove predictive accuracy to better guide MDR-TB treatment. In
Fig. 1, the CBP of AMK derived by CART analysis was 96 mg/liter
while the ECOFF was much lower, 1.0 mg/liter. The predictive
sensitivity and specificity of the CBP for AMK was 98.3% and
11.8%, respectively. In other words, 98.3% of the treatment suc-
cess, and only 11.8% of the treatment failure, can be predicted
correctly. Therefore, the clinical significance of the CBP of AMK
deserves further demonstration, especially in local settings. The
CBP of PZA showed excellent accuracy (sensitivity, 88.9%; speci-
ficity, 92.6%) with more potential clinical significance than other
SLDs, including LVX, CAP, AMK, and KAN. However, MDR-TB
treatment consists of four to five effective drugs, so the decision
tree based on all SLDs may be more useful than those based on a
single drug.

In our study, the decision tree based on PZA and/or MICs of
SLDs had excellent predictive accuracy of clinical outcomes, both
after 4 months treatment and at the end of MDR-TB treatment
(Fig. 2). This relationship has been shown in previous studies (2,
22). In addition, there were no differences in important variables
related to treatment outcome, except for the higher frequency of
pulmonary cavities and severe pulmonary disease on CXR in the
group of patients with MICs above the CART-derived break-
points. After adjustment for these variables, the treatment out-
come of MDR-TB is influenced mainly by the drug susceptibilities
of the M. tuberculosis isolate. In vitro data have suggested that PZA
or FQs are less active against M. tuberculosis strains with higher
MICs (23, 24). Strains with high MICs of a drug might have a
thicker cell wall, which could cause a suboptimal response to the

drug (25). Although high drug MICs in M. tuberculosis isolates
have been related to previous exposure to these drugs (26), none
of the patients with high MICs in our study had been exposed to
SLDs in the previous 6 months. This emphasizes the necessity of
adequate management of these patients. As expected, clinical
manifestations, like the presence of pulmonary cavity and severe
pulmonary disease on CXR, were associated with treatment out-
come. Despite the importance of these variables, the relationship
between high MIC for PZA and negative treatment outcome re-
mained in the multivariate model. Therefore, as with many other
pathogens, such as standard Gram-negative and Gram-positive
bacteria, the MICs of antituberculosis drugs and their interactions
could affect clinical outcome of MDR-TB.

Causal inferences between the MICs of the SLDs and worse
treatment outcomes should be made with caution. Although drug
resistance requires modification of the drug regimen and is known
to be associated with worse treatment outcomes, other factors,
such as nonadherence, medical comorbidities, and pharmacoki-
netic variability, also contribute to poor outcome of tuberculosis
treatment (2, 27–29). Several factors showed at least a weak asso-
ciation with early sputum culture conversion or treatment out-
come. In a univariate analysis, we found that prior TB treatment
was significantly associated with both the failure to convert on
sputum culture by 4 months of treatment and poor treatment
outcome, highlighting the importance of appropriate treatment
for MDR-TB. The relationship between the previous TB treat-
ment and poor treatment outcome had been confirmed already in
a meta-analysis (2). Additionally, indicators of disease severity,
such as cavity and severe pulmonary disease on CXR, increase the
risk of poor treatment outcome by inadequate penetration of the
drug into the most diseased tissue due to the damaged lung paren-
chyma (30–33). These factors might also need to be taken into
account when predicting treatment outcomes of MDR-TB.

Our study has some limitations. First, the relatively small sam-
ple size could limit the generalizability of the findings. However,
CART has been able to correctly identify thresholds with similarly
small populations in the past (19). Second, several other clinical
factors also determine clinical outcomes, such as the presence of
pulmonary cavities. However, these factors do not exclude a role
for MICs in outcome prediction. Indeed, our CART analysis also
examined some other possible predictors, but they were out-
ranked by MICs. Third, one potential limitation of CART analysis
is fitting and biasing toward covariates with many possible splits.
Thus, our findings should be taken with these factors in mind.
Nevertheless, cross-validation identified the same MIC thresh-
olds, which were virtually identical to Monte Carlo simulation
results published in recent years (4). Another limitation is the
absence of pharmacokinetics-pharmacodynamics (PK/PD) data
in our study. Measuring drug concentrations is not the standard of
care in most medical facilities in China. However, population-
based study design reduces the possible bias from the PK/PD vari-
ables to some degree. We have an ongoing prospective clinical
study where PK/PD data as well as MIC distributions will be avail-
able and the clinical significance of these variables in MDR-TB
treatment can be determined.

Conclusions. This study revealed that MDR-TB patients in-
fected by an M. tuberculosis isolate with higher MIC (especially for
PZA and FQs) compared to patients whose isolates had lower
MICs had increased risk of negative treatment outcome. These
results suggest that the critical concentration of PZA could be
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reconsidered. In addition, the use of a MIC decision tree might
have significance in guiding MDR-TB treatment.
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