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The apicomplexan parasites that cause malaria and babesiosis invade and proliferate within erythrocytes. To assess the potential
for common antiparasitic treatments, we measured the sensitivities of multiple species of Plasmodium and Babesia parasites to
the chemically diverse collection of antimalarial compounds in the Malaria Box library. We observed that these parasites share
sensitivities to a large fraction of the same inhibitors and we identified compounds with strong babesiacidal activity.

The apicomplexan phylum of eukaryotic microbial parasites is
important in human and veterinary medicine. Apicomplexans

cause malaria (Plasmodium spp.), babesiosis (Babesia spp.), toxo-
plasmosis (Toxoplasma gondii), and cryptosporidiosis (Cryptospo-
ridium spp.), among other diseases. The Plasmodium and Babesia
genera are relatively closely related among the apicomplexans (1)
(last common ancestor, �55 million years ago [2]) (Fig. 1A) and
share similar features in their biology, including mechanisms for
host cell invasion and metabolism (3–6). Both Plasmodium and
Babesia spp. are pathogenic during the stage of infection when
parasites colonize host erythrocytes. Historically, drug develop-
ment has focused more strongly on inhibitors for Plasmodium sp.
parasites (7). Researchers have found that some antimalarial
drugs also reduce proliferation of Babesia sp. parasites in erythro-
cytes as well (8, 9). The antimalarial atovaquone, a ubiquinone
analog, is the preferred clinical treatment for human babesiosis in
combination with azithromycin (10) and is used also in veterinary
practice for babesiosis in dogs (11).

A renewed focus on malaria eradication has led to the identi-
fication of an unprecedented number of bioactive compounds
that block proliferation of Plasmodium falciparum in erythrocytes
(12). In 2011, the nonprofit group Medicines for Malaria Venture
(MMV) made available to the research community the Malaria
Box, a collection of 400 chemically diverse, previously uncharac-
terized blood-stage antimalarials (13). Researchers have screened
the antiparasitic activities of the Malaria Box compounds in non-
erythrocytic host cells for the apicomplexans T. gondii, Cryptospo-
ridium parvum, and Theileria annulata and identified a limited
number of inhibitors (�3% of the library) active against each of
these species (14–16). Here, we measured the susceptibilities of
multiple blood-stage Plasmodium and Babesia parasite species to
the Malaria Box compounds and found that erythrocyte-specific
apicomplexans share considerable chemical sensitivities during
the clinically relevant stages of parasitic infection.

To determine the species-specific action of the Malaria Box
compounds, we measured the chemical susceptibility of Plasmo-
dium knowlesi in parallel with the reference species P. falciparum
(13) (see Dataset S1 in the supplemental material). Endemic to
macaque monkeys in southeast Asia and an emerging zoonosis in
humans, P. knowlesi is distinguished from P. falciparum by its
shorter blood-stage cell cycle and reduced rate of parasite multi-
plication per cycle (17). Additionally, P. knowlesi is closely related
to the second most important human malaria parasite, Plasmo-

dium vivax, for which it is a useful experimental model parasite
(18). We used a metabolic assay to measure biosynthetic incorpo-
ration of 3H-labeled hypoxanthine and parasite growth in the
presence of Malaria Box compounds (19) and observed that 90%
of inhibitors active against P. falciparum are also active against a
human erythrocyte-adapted line of P. knowlesi (Fig. 1B). For 72
Malaria Box compounds, we observed limited or negligible activ-
ity against P. falciparum, and these molecules were excluded from
all analyses. Compounds active against both P. falciparum and P.
knowlesi exhibited similar well-correlated 50% inhibitory concen-
tration (IC50) values up to �7 �M (Pearson’s r � 0.53), with both
species exhibiting sensitivity to �30% to 40% of the small mole-
cules at submicromolar IC50 values (Fig. 1C and D). These results
argue strongly that the majority of Malaria Box inhibitors are di-
rected toward well-conserved targets in the blood stages of infec-
tion by divergent Plasmodium species.

To determine the efficacy of the Malaria Box inhibitors toward
the Babesia parasite spp., we measured the chemical susceptibili-
ties of the parasite species Babesia bovis and Babesia divergens
growing in erythrocytes (see Data Set S1 in the supplemental ma-
terial). Both species are cow parasites and cause major economic
losses in the livestock industry in various parts of the world (20,
21). B. divergens occasionally causes severe zoonotic infections in
splenectomized individuals (20). We used the [3H]hypoxanthine
assay to measure growth of B. bovis in bovine erythrocytes and B.
divergens in human erythrocytes (8, 22, 23). Of the 328 Malaria
Box compounds that inhibit P. falciparum with an IC50 value of
�7 �M, we observed that 65, or �20% of the total, inhibit growth
of both B. bovis and B. divergens with an IC50 of �7 �M. An
additional 65 molecules inhibit B. bovis selectively, and 28 mole-
cules inhibit B. divergens selectively, perhaps reflecting species-
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specific differences between the Babesia species. Growth inhibi-
tion by the Malaria Box compounds administered at a single
concentration (5 �M) is reproducible for either Babesia species
(see Fig. S1A and B in the supplemental material).

Both Babesia parasite species tested are less sensitive than the
Plasmodium species to the Malaria Box inhibitors, with blood-
stage growth of either B. bovis or B. divergens sensitive to �10% of
the small molecules at a submicromolar IC50 value compared to
�30% to 40% sensitivity for the Plasmodium species (Fig. 1C). At
an IC50 of �25 �M, each Babesia species is susceptible to �60% to

70% of the Plasmodium-active molecules. The lower sensitivities
of the Babesia species to inhibitors compared to those of the Plas-
modium species suggest variation in general features of these par-
asites (e.g., solute permeability of infected erythrocytes) (24). Sig-
nificant correlation in the susceptibilities of B. bovis and B.
divergens to Malaria Box compounds (Pearson’s r � 0.246) (Fig.
1E) suggests frequent activity of these molecules against targets
conserved within the Babesia genus. Additionally, the high num-
ber of Malaria Box compounds with inhibitory activity against all
apicomplexan species tested (Fig. 1B and C) and significant cor-

FIG 1 Comparative chemosensitivity analysis of Plasmodium and Babesia parasite species with the Malaria Box inhibitors. (A) Phylogeny of selected genera of
apicomplexan parasites, including Plasmodium, Babesia, Toxoplasma, and Cryptosporidium (31). The erythrocyte-specific Plasmodium and Babesia species
examined in this study are indicated. (B) Venn diagram summarizing the species specificity of Malaria Box compounds against the Plasmodium and Babesia
parasite species tested. The number of compounds with an IC50 of �7 �M in each category is indicated. (C) For each of the Plasmodium and Babesia parasite
species tested, the number of Malaria Box compounds with an IC50 value less than or equal to the indicated values on the x axis is shown. (D) Scatter plot
comparing the IC50 values for Malaria Box compounds in P. falciparum (x axis) to P. knowlesi (y axis). Pearson’s r and P values are shown (n � 294). (E) Scatter
plot comparing the IC50 values for Malaria Box compounds in B. bovis (x axis) to B. divergens (y axis). Pearson’s r and P values are shown (n � 190). In panels
D and E, the axes are colored at specific IC50 values to permit comparison of scale between the two plots. (F) Summary of all Spearman correlation-based analyses
between the parasite species tested. All 328 small molecules found to be inhibitory toward P. falciparum growth were included for each analysis. r values are
indicated. **, P � 0.01; ***, P � 0.001; ****, P � 0.0001.
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relation in the potencies of the compounds between the Plasmo-
dium and Babesia parasite species (Fig. 1F) suggest targeting of
features of blood-stage parasite biology common to the Plasmo-
dium and Babesia genera.

To confirm the activities and determine the potencies of select
babesiacidal Malaria Box compounds identified in our screen, we
purchased nine compounds from commercial vendors and con-

ducted dose-response susceptibility assays (Table 1). The compounds
include imidocarb (Malaria Box compound MMV665810), which is
used for treatment of babesiosis in livestock (20). We tested these
small molecules in P. falciparum proliferating in human erythro-
cytes, B. bovis in cow erythrocytes, and B. divergens in both human
and cow erythrocytes. Imidocarb exhibited IC50 values of 230 to
690 nM against the Babesia parasite species, and we observed IC50

TABLE 1 Confirmed inhibitory concentrations for selected Malaria Box compounds against P. falciparum and Babesia spp.

Structure and compound identification no.a Molecular wt

IC50/IC90 (�M) forb:

P. falciparum B. bovis (cow) B. divergens (human) B. divergens (cow)

Atovaquone 366.8 3.8 � 10�4/1.8 � 10�3 0.018/0.23 0.032/0.13 0.012/0.056

MMV665810 (imidocarb) 348.4 0.11/0.44 0.66/1.9 0.69/3.4 0.23/0.99

MMV665943 430.5 0.39/1.2 0.38/2.7 0.51/1.5 0.39/0.82

MMV667491 440.5 0.31/0.51 0.52/1.9 1.1/2.7 1.0/2.0

MMV019266 312.4 0.11/0.22 0.59/3.3 0.73/0.83 1.1/2.7

MMV665814 419.5 0.46/1.1 1.1/2.1 0.88/2.2 0.70/2.2

MMV396693 254.3 0.11/0.28 2.4/6.3 0.64/7.9 0.31/1.38

MMV666022 453.3 0.15/0.28 1.1/1.4 0.63/1.7 0.74/2.5

MMV085203 362.4 8.6 � 10�3/0.058 0.31/1.6 0.16/1.3 0.030/0.090

MMV019690 470.6 0.37/0.55 1.1/8.7 2.1/6.9 1.1/3.6

a From the supplemental material of the original report of the Malaria Box (13).
b Determined from 2 to 7 biological replicates.
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values ranging from 30 nM to 2.4 �M for the other Malaria Box
compounds in the Babesia species. In comparison, atovaquone
demonstrated IC50 values of 12 to 32 nM in the Babesia species.
Consistent with our primary screening data, the compounds are
typically severalfold more potent against P. falciparum than
against the Babesia species. Many of the compounds we tested
exhibit IC90 values in all parasite species 4-fold or more lower than
published IC50 values for inhibition of a human cell line (25) and
do not violate the Lipinski rule of five parameters for the predic-
tion of drug-like pharmacokinetics (13).

The breadth of babesiacidal Malaria Box inhibitors is striking
in relation to the comparatively few Malaria Box inhibitors re-
portedly active against nonerythrocyte apicomplexans, such as T.
gondii, C. parvum, and T. annulata (14–16). We speculate that this
difference may reflect the existence of conserved targets required
for proliferation within a similar erythrocytic niche for diverse
apicomplexan hemoprotozoan parasites and/or the close phylo-
genetic relatedness of Plasmodium and Babesia spp. Our results
suggest that, with the discovery of novel antimalarial chemotypes
at the blood stage (26–30), a substantial fraction is likely also to be
babesiacidal and potentially lead to compounds to be repurposed
for the treatment of babesiosis. The work discussed here has im-
plications for chemotherapeutic strategies regarding malaria and
babesiosis and should inspire more detailed investigation of the
comparative biology of these parasites.
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