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Broth microdilution antimicrobial susceptibility testing was performed for ceftazidime-avibactam and comparator agents
against 7,062 clinical isolates of Pseudomonas aeruginosa collected from 2012 to 2014 in four geographic regions (Europe,
Asia/South Pacific, Latin America, Middle East/Africa) as part of the International Network for Optimal Resistance Moni-
toring (INFORM) global surveillance program. The majority of isolates were susceptible to ceftazidime-avibactam, with the pro-
portions susceptible differing marginally across the four regions (MIC,,, 8 to 16 pg/ml; 88.7 to 93.2% susceptible), in contrast to
lower susceptibilities to the following comparator 3-lactam agents: ceftazidime (MIC,,, 32 to 64 pg/ml; 71.5 to 80.8% suscepti-
ble), meropenem (MIC,,, >8 g/ml; 64.9 to 77.4% susceptible), and piperacillin-tazobactam (MIC,,, >128 pg/ml; 62.3 to 71.3%
susceptible). Compared to the overall population, susceptibility to ceftazidime-avibactam of isolates that were nonsusceptible to
ceftazidime (n = 1,627) was reduced to between 56.8% (Middle East/Africa; MIC,,, 64 g/ml) and 68.9% (Asia/South Pacific;
MIC,,, 128 pg/ml), but these percentages were higher than susceptibilities to other 3-lactam agents (0 to 44% susceptible, de-
pending on region and agent; meropenem MIC,,, >8 pg/ml; 26.5 to 43.9% susceptible). For this subset of isolates, susceptibili-
ties to amikacin (MICyg, >32 pg/ml; 53.2 to 80.0% susceptible) and colistin (MIC,,, 1 pg/ml; 98.5 to 99.5% susceptible) were
comparable to or higher than that of ceftazidime-avibactam. A similar observation was made with isolates that were nonsuscep-
tible to meropenem (n = 1,926), with susceptibility to ceftazidime-avibactam between 67.8% (Middle East/Africa; MIC,,, 64 pg/
ml) and 74.2% (Europe; MIC,,, 32 pg/ml) but again with reduced susceptibility to comparators except for amikacin (MICyg, >32
pg/ml; 56.8 to 78.7% susceptible) and colistin (MIC,,, 1 pug/ml; 98.9 to 99.3% susceptible). Of the 8% of isolates not susceptible
to ceftazidime-avibactam, the nonsusceptibility of half could be explained by their possession of genes encoding metallo-B-lacta-
mases. The data reported here are consistent with results from other country-specific and regional surveillance studies and show
that ceftazidime-avibactam demonstrates in vitro activity against globally collected clinical isolates of P. aeruginosa, including

isolates that are resistant to ceftazidime and meropenem.

Ceftazidime has been an important antibacterial agent in the
treatment of infections caused by Pseudomonas aeruginosa
since the early 1980s (1, 2). However, mutational resistance can
develop by stable derepression of the normally inducible chromo-
somally encoded AmpC B-lactamase (3), and by other non-B-
lactamase-mediated mutations (4, 5). In addition, exogenously
acquired resistance through the acquisition of genes encoding
B-lactamases, such as blay,,_, (6), has also been reported, though
it is less common than mutational resistance (4, 7). As a result, the
effectiveness of ceftazidime against P. aeruginosa has significantly
eroded (4-7).

Avibactam is a non-B-lactam B-lactamase inhibitor that inhib-
its class A, class C, and some class D B-lactamases (8). Among the
class C B-lactamases, avibactam inhibits the AmpC enzyme of P.
aeruginosa (8, 9). When avibactam is combined with ceftazidime,
this inhibition results in the restoration of ceftazidime activity
against P. aeruginosa isolates that are resistant to ceftazidime
through stably derepressed synthesis of the AmpC enzyme, re-
gardless of the allelic variant of bla,,,c carried (10, 11). The in-
hibition by avibactam of the P. aeruginosa AmpC (-lactamase in
vitro restores not only low MICs of ceftazidime against that organ-
ism but also bactericidal activity at those lower concentrations
(12). The restoration of in vitro activity translates to restoration of
ceftazidime efficacy against ceftazidime-resistant P. aeruginosa in
vivo (13-15). The restoration by avibactam of the in vitro activity
of ceftazidime described above has extended to collections of un-
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selected clinical isolates of P. aeruginosa in surveillance studies
(16-24).

Ceftazidime-avibactam has been approved by the United
States Food and Drug Administration (U.S. FDA) for the treat-
ment of complicated intraabdominal infections and complicated
urinary tract infections caused by P. aeruginosa and other Gram-
negative species in patients with limited or no alternative treat-
ment options (25). Surveillance studies are an important tool to
monitor the activity of agents on a local and global level and to
detect the possible emergence of resistance that might compro-
mise therapy, as has been observed for ceftazidime-avibactam in
vitro (13, 26). In the present work, the activity of ceftazidime-
avibactam against P. aeruginosa was assessed through the Interna-
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tional Network for Optimal Resistance Monitoring (INFORM)
global surveillance study across four regions for 3 years (2012 to
2014), by (i) comparing the relative in vitro activities of ceftazi-
dime and ceftazidime-avibactam, in order to understand what
extra proportion of susceptible isolates is provided by the inhibi-
tion of B-lactamases by avibactam in vitro; (ii) examining the po-
tential clinical value that ceftazidime-avibactam might represent
based on its in vitro activity compared to the activities of other
important antipseudomonal agents, such as meropenem, imi-
penem, doripenem, cefepime, piperacillin-tazobactam, amikacin,
and colistin; and (iii) placing this study of recent clinical isolates
into context with other recent surveillance studies (16—-24) and
studies that were confined to subpopulations of isolates of P.
aeruginosa selected as being resistant to ceftazidime or other
B-lactams (27-29).

(Parts of this research were presented at the 24th, 25th, and
26th European Congresses of Clinical Microbiology and Infec-
tious Diseases [30—32] and the 54th Interscience Conference on
Antimicrobial Agents and Chemotherapy [33].)

MATERIALS AND METHODS

P. aeruginosa isolates. From 2012 to 2014, the INFORM global surveil-
lance program collected 7,062 isolates of P. aeruginosa from medical cen-
ter laboratories in Europe (19 countries, 93 laboratories), Asia/South
Pacific (9 countries, 41 laboratories), Latin America (6 countries, 26 lab-
oratories), and the Middle East/Africa (5 countries, 16 laboratories). All
isolates were shipped to a central reference laboratory, International
Health Management Associates, Inc. (IHMA; Schaumburg, IL, USA),
where their identities were confirmed as P. aeruginosa by the use of
MALDI-TOF (matrix-assisted laser desorption ionization-time of flight)
spectrometry (Biotyper instrument; Bruker Daltonics, Billerica, MA,
USA).

Antimicrobial susceptibility testing. Antimicrobial susceptibility
testing was performed following the Clinical and Laboratory Standards
Institute (CLSI) standard method for broth microdilution using in-
house-prepared, 96-well panels (34, 35). Avibactam was tested at a fixed
concentration of 4 pg/ml in combination with doubling dilutions of cef-
tazidime (25). Colistin was tested with a final concentration of 0.002%
polysorbate 80 in each panel well (36). MICs of all agents except ceftazi-
dime-avibactam were interpreted using CLSI breakpoints (34). Ceftazi-
dime-avibactam MICs were interpreted using U.S. FDA MIC breakpoints
for P. aeruginosa (25) (susceptible, =8 pg/ml; resistant, =16 pg/ml) be-
cause the CLSI currently does not publish MIC interpretative breakpoints
for this agent.

Screening isolates for B-lactamase genes. All meropenem-, imi-
penem-, and doripenem-nonsusceptible isolates were screened for the
presence of genes encoding carbapenemases (KPC, OXA-24 family, GES,
VIM, IMP, NDM, SPM, GIM) and selected extended-spectrum (-lacta-
mases (ESBLs; SHV, TEM, VEB, PER, GES) using Qiagen’s multiplex PCR
kit (Valencia, CA) according to the manufacturer’s reccommendations and
published primer sets (37, 38). The genes detected were sequenced and
compared to sequences in publically available databases (www.ncbi.nlm
.nih.gov; www.lahey.org).

RESULTS

Antimicrobial susceptibility testing results for ceftazidime-avibactam
and comparator agents are shown in Table 1. The susceptibility to
ceftazidime-avibactam was 92.0% overall, with slight variations
(88.7 t0 93.2%) across the surveyed geographic regions, and ex-
ceeded the susceptibilities to all other B-lactams tested, including
carbapenems (57.2 to 78.5% susceptible, depending on com-
pound and region). Susceptibility to ceftazidime-avibactam was
comparable or greater than that to amikacin (81.8 to 94.4% sus-
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TABLE 1 In vitro activities of ceftazidime-avibactam and comparator
agents tested against 7,062 P. aeruginosa isolates collected in 2012 to
2014 from patients in four geographic regions

MICy,, %
Region (no. of isolates) Antimicrobial agent® (wg/ml)  Susceptible®
All (7,062) Ceftazidime-avibactam 8 92.0
Ceftazidime 64 77.0
Cefepime >16 78.3
Piperacillin-tazobactam >128 68.6
Doripenem >4 74.3
Meropenem >8 72.7
Imipenem >8 61.4
Colistin 1 99.5
Amikacin 32 89.4
Levofloxacin >4 71.9
Europe (3,893) Ceftazidime-avibactam 8 92.6
Ceftazidime 64 77.4
Cefepime 16 78.8
Piperacillin-tazobactam >128 69.4
Doripenem >4 74.4
Meropenem >8 72.9
Imipenem >8 60.3
Colistin 1 99.5
Amikacin 32 89.7
Levofloxacin >4 71.3
Asia/South Pacific (1,392) Ceftazidime-avibactam 8 93.2
Ceftazidime 64 78.1
Cefepime 16 80.2
Piperacillin-tazobactam >128 71.3
Doripenem >4 78.5
Meropenem >8 77.4
Imipenem >8 67.0
Colistin 1 99.5
Amikacin 8 94.4
Levofloxacin >4 77.2
Latin America (1,088) Ceftazidime-avibactam 16 88.7
Ceftazidime 64 71.5
Cefepime >16 73.2
Piperacillin-tazobactam >128 62.3
Doripenem >4 66.8
Meropenem >8 64.9
Imipenem >8 57.2
Colistin 1 99.4
Amikacin >32 81.8
Levofloxacin >4 64.7
Middle East/Africa (689)  Ceftazidime-avibactam 8 91.7
Ceftazidime 32 80.8
Cefepime 16 79.5
Piperacillin-tazobactam >128  68.8
Doripenem >4 77.1
Meropenem >8 74.8
Imipenem >8 63.3
Colistin 1 99.6
Amikacin 16 90.1
Levofloxacin >4 75.9

“ Colistin was tested in the presence of a final concentration of 0.002% polysorbate 80.
b Values are based on CLSI breakpoints, except for ceftazidime-avibactam, for which

FDA breakpoints were used.
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TABLE 3 Occurrence of B-lactamase genes in carbapenem-nonsusceptible P. aeruginosa isolates, stratified by phenotype®

No. of isolates that were:

Parameter, phenotype, and B-lactamase Total no.
content Enzyme type of isolates CAZ-NS CAZ-NS, CAZ-AVI-S CAZ-NS, CAZ-AVI-R
Total tested 7,062 1,627 1,064 563
Carbapenem NS? 2,840 1,257 709 548
MBL positive, with or without serine VIM = TEM-OSBL 252 244 6 238
B-lactamase genes
VIM + VEB 6 6 6
VIM + PER 5 5 5
VIM + SHV 4 4 1 3
VIM + GES ESBL-like 1 1 1
VIM + KPC 1 1 1
IMP * TEM-OSBL 34 34 34
NDM 1 1 1
NDM + VEB 2 2 2
KPC positive, MBL negative KPC 28 28 22 6
GES positive, MBL negative GES carbapenemase 48 39 38 1
GES carbapenemase + 16 16 2 14
GES ESBL-like
GES ESBL-like 20 20 8 12
GES spectrum 1 1 1
undefined
ESBL positive, MBL negative VEB = TEM-OSBL 25 25 25
PER = TEM-OSBL 23 22 9 13
SHV 2 2 1 1
OSBL positive, MBL negative TEM-OSBL 11 7 7
No acquired bla detected® 2,360 799 615 184
Carbapenem S (not characterized) 4,222 370 355 15

“ CAZ, ceftazidime; CAZ-AV], ceftazidime-avibactam; S, susceptible; NS, nonsusceptible; R, resistant.

b Tsolates nonsusceptible to meropenem, imipenem, or doripenem were screened for B-lactamase (bla) genes.

¢ Isolates are presumed to contain the chromosomal ampC gene common to P. aeruginosa.

than that of ceftazidime against the same isolates in all four geo-
graphic regions, with 72.4 to 82.7% of those isolates being suscep-
tible to ceftazidime-avibactam.

The percentage of isolates from each geographic region that
were meropenem nonsusceptible ranged from 22.6 to 35.1% (Ta-
ble 1). In total, there were 1,926 meropenem-nonsusceptible iso-
lates, 84.4% (1,626) of which were metallo-f3-lactamase negative.
Compared to the findings for the overall population, the percent-
ages of susceptibility to ceftazidime-avibactam in meropenem-
nonsusceptible isolates of P. aeruginosa decreased only 18 to 24%
to between 67.8 and 74.2%, depending on the region, whereas the
activities of other B-lactams were much more reduced (cefepime,
=43% susceptible; piperacillin-tazobactam, <32%; doripenem
and imipenem, <10%) (Table 5). The meropenem-nonsuscep-
tible P. aeruginosa isolates showed higher percentages of suscepti-
bility to colistin in all regions, whereas the percentages of suscep-
tibility to amikacin were comparable or higher in the Asia/South
Pacific and Middle East/Africa regions. The percentage of suscep-
tibility to ceftazidime-avibactam among the meropenem-nonsus-
ceptible isolates was 72.4%, which increased to 84.9% when iso-
lates harboring metallo-B-lactamase genes were excluded, and
this trend was apparent across all surveyed regions (see Table S2 in
the supplemental material).
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DISCUSSION

The activity of ceftazidime-avibactam was assessed against 7,062
P. aeruginosa isolates from clinics in four geographic regions over
the period 2012 to 2014. The proportion of isolates susceptible to
ceftazidime-avibactam was 92.0%, in comparison to 77.0% being
susceptible to ceftazidime alone. Hence, avibactam restored sus-
ceptibility to ceftazidime for 1,064 of 1,627 ceftazidime-nonsus-
ceptible isolates (65.4%). For the majority of these ceftazidime-
nonsusceptible, ceftazidime-avibactam-susceptible isolates (615
out of 709 tested), none of the bla genes tested for could be de-
tected, and nonsusceptibility was inferred to result from hyper-
production of the chromosomally encoded AmpC, although no
tests were performed to assess stable derepression of bla genes or
porin expression levels. This would be consistent with the ob-
served activity of ceftazidime-avibactam against P. aeruginosa
characterized as stably derepressed for production of AmpC
(10, 11).

The MIC,, for ceftazidime-avibactam was 8 pg/ml for isolates
of P. aeruginosa from Europe, Asia/South Pacific, and Middle
East/Africa and one doubling dilution higher for isolates from
Latin America, where the susceptibility rate was 88.7%. These re-
sults are in agreement with previous surveillance studies of cefta-
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TABLE 4 In vitro activities of ceftazidime-avibactam and comparator
agents tested against 1,627 ceftazidime-nonsusceptible P. aeruginosa
isolates collected in 2012 to 2014 from patients in four geographic

Ceftazidime-Avibactam Activity against P. aeruginosa

TABLE 5 In vitro activities of ceftazidime-avibactam and comparator
agents tested against 1,926 meropenem-nonsusceptible P. aeruginosa
isolates collected in 2012 to 2014 from patients in four geographic

regions regions
MICyy % MICyy %
Region (no. of isolates) ~ Antimicrobial agent® (pg/ml)  Susceptible”  Region (no. of isolates)  Antimicrobial agent* (pg/ml)  Susceptible”
All (1,627) Ceftazidime-avibactam 64 65.4 All (1,926) Ceftazidime-avibactam 64 72.4
Ceftazidime >128 0 Ceftazidime 128 42.4
Cefepime >16 19.7 Cefepime >16 41.0
Piperacillin-tazobactam  >128 5.4 Piperacillin-tazobactam  >128 28.4
Doripenem >4 324 Doripenem >4 9.3
Meropenem >8 31.8 Meropenem >8 0
Imipenem >8 26.1 Imipenem >8 4.8
Colistin 1 99.1 Colistin 1 99.2
Amikacin >32 65.7 Amikacin >32 67.4
Levofloxacin >4 323 Levofloxacin >4 34.0
Europe (880) Ceftazidime-avibactam 64 67.3 Europe (1,056) Ceftazidime-avibactam 32 74.2
Ceftazidime 128 0 Ceftazidime 128 41.3
Cefepime >16 21.6 Cefepime >16 41.0
Piperacillin-tazobactam  >128 5.6 Piperacillin-tazobactam  >128 27.0
Doripenem >4 30.5 Doripenem >4 9.8
Meropenem >8 29.6 Meropenem >8 0
Imipenem >8 23.2 Imipenem >8 4.7
Colistin 1 99.5 Colistin 1 99.3
Amikacin >32 66.0 Amikacin >32 68.1
Levofloxacin >4 30.8 Levofloxacin >4 33.0
Asia/South Pacific (305)  Ceftazidime-avibactam 128 68.9 Asia/South Pacific (314)  Ceftazidime-avibactam 128 71.7
Ceftazidime >128 0 Ceftazidime >128 45.5
Cefepime >16 21.0 Cefepime >16 43.0
Piperacillin-tazobactam >128 7.2 Piperacillin-tazobactam >128 30.6
Doripenem >4 42.0 Doripenem >4 9.2
Meropenem >8 43.9 Meropenem >8 0
Imipenem >8 38.4 Imipenem >8 5.7
Colistin 1 98.7 Colistin 1 99.0
Amikacin >32 80.0 Amikacin >32 78.7
Levofloxacin >4 43.0 Levofloxacin >4 39.5
Latin America (310) Ceftazidime-avibactam 64 60.3 Latin America (382) Ceftazidime-avibactam 32 70.2
Ceftazidime >128 0 Ceftazidime >128 40.3
Cefepime >16 16.1 Cefepime >16 38.5
Piperacillin-tazobactam >128 4.2 Piperacillin-tazobactam >128 29.1
Doripenem >4 26.8 Doripenem >4 7.6
Meropenem >8 26.5 Meropenem >8 0
Imipenem >8 22.6 Imipenem >8 5.0
Colistin 1 98.7 Colistin 1 99.0
Amikacin >32 53.2 Amikacin >32 56.8
Levofloxacin >4 26.8 Levofloxacin >4 30.1
Middle East/Africa (132) Ceftazidime-avibactam 64 56.8 Middle East/Africa (174) Ceftazidime-avibactam 64 67.8
Ceftazidime 128 0 Ceftazidime 128 48.3
Cefepime >16 12.1 Cefepime >16 42.5
Piperacillin-tazobactam >128 3.0 Piperacillin-tazobactam >128 31.6
Doripenem >4 35.6 Doripenem >4 9.8
Meropenem >8 31.8 Meropenem >8 0
Imipenem >8 25.0 Imipenem >8 3.5
Colistin 1 98.5 Colistin 1 98.9
Amikacin >32 59.9 Amikacin >32 66.1
Levofloxacin >4 31.1 Levofloxacin >4 39.1

@ Colistin was tested in the presence of a final concentration of 0.002% polysorbate 80.
b Values are based on CLSI breakpoints, except for ceftazidime-avibactam, for which

FDA breakpoints were used.
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zidime-avibactam on randomly selected clinical isolates of P.
aeruginosa from Canada, China, the United States, and several
European countries that reported MIC,, values of 4 to 8 pg/ml,
with >90% of isolates susceptible (16-21, 23, 24). In all cases, the
in vitro susceptibility of unselected isolates was greater to ceftazi-
dime-avibactam than to meropenem, with the latter compound
used as an “index” carbapenem (imipenem was used in one exam-
ple where meropenem was not studied [17]).

In all regions, ceftazidime-avibactam was active against a pro-
portion of ceftazidime-nonsusceptible (56.8 to 68.9% susceptible)
and meropenem-nonsusceptible (67.8 to 74.2% susceptible) sub-
sets of P. aeruginosa isolates. Together with amikacin and colistin,
ceftazidime-avibactam retained the highest percentages of suscep-
tibility against these subgroups of isolates. Similar percentages of
ceftazidime-avibactam susceptibility were reported for such iso-
lates collected in Canada, where ceftazidime-avibactam MIC val-
ues were =8 pg/ml for 66.1% of ceftazidime-resistant isolates and
for 62.5% of meropenem-resistant isolates (16). Higher percent-
ages of ceftazidime-avibactam susceptibility were reported among
ceftazidime-nonsusceptible (80.9 to 82.1%) and meropenem-
nonsusceptible (86.5 to 87.3%) isolates of P. aeruginosa from the
United States (19, 21). These varied results highlight the impor-
tance of understanding, if possible, the makeup and underlying
resistance mechanisms of selected subpopulations of isolates
identified on the basis of phenotype or genotype, compared to a
population of randomly selected clinical isolates. For example,
there have been three studies of the activity of ceftazidime-avibac-
tam against specific resistant subpopulations of P. aeruginosa (27—
29). In these studies, it was convenient to summarize the sub-
populations of isolates in terms of their 90th percentile MIC
values. However, although these were abbreviated “MIC,,,” it is
important to distinguish them from the MIC,, obtained with a
collection of randomly selected clinical isolates as is undertaken in
surveillance (Table 1) (16-21, 23, 24), because the latter represents
an estimate of the susceptibility of the contemporary clinical bac-
terial population (which the MICyqs of the various selected resis-
tant subpopulations do not do).

Carbapenem-nonsusceptible isolates were subjected to bla
gene analysis. In agreement with other studies, very few acquired
bla genes were found, 49.6% of which were blay ., (6, 7). Of the
563 ceftazidime-avibactam-resistant isolates identified in this
study, 51.7% were metallo-B-lactamase positive and 13.0% car-
ried genes for serine B-lactamases (KPC, SHV, VEB, PER, GES).
Further work to understand the mechanism of resistance in such
serine-f-lactamase-harboring isolates is needed. In 199 (35.3%)
of ceftazidime-avibactam-resistant isolates, no acquired 3-lacta-
mase gene could be identified, implying either non-B-lactamase-
mediated resistance mechanisms or the presence of bla genes not
included in the molecular characterization protocol.

In conclusion, the in vitro behavior of ceftazidime-avibactam
against P. aeruginosa, yielding percentages of susceptibility higher
than those of other B-lactams tested, similar to those of amikacin,
but lower than those of colistin, supports an ongoing clinical trial
of this agent in patients with nosocomial pneumonia, including
ventilated patients (41).
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