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Tedizolid, a novel oxazolidinone, exhibits bacteriostatic activity through inhibition of protein synthesis. The efficacies of tedi-
zolid, linezolid, and vancomycin were compared in a murine catheter-related biofilm infection caused by methicillin-susceptible
and -resistant Staphylococcus aureus (MSSA and MRSA, respectively) strains engineered for bioluminescence. We observed sig-
nificantly improved efficacy in terms of decreased S. aureus densities and bioluminescent signals in the tedizolid-treated group
versus the linezolid- and vancomycin-treated groups in the model of infection caused by the MSSA and MRSA strains.

Staphylococcus aureus is a leading cause of skin and skin struc-
ture infections and is particularly associated with intravenous

(i.v.) catheters (1–4). Despite the current use of newer antibiotics,
infections due to S. aureus remain a significant problem. The
emergence of methicillin-resistant S. aureus (MRSA) and high
rates of vancomycin clinical failures emphasize this public health
threat (5, 6). Therefore, potential alternative strategies for the
treatment of such infections are urgently needed.

Tedizolid is a novel oxazolidinone derivative that has potent
activity against staphylococci and enterococci (7, 8). It exerts bac-
teriostatic microbial activity through inhibition of protein synthe-
sis by binding to the 50S ribosomal subunit of the bacteria. It has
been reported that tedizolid is more active against staphylococci
and enterococci than linezolid is in vitro (9, 10).

In this investigation, we evaluated (i) the MICs (11) and in vitro
killing activities (12, 13) of tedizolid, linezolid, and vancomycin
against lux mutant methicillin-susceptible S. aureus (MSSA)
(Xen29) and MRSA (Xen30) strains (4, 14, 15), (ii) the influence
of these antibiotics on biofilm formation (16, 17), and (iii) the
real-time in vivo efficacy of tedizolid versus that of linezolid and
vancomycin in a well-characterized model of murine subcutane-
ous catheter-related infection (18) caused by the MSSA or MRSA
strain by using a novel bioluminescence in vivo imaging system
(IVIS).

The IVIS was developed to provide a sensitive and noninvasive
technique for rapid and real-time monitoring of therapeutic effi-
cacy (4, 14, 19–21). In the murine subcutaneous catheter-related
infection model, BALB/c mice (female, 18 to 22 g; Jackson Labo-
ratory) were infected by implanting a precolonized Teflon cathe-
ter segment (1 cm) inoculated with the bioluminescent strains at
1 � 106 CFU/catheter. At 3 days after catheter implantation, ani-
mals were randomized to receive (i) control treatment with the
vehicle, (ii) tedizolid phosphate at 10 mg/kg i.v. twice a day (bid),
(iii) linezolid at 80 mg/kg i.v. bid, or (iv) vancomycin at 110 mg/kg
subcutaneously (s.c.) bid. These antibiotic doses were chosen to
simulate pharmacokinetic values similar to those achieved by the
recommended dosing of humans, i.e., 200 mg of tedizolid i.v. once
daily (22), 600 mg of linezolid i.v. bid (23), and 1 g of vancomycin
i.v. bid (24). Treatments lasted 3 and 6 days for MSSA and MRSA

infections, respectively. At 24 h after the last antibiotic dose, half of
the untreated and tedizolid-treated animals were sacrificed for
evaluation of antibiotic efficacy. The other half of the survivors
were left untreated for an additional 3 days for assessment of re-
lapse. At sacrifice, catheters were quantitatively cultured by using
standard assays of CFU counts per catheter (25). In addition, an-
imals were serially imaged daily after infected-catheter implanta-
tion for bioluminescent signals (BLS) with the IVIS (Caliper Life
Sciences). BLS were expressed by using a pseudocolor scale, with
red representing the most intense luminescence and blue repre-
senting the least intense luminescence (21).

The MICs of tedizolid, linezolid, and vancomycin for study
strains Xen29 and Xen30 were 0.25 and 0.25, 1.0 and 2.0, and 1.0
and 1.0 �g/ml, respectively. Tedizolid prevented substantial re-
growth between 6 and 24 h of incubation (Fig. 1). However, lin-
ezolid could not prevent the regrowth of both MSSA and MRSA
strains at the MIC or 2� MIC. Vancomycin exhibited time-de-
pendent bactericidal activity against both study strains. No signif-
icant differences in the in vitro activities of tedizolid, linezolid, and
vancomycin were observed between the study MSSA and MRSA
strains (Fig. 1).

The two study MSSA and MRSA strains formed good biofilm
(range of optical densities at 490 nm, 1.7 to 2.1) (Fig. 2). Interest-
ingly, sublethal levels (0.5� MIC) of tedizolid, linezolid, or van-
comycin did not induce biofilm formation in either study strain.
Of note, linezolid is more effective than tedizolid or vancomycin
against MSSA biofilm formation, and the ozaxolidinones are
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more active than vancomycin against MRSA strain biofilm forma-
tion. Importantly, all three antibiotics at the MIC to 10� MIC
significantly reduced biofilm formation in both MSSA and MRSA
strains.

The burden of organisms in catheters in the untreated controls,
different therapies, and relapse groups in the murine model are
shown in Tables 1 and 2. At the end of treatment, tedizolid phos-
phate therapy (10 mg/kg i.v. bid) produced significantly lower
densities of both MSSA and MRSA bacteria in catheters than those
found in untreated controls or vancomycin- and linezolid-treated
animals. In addition, vancomycin and linezolid had no therapeu-
tic efficacy in reducing MSSA densities, while linezolid showed a
significant reduction of MRSA densities versus untreated controls
in the model. Of importance, tedizolid treatment had no signif-
icant relapse after discontinuation of therapy. The BLS from
animals treated with tedizolid showed a progressive reduction
compared to that from linezolid- and vancomycin-treated
groups (Fig. 3).

Our in vitro results demonstrated that the study MSSA and

MRSA strains were susceptible to tedizolid (MICs of 0.25 �g/ml),
linezolid (MICs of �2.0 �g/ml), and vancomycin (MICs of 1.0
�g/ml). In addition to these MIC data, in vitro time-kill studies
showed that tedizolid had better anti-S. aureus activity than lin-
ezolid in that it prevented regrowth at 24 h of incubation. The in
vitro findings in this study mirror those in previously published
investigations of tedizolid and linezolid activity against S. aureus
(9, 26). In the present study, we further evaluated the impact of
tedizolid versus that of linezolid and vancomycin on biofilm for-
mation in S. aureus and found that exposure of these antibiotics at
the MIC to 10� MIC significantly decreased S. aureus biofilm
formation. These findings differ from those of a previous study
that showed that tedizolid had no activity when staphylococcal
organisms were in a biofilm state (26).

Importantly, the present study translated the above-described
in vitro outcomes into a clinically relevant catheter-related biofilm
infection model in mice. Our results demonstrated that tedizolid
had significantly better efficacy than linezolid and vancomycin
treatments in reducing MSSA and MRSA densities in the murine

FIG 1 Tedizolid, linezolid, and vancomycin in vitro MSSA (Xen29) and MRSA (Xen30) time-kill curves. Symbols: �, control; Œ, 1� MIC; X, 2� MIC; *, 5�
MIC; �, 10� MIC.
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subcutaneous catheter-related biofilm infection model. In addi-
tion, it is notable that tedizolid had significant efficacy in the ex-
perimental model of MSSA infection, even with short-course (3
days) therapy, and there was no substantial relapse after 3 days
without treatment. On the other hand, neither linezolid nor van-

comycin was efficacious in producing lower MSSA densities than
those in the control group in the model. These results suggest that
tedizolid had significantly better efficacy in decreasing S. aureus
densities in this model of catheter-related biofilm infection caused
by MSSA and MRSA strains.

FIG 2 Impact of tedizolid, linezolid, or vancomycin (from 0.5� MIC to 10� MIC) on MSSA (Xen29) and MRSA (Xen30) biofilm formation. OD490, optical
density at 490 nm; C, control.

TABLE 1 Efficacies of tedizolid, vancomycin, and linezolid in a murine
subcutaneous catheter-related infection due to MSSA strain Xen29

Regimen (no. of samples)

Mean log10

no. of CFU/
catheter
� SD P value(s)

Treatementa

Control (20) 7.50 � 0.33
Tedizolid phosphate, 10

mg/kg i.v. bid (22)
5.49 � 0.62 �1.37E�07 vs control, �2.74E�07

vs linezolid, �3.61E�09 vs
vancomycin

Linezolid, 80 mg/kg i.v.
bid (20)

7.41 � 0.48 �0.56 vs control

Vancomycin, 110 mg/
kg s.c. bid (20)

7.46 � 0.27 �0.79 vs control

Relapse
Control (20) 7.13 � 0.42
Tedizolid phosphate, 10

mg/kg i.v. bid (20)
5.77 � 0.66 �6.88E�09 vs control relapse

a Treatment lasted 3 days.

TABLE 2 Efficacies of tedizolid, vancomycin, and linezolid in a murine
subcutaneous catheter-related infection due to MRSA strain Xen30

Regimen (no. of samples)

Mean log10

no. of CFU/
catheter
� SD P value(s)

Treatmenta

Control (20) 7.14 � 0.37
Tedizolid phosphate, 10

mg/kg i.v. bid (20)
5.70 � 0.53 �3.07E�06 vs control, �0.03

vs linezolid, �0.002 vs
vancomycin

Linezolid, 80 mg/kg i.v.
bid (20)

6.47 � 0.57 �0.05 vs control

Vancomycin, 110 mg/kg
s.c. bid (20)

6.64 � 0.83 �0.07 vs control

Relapse
Control (20) 6.63 � 0.53
Tedizolid phosphate, 10

mg/kg i.v. bid (20)
5.34 � 0.73 �0.0002 vs control relapse

a Treatment lasted 6 days.
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