Skip to main content
. 2016 Jul 18;10:2323–2331. doi: 10.2147/DDDT.S110603

Table 1.

Model performances of 5-fold cross validation

Model CA SE SP AUC MCC
NB-ExtFP 0.8244 0.8792 0.7697 0.8633 0.6528
KNN-ExtFP 0.8693 0.9270 0.8118 0.9171 0.7437
RF-ExtFP 0.8750 0.8680 0.8820 0.9450 0.7501
SVM-ExtFP 0.8834 0.9270 0.8399 0.9407 0.7698
NB-MACCSFP 0.7921 0.8146 0.7697 0.8532 0.5849
KNN-MACCSFP 0.8707 0.9045 0.8371 0.9302 0.7433
RF-MACCSFP 0.8693 0.8961 0.8427 0.9475 0.7398
SVM-MACCSFP 0.8665 0.9410 0.7921 0.9153 0.7414
NB-PubChemFP 0.7950 0.8371 0.7528 0.8544 0.5920
KNN-PubChemFP 0.8539 0.8764 0.8315 0.9044 0.7086
RF-PubChemFP 0.8652 0.8961 0.8343 0.9408 0.7317
SVM-PubChemFP 0.8539 0.9354 0.7725 0.9103 0.7175
NB-AP2D 0.7710 0.8483 0.6938 0.8151 0.5487
KNN-AP2D 0.8357 0.8680 0.8034 0.8883 0.6728
RF-AP2D 0.8314 0.9354 0.7275 0.9056 0.6777
SVM-AP2D 0.8132 0.8933 0.7331 0.8453 0.6346

Abbreviations: NB, Naïve Bayesian; KNN, k-nearest neighbor; RF, random forest; SVM, support vector machine; Ext, extended; AP2D, 2D atom pairs; FP, fingerprints; SE, sensitivity; SP, specificity; AUC, area under the receiver operating characteristic curve; MCC, Matthews correlation coefficient; CA, classification accuracy.