
Preeclampsia and the Brain: Neural Control of Cardiovascular 
Changes During Pregnancy and Neurological Outcomes of 
Preeclampsia

Omar C. Logue1,*, Eric M. George2,3, and Gene L. Bidwell III1,3

1Department of Neurology, University of Mississippi Medical Center

2Department of Physiology, University of Mississippi Medical Center

3Department of Biochemistry, University of Mississippi Medical Center

Abstract

Preeclampsia (PE) is a form of gestational hypertension that complicates ~ 5 percent of 

pregnancies worldwide. Over 70 percent of the fatal cases of PE are attributed to cerebral edema, 

intracranial hemorrhage, and eclampsia. The etiology of PE originates from abnormal remodeling 

of the maternal spiral arteries, creating an ischemic placenta that releases factors that drive the 

pathophysiology. An initial neurological outcome of PE is the absence of the autonomically 

regulated cardiovascular adaptations to pregnancy. PE patients exhibit sympathetic overactivation, 

in comparison to both normotensive pregnant and hypertensive non-pregnant females. Moreover, 

PE diminishes baroreceptor reflex sensitivity (BRS) beyond that observed in healthy pregnancy. 

The absence of the cardiovascular adaptations to pregnancy, combined with sympathovagal 

imbalance and a blunted BRS leads to life-threatening neurological outcomes. Behaviorally, the 

increased incidences of maternal depression, anxiety, and post-traumatic stress disorder (PTSD) in 

PE are correlated to low fetal birth weight, intrauterine growth restriction (IUGR) and premature 

birth. This review addresses these neurological consequences of PE that present in the gravid 

female both during and after the index pregnancy.
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 Introduction

Preeclampsia (PE) is a distinct form of gestational hypertension that typically presents after 

the 20th week of gestation and complicates ~5 percent of pregnancies worldwide (1, 2), with 

developing countries having an incidence almost seven times higher than that of 

industrialized nations (3). The current diagnostic criteria classifies PE (in the absence of 

proteinuria) as hypertension associated with thrombocytopenia (platelet count less than 

100,00 / microliter), liver dysfunction with liver transaminase blood levels at least double the 
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normal concentration, elevated serum creatinine in excess of 1.1 mg/dL, pulmonary edema, 

and /or new-onset cerebral or visual impairments (4). PE results in more than 60,000 

maternal deaths per year (3, 5), with over 70 percent of these fatal cases being neurological 

in cause, and are attributed to cerebral edema, intracranial hemorrhage, and eclampsia (3, 5–

7). The exact etiology of PE is unknown, but the disorder originates from abnormal 

remodeling of the spiral arteries at the maternal-placental interface, creating an ischemic 

placenta that releases factors that drive the pathophysiology (8, 9). An initial neurological 

outcome of PE is the impairment of visceral motor autonomic control of maternal 

hemodynamics (Table 1), such that the cardiovascular physiological adaptations 

characteristic of healthy pregnancy are absent (10–14). One of these critical adaptations is 

the biphasic alteration of autonomic firing patterns, which adjusts sympathovagal balance to 

meet the metabolic demands of pregnancy (15, 16). PE is distinguished by sympathetic 

overactivation, where sympathetic firing is three times higher than in normotensive pregnant 

females, and quadruple the rate of hypertensive non-pregnant females (17, 18). Moreover, 

PE blunts baroreceptor reflex sensitivity (BRS) beyond that observed in healthy pregnancy 

(14, 19–21).

In the absence of the cardiovascular adaptations to pregnancy (Figure 1), the combination of 

an impaired BRS, sympathovagal imbalance, and pathogenic factors from the ischemic 

placenta advance the sequelae of life-threatening white matter lesions (22–24), cerebral 

edema and hemorrhaging (25–27) that can lead to executive dysfunction (28–30). 

Furthermore, PE establishes predispositions to anxiety (31–33), depression (34–36), and 

PTSD (37–42) in the gravid female, which are significantly correlated to low fetal birth 

weight, IUGR, and premature birth (32–36, 38). This review examines the neural control of 

blood pressure in healthy pregnancy, and addressess the resulting neurological outcomes of 

PE that present both during and after the index pregnancy.

 The Autonomic Regulation of Cardiovascular Physiological Adaptations 

of Healthy Pregnancy vs. the Maternal Hemodynamics of PE

One of the initial and most dramatic changes observed in the gravid female is an expanded 

blood volume (43). To prepare for a typical blood loss of 500 ml (vaginal) to 1 liter 

(Cesarean) during delivery, osmoregulatory brain circuity (44) acts via neuroendocrine 

mechanisms to elicit increases in total blood volume beginning at 6 weeks gestation (45). 

During pregnancy, the plasma osmolality threshold for stimulating osmoreceptors is lowered 

from the normal 285 to 270 mOsm/kg (46). Relaxin secreted by the corpus luteum (47) acts 

on the organum vasculosum of the lamina terminalis (OVLT) and the subfornical organ that 

project to and excite the magnocellular neurons in the paraventricular (PVN) and supraoptic 

(SON) nuclei of the hypothalamus (48). Axons of these PVN and SON cell bodies project 

into the posterior pituitary, where they release vasopressin into the general circulation (44, 

49, 50). Vasopressin acts on renal V2 receptors to upregulate aquaporin-2 water channel 

expression on the cells of the distal convoluted tubule and collecting duct, thereby increasing 

the amount of water reabsorbed from urine and returning it to the blood volume (51, 52). As 

a result, by 32 weeks gestation 1.2 -1.6 liters has been added to the total blood volume (53), 

which is almost exclusively increased plasma volume (43). In stark contrast, preeclamptic 
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women exhibit an increase of only ~ 200 mL in blood volume, which is directly correlated to 

the low birth weight and intrauterine growth restriction (54, 55) seen in children that are 

born during the index pregnancy (10).

Another critical adaptation that occurs in response in to this expanded blood volume is an 

increase in cardiac output (CO) (56). The metabolic demands of the fetoplacental unit 

require that 25% of the CO be allotted to arterial blood flow to the uterus (57). To increase 

the CO, the RVLM of the brain stem sends excitatory inputs to the cardiac preganglionic 

sympathetic nerves, residing in the intermediolateral cell column (IMLCC) of the spinal 

cord at thoracic levels T1–T4 (58–60). Exiting the cord via spinal nerves at the same levels, 

these cardiac preganglionic nerves synapse with postganglionic fibers within paravertebral 

ganglia (59–61). Cardiac postganglionic sympathetic fibers project to the sinoatrial and the 

atrioventricular nodes of the heart, and release norepinephrine that binds to β1 adrenergic 

receptors (60, 62). The resulting signaling pathway increases cyclic AMP and activates 

protein kinase A, which leads to increased cardiac output (58, 60, 63, 64).

Influenced by this autonomic input, the CO increases early in the 1st trimester of normal 

pregnancy so that by 37–42 weeks gestation the average output is 6 L/minute (65–67). Three 

factors contribute to this increase in CO, each varying in dominance over the time course of 

gestation. Beginning in the 1st trimester, stroke volume and preload, both associated with the 

expansion in total blood volume, participates in the augmentation of CO (65, 68–70). 

Conversely, in the 2nd and 3rd trimesters, the HR, increased by 15 to 20 beats/min, becomes 

the primary cause of the increased CO which enables adequate nutrient/waste exchange to 

the developing fetus (65, 71). In clinical cases of preeclampsia, however, cardiac output is 

significantly reduced with an increase in peripheral vascular resistance (72, 73). This 

pathophysiological reduction in CO is manifested in preeclamptic patients by asymmetrical 

remodeling and hypertrophy of the left ventricle (74, 75). Moreover, increased levels of 

atrial and brain natriuretic peptides are directly correlated to the degree of left ventricular 

dysfunction in preeclampsia (12).

Within the context of the increases in blood volume and CO, the adaptation of a decrease in 

the peripheral vascular resistance (PVR) occurs in healthy pregnancy. The visceral motor 

autonomic innervation of the systemic vasculature produces forceful vasoconstriction by 

increasing the PVR (76, 77). Postganglionic sympathetic nerves terminate in the tunica 

adventitia of arteries and arterioles and release NE that diffuses into the tunica media to bind 

to α1 or α2 adrenergic receptors expressed on vascular smooth muscle cells producing 

vasoconstriction (59–61). In healthy pregnancy, this vasoconstriction is attenuated, and PVR 

is reduced by complex neurohormonal interactions that diminish the sensitivity to 

angiotensisn II (AngII) (78–80), offsetting the vasoconstrictive effects of thromboxane (81), 

and lowering both plasma osmolarity and arterial load (82–84). Moreover, starting at the 

fifth week of gestation, progesterone and prostaglandin levels promote vasodilation, and as a 

result the PVR decreases ~10% from baseline levels (76, 85, 86). The PVR reaches its 

lowest level at 20 weeks’ gestation, ~ 35% decrease from baseline levels, and persists at this 

level through week 32 (65, 77, 87). Prostacyclin, an endothelium-derived eicosanoid, 

counteracts the vasoconstrictive effects of AngII during pregnancy (79, 80). Moreover, 

enhanced release of nitric oxide attenuates the actions of thromboxane by preventing the 
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phosphorylation of myosin light chains in vascular smooth muscle (88, 89). In addition, 

production of relaxin increases during the first trimester and at term (82, 84). This peptide 

contributes both to the reduction in PVR and to the increase in CO (82, 84). Thus, despite 

the presence of increased AngII levels during normal pregnancy, a decreased sensitivity to 

AngII results (90–92).

However, in PE the PVR is elevated due to a heightened sensitivity to AngII (93), 

contributing to the hypertensive state. Several studies suggest that agonistic autoantibodies 

against the AngII AT1 receptor (AT1R-AABs) are associated with enhanced AngII 

sensitivity (94–98). AT1R-AABs have been observed to increase production of the NF-κB / 

NADPH oxidase-mediated formation of reactive oxygen species (ROS) (99), plasminogen 

activator inhibitor, (100, 101), and soluble fms-related tyrosine kinase-1 (sFlt-1) (102). 

However, this significant correlation between AT1R-AAB titer and elevated PVR is observed 

mostly in severe cases of PE (103, 104). In addition, levels of the vasodilatory heptapeptide 

angiotensin 1–7 (Ang 1–7), which attenuates the vasoconstrictive properties of AngII, are 

significantly diminished in PE (91). Further amplifying AngII sensitivity in PE is the 

increased expression of the angiotensin 1 receptor - bradykinin 2 receptor (AT1-B2) 

heterodimer on blood cells and omental vessels (105–107), that increase the PVR by 

accentuating AngII-mediated vasoconstriction. The pathological elevations in PVR observed 

in PE are manifested by increased arterial stiffness that not only reveals endothelial 

dysfunction, but also indicates the vulnerability to left ventricular hypertrophy and cardiac 

irregularities (74, 108, 109), all of which contribute to the hypertension associated with PE.

Critical to understanding the characteristic enhanced AngII sensitivity of PE are the changes 

that occur to the renin-angiotensin-aldosterone systems (RAAS) in both the kidney (110–

113) and more importantly the placenta (114–131). Mistry et al., (119) observed that the 

placental RAAS exhibits the same degree of autonomy as the renal RAAS, but whose 

components are derived from both maternal and fetal sources. Rising estrogen plasma levels 

during pregnancy activate the placental RAAS, with concurrent increases in angiotensinogen 

(AGT) and renin levels (110, 114, 120, 132). Compared to the chorionic villi, the maternal 

decidua produces greater amounts of both total and active renin (114, 123). The hallmark 

placental ischemia observed in PE triggers increased expression of prorenin receptors 

(PRRs), which promote the generation of angiotensin I from AGT, and the subsequent 

cleavage of AngII from Ang I by angiotensin converting enzyme (ACE) (119). Morover, the 

binding of prorennin to PRRs exerts nearly a four-fold increase in the catalytic efficiency of 

PRR (117, 133).

The placental RAAS demonstrates high sensitivity to tissue levels of reactive oxygen species 

(ROS), which serve as a signal for both angiogenesis (116) and placental development (117). 

Overactivation of the placental RAAS, such as in cases of placental ischemia, results in 

excess local production of AngII, which acting on AT1Rs expressed by placental 

trophoblasts (124), can lead to the deleterious effects of low birthweight and intrauterine 

growth restriction (119). Recently, Zhou et al., (130) have elucidated the mechanism 

between placental RAAS overactivation and the enhanced pressor response observed in PE. 

The AGT protein maintains a state of equilibrium between its oxidized and reduced forms 

(130). Excessive ROS production by the ischemic placenta catalyzes a disulfide linkage in 
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the angiotensin portion of AGT, and this oxidized form of AGT results in the four-fold 

incease in Ang I production (117, 130), subsequent cleavage to AngII, and then enhanced 

pressor response brought about by the vasoconstrictive properties of AngII (119, 134). Thus, 

maternally derived AngII produced from the uterine placental bed acts in an endocrine 

manner to produce vasoconstriction of the uterine spiral arteries, further exacerbating 

placental ischemia (114, 115).

As observed by Nartita et al. (120), overactivation of the placental RAAS by placental 

ischemia leads to increased AngII-mediated pressor response and sympathetic nerve activity. 

If left untreated, the resulting hypertension can increase the risk of the loss of CBF 

autoregulation, increase in cerebral perfusion pressure, and eventual damage to the blood 

brain barrier (135, 136). These initial neurological outcomes resulting from overactivation of 

the placental RAAS can lead to life threatening neurological consequences, which will be 

addressed later in the text.

The above described cardiovascular hemodynamic alterations of pregnancy are mediated by 

the sympathetic and parasympathetic divisions of the autonomic nervous system via 

sympathovagal balance (137, 138). Sympathovagal balance has been assessed in healthy 

pregnant and preeclamptic women by spectral analysis of heart rate variability (HRV) by 

comparing the ratio of the low frequency (0.04–0.15 Hz) to high frequency (0.15–0.40 Hz) 

domains of the HRV, termed the LF:HF ratio (139–142). During the first trimester of normal 

healthy pregnancy, a dominant HF exists (0.15–0.40 Hz), which is consistent with a robust 

vagal control of heart rate (16). By the third trimester, however, a gradual increase in the 

LF:HF ratio indicates that a biphasic change in autonomic inputs occurs, characterized by a 

vagal withdrawal over heart rate and a dominant sympathetic tone (15, 16, 143). Kuo et al., 

observed that this biphasic shift towards augmented sympathetic tone in late pregnancy is in 

part attributed to aortocaval compression by the gravid uterus (16, 144, 145). In these cases, 

the gravid uterus compresses upon the maternal abdominal aorta and inferior vena cava, 

resulting in both a decrease in cardiac output and venous return, and eliciting compensatory 

changes in sympathetic tone (146).

In PE, however, the abnormal uterine perfusion adversely affects autonomic control of 

cardiovascular function (14, 147), such that the LF:HF ratio is elevated beyond that seen in 

normotensive pregnant females (140, 142, 148), indicative of sympathetic overactivation and 

sympathovagal imbalance (11, 17, 149–151). Thus, the impaired regulation of heart rate and 

blood pressure by sympathetic overactivation (141, 152) further exacerbates the abnormal 

placental perfusion and renal blood flow in preeclamptic women (153). This sympathetic 

overactivation may be the result of placental pathogenic factors (e.g., inflammatory 

cytokines) acting primarily on brainstem nuclei that govern sympathovagal balance (154–

156) of cardiovascular physiology. In other forms of hypertension, the mechanism is 

disinhibition of the RVLM by upregulating the expression of GABAB receptors in the 

regions of the nucleus of the solitary tract that receive baroreceptor afferents (Figure 2) 

(157–163). Whether this mechanism is active in PE is an area ripe for new research.

Despite the routine clinical use of the LF:HF ratio in assessing sympathovagal balance, 

caution should be taken when interpreting data due to confounding non-neural factors and 
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mathematical influences (164). For instance, the HF peak, typically associated with 

parasympathetic activity, may exhibit up to a 10% change in frequency due to augmented 

sympathetic nerve activation (164–166). Conversely, the upper limits of sympathetic 

activation may be offset by cardiac parasympathetic input, such as that observed during the 

“diving reflex” (167), where marked bradycardia occurs despite a robust increase in 

sympathetic nerve output (164, 168). Mathematical confounding variables (169) can occur 

when the heart rate variability (HRV) is not divided by the average R-R interval (164, 170). 

Moreover, respiratory influences on the LF:HF ratio, as is observed in heart transplant 

patients that lack cardiac innervation (164), exhibit an atrial stretch contributioin to the 

LF:HF ratio during the respiratory cycle (164, 171). Given these limitations of the LF:HF 

ratio, microneurography of skeletal muscle sympathetic nerve activity (MSNA) may be an 

alternative method of accurately evaluating sympathovagal balance.

Microneurography clinically assesses multiunit sympathetic activity of the peripheral 

vasculature by performing percutaneous recordings of action potentials conducted by 

peripheral nerves (172, 173). Sex-dependent differences are observed in MSNA recordings, 

such that women exhibit β-adrenergic vasodilation that counteracts the vasoconstrictive 

properties associated with increased MSNA (174). This effect has been observed in 

normotensive pregnant women, who demonstrated enhanced MSNA in spite of no 

significant change in blood pressure (141, 152, 172). Microneurographic studies of 

preeclamptic women reported amplified MSNA when compared to normotensive pregnant 

women, but were not significantly different from women diagnosed with pregnancy-induced 

hypertension (PIH), suggesting that sympathetic hyperactivity is not solely responsible for 

the renal dysfunction presented in cases of PE (172, 175). These data emphasize that it is 

unclear whether sympathetic hyperactivity actually causes gestational hypertension, or if it is 

a mechanistic consequence of angiogenic imbalance and endothelial dysfunction (172, 176).

 The Baroreceptor Reflex in Healthy Pregnancy and Preeclampsia

Though it was once regarded as a short-term regulator of abrupt changes in blood pressure, 

the BR reflex is now considered to play an integral role in chronic hypertensive states (177).

 Basic Circuitry of the Baroreceptor Reflex

Located within the arterial walls of the aortic arch and immediately rostral to the bifurcation 

of the common carotid artery within the carotid sinus (178) stretch-sensitive baroreceptors 

(BRs) detect beat-to-beat fluctuations in arterial pressure (62, 179, 180). Aortic BRs transmit 

impulses via the vagus nerve (CN X), while the carotid BRs send afferent signals via the 

glossopharyngeal nerve (CN IX). The cell bodies of the aortic BRs and carotid BRs reside in 

the nodose and petrosal ganglia, respectively, and they both make excitatory (glutamatergic) 

synapses on neurons in the dorsomedial region of the caudal NTS (62, 181, 182). The NTS 

receives and integrates these BR afferent inputs, and projects excitatory terminals to the 

caudal ventrolateral medulla (CVLM) (62, 181, 182). In turn, the CVLM excites 

preganglionic parasympathetic neurons in the nucleus ambiguus (NA), which also receives 

excitatory input from the NTS, and projects (via the vagus nerve) to the heart to reduce the 

heart rate and stroke volume (62, 181). More importantly, the CVLM projects inhibitory 
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(GABAergic) projections to the “vasomotor center” of cardiovascular system, the RVLM 

(59, 181, 183). The RVLM projects to and synapses on preganglionic sympathetic neurons 

located in the IMLCC of the spinal cord (59, 179, 182). Inhibition of the RVLM reduces the 

sympathetic tone to IMLCC, and it is this decrease in sympathetic nerve activity to the blood 

vessels, heart, and kidneys, that produces a corresponding decrease in mean arterial pressure 

(180, 181, 183).

 Alterations of the BR Reflex in Healthy and Preeclamptic Pregnancies

The CNS nuclei of the BR reflex circuitry express receptors for sex hormones (184). 

Estradiol has been observed to affect BRS, while progesterone modulates the sympathetic 

output of the RVLM (184). The neurosteroid 3-α-hydroxydihydroprogesterone (3-α-OH-

DHP), a metabolite of progesterone, augments inhibitory GABAergic tone of the RVLM by 

binding to GABAA receptors expressed by RVLM neurons, and increasing Cl− conductance 

(185, 186). Through this hormonal modulation of neural excitability, normal pregnancy is 

characterized by a reduction in BRS (185, 187–190).

Conversely, the BR reflex is impaired in PE beyond that observed in healthy pregnancy (14, 

19), and presents with beat-to-beat variations in blood pressure, heart rate, and BRS that are 

utilized clinically to predict cases of PE (191, 192). When combined with Doppler 

sonography (for detection of reduced uterine perfusion), analysis of these beat-to-beat 

variations in blood pressure, heart rate, and BR reflex sensitivity, PE is predicted with a 

positive predictive accuracy of over 71% (21).

These clinical observations of BR reflex pathophysiology associated with PE provide the 

rationale for future studies on the regions of the NTS that receive and integrate BR afferents 

inputs. Indeed, a variety of hypertensive models have demonstrated mechanistic alterations 

occurring on NTS neurons (160–163, 193–201). While none of these studies modeled PE, 

the molecular pathways implicated in the increased pressor response warrant investigation in 

an animal model of PE (202). The electrophysological alterations that were observed in NTS 

neurons in these animal models are summarized below.

 Diverse Models of Hypertension Demonstrate Electrophysiological 

Alterations Occuring in the NTS

GABAB receptors (GABABRs) are metabotropic G-protein coupled receptors (GPCRs) 

(203, 204) that hyperpolarize the neuron (Figure 2) presynaptically (205, 206) and 

postsynaptically (203–206). NTS neurons hyperpolarized by increased GABABR activity 

cannot excite the CVLM and NA, nor can the CVLM sufficiently excite the preganglionic 

parasympathetic neurons of the NA (158, 180, 195, 207). As a result, the NA provides 

insufficient parasympathetic input to the heart, and the CVLM no longer inhibits the RVLM, 

creating a sympathovagal imbalance that leads to vasoconstriction, increased heart rate, and 

enhanced renal sympathetic nerve activity (158, 180, 195, 207). Pharmacologic studies in 

spontaneously hypertensive rats (SHRs) (162, 208–210), and hypertensive Sprague-Dawley 

rats induced with a one-kidney figure-8 renal wrap (163, 195, 198, 201, 211) have 

demonstrated that the enhanced expression and activation of GABABRs in the regions of the 
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NTS that receive and integrate BR afferent inputs results in hypertension. Additionally, 

transfer of the GABABR gene into the NTS of normotensive rats resulted in rapid onset of 

hypertension, increased heart rate, and increased plasma norepinephrine levels, all of which 

remained elevated for the duration of the 14-day study (157). This GABABR-mediated 

pressor response is potentiated by the actions of AngII on NTS neurons (161).

NTS neurons express angiotensin II Type 1 receptors (AT1Rs) with one of the highest 

receptor densities within the BBB (212, 213), and AngII acts at these receptors to dampen 

the BR afferent inputs in both hypertensive and normotensive animals (214, 215). Moreover, 

AngII increases the expression of GABABRs on NTS neurons (161) and synergistically 

enhances the pressor response (160). Thus, AngII blunts BR afferent inputs by augmenting 

the GABABR-mediated inhibitory currents on NTS neurons, leading to disinhibition of the 

RVLM and increased sympathetic tone to the heart, vasculature, and kidneys (160, 163, 180, 

207). Therefore, given the heightened AngII sensitivity observed in PE (216), and that the 

NTS neurons that receive BR afferent inputs exhibit one of the highest AT1R expression 

levels within the BBB (212, 213), these GABABRs on NTS neurons would serve as prime 

mechanistic targets for future studies employing an animal model of PE (202).

In addition to GABABRs, alpha2-adrenoreceptors (α2-adrenoreceptors) represent an 

alternative mechanistic target for blood pressure control in PE. The activation of alpha2-

adrenoreceptors (α2-adrenoreceptors) expressed by astrocytes residing in the NTS elicits a 

decrease in blood pressure (197, 217, 218). However, when these astrocytic α2-

adrenoreceptors engage in cross-talk with neuronal adenosine-1 receptors (A1Rs) (196), or 

form heterodimers with µ-opoid receptors (197), hypertension can occur. Synaptic release of 

norepinephrine activates astrocytic α2-adrenoreceptors, which triggers the extracellular 

release of ATP, that is then hydrolyzed to adenosine (196, 219, 220). The adenosine binds to 

presynaptic A1Rs and induces hyperpolarization by inactivating Ca2+ inward channels and 

activating K+ channels (196, 221). Studies employing SHRs observed increased A1R 

expression in the NTS (194, 222), with enhanced sensitivity to adenosine (222) that blunted 

BRS resulting in a hypertensive state (193, 196, 223, 224). A hypertensive response in the 

NTS can also occur when µ-opioid receptors form heterodimers specifically with the α2A 

class of α2-adrenoreceptors (α2A-ARs) (197, 225). Pharmacologic studies of SHRs 

demonstrated this hypertensive effect by microinjecting a µ-opioid agonist into the NTS, in 

which the µ-opioid-α2A-AR heterodimers blocked nitric oxide-mediated vasodilation (197). 

Conversely, administration of a µ-opioid antagonist into the NTS prohibits the formation of 

µ-opioid-α2A-AR heterodimers, resulting in a decrease in blood pressure in SHRs but not in 

WKY rats (197, 226). These results in rat models of primary hypertension implicate 

GABABRs and alpha2-adrenoreceptors as prime candidates for mechanistics studies 

examining the neurogenic control of blood pressure in PE.

 Cerebrovascular and Higher Function Neurological Consequences of PE

In addition to the neural control of cardiovascular maladaptations that occur in PE, PE also 

induces deleterious neurological outcomes to affected mothers. Next, we examine the effects 

PE has on brain volume, cerebral hemodynamics, white matter lesions, electrophysiological 

profile, (Table 2) and cognitive and behavioral impairments.
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 Volume Changes in the Brains of Preeclamptic Women During the Peripartum Period

Observed in humans (227), and in rodents (228), healthy gravid females undergo a reduction 

in both gray and white matter volumes of the brain, while the volume of the lateral ventricles 

are increased. These changes in volume in the brain and ventricular spaces begin at the 

moment of placental implantation, peak at term, and slowly reverse months after delivery. 

Moreover, human studies have shown that while the brain decreased in volume, there were 

also concomitant volume increases in the heart, kidneys, thyroid gland, and extracellular 

fluid, with all changes reversing within six months postpartum (227, 228). However, these 

volumetric changes were even more pronounced in human PE patients (227, 228). Women in 

the PE group had significantly smaller brain volumes, with corresponding increases in 

lateral ventricular volumes. A recent study involving a large multiethnic and racially diverse 

sample observed that women with a history of hypertensive pregnancy had smaller brain 

volumes and larger degrees of atrophy decades after the index pregnancy (229). While not a 

sole indicator of neurological dysfunction, these alterations in brain size and volume are 

accompanied by changes in cerebral hemodynamics, electrophysiology, cognition, and 

behavior in human PE patients.

 Cerebral Hemodynamics in Healthy vs. Preeclamptic Gravid Females

In normotensive individuals, cerebral blood flow (CBF) is maintained at ~50 mL per 100 g 

of brain tissue per minute, given that the cerebral perfusion pressure (CPP) and intracranial 

pressure is in the range of 60 to 150 mm Hg (61, 135, 136). When the CPP exceeds 150 mm 

Hg, autoregulation can no longer be maintained and “breakthrough” occurs, such that the 

decrease in cerebrovascular resistance (CVR) results in hyperperfusion, blood brain barrier 

(BBB) disruption, and vasogenic edema (61, 135, 136), which can contribute to neurological 

complications associated with hypertensive encephalopathy and eclampsia (61, 135, 136). 

Significant changes in cerebral hemodynamics have been observed in both clinical (230–

232) and animal model (233) studies of PE. Compared to normotensive pregnant women, PE 

patients exhibit augmented CPP in the middle (231), anterior, and posterior (230) cerebral 

arteries, with accompanying changes in cerebral artery resistance indices (230). An animal 

model PE study confirmed that placental ischemia was the driving force of the CBF 

pathology, and that the increased brain water content was the result of increased BBB 

permeability and smaller diameter cerebral vessels being burdened with increased pressure 

(233). Thus, it is possible that the PE-decreased CVR and hyperperfusion causes the brain to 

be susceptible to vasogenic edema by creating an unfavorable hydrostatic pressure gradient 

when pressure is elevated (61, 135, 136).

 Anatomical Distribution and Volume of White Matter Lesions in PE

White matter lesions (WMLs) are a common neurological corollary that result from the 

altered hemodynamics of PE (5, 234, 235). Diagnostic imaging reveals that these WMLs can 

persist for years after the index pregnancy (22–24, 229). Counterintuitively, the pattern of 

distribution of WMLs associated with preeclampsia differs from that of Posterior Reversible 

Encephalopathy Syndrome (PRES). PRES is more often associated with eclampsia (7, 234). 

The WMLs resulting from PRES tend to predominate in the occipital, parietal, and frontal 

lobes, are hemispheric, and bilaterally symmetric (25). The WMLs seen in PE patients are 
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distributed in the frontal lobes (24), and tend to dominate in cases of early-onset PE (23). 

Interestingly, a relationship exists between WML distribution patterns and the degree of 

sympathetic innervation supplied to the brain regions most at risk for sustaining WMLs 

(236). Myogenic and neurogenic elements comprise cerebral autoregulation, in which proper 

neurogenic function is dependent upon sympathetic innervation (236). In PRES, elevated 

blood pressure weakens myogenic homeostatic mechanisms via vascular endothelial 

dysfunction, causing cerebral autoregulation to rely more upon its neurogenic component 

(236–238). As a result, brain regions with robust sympathetic innervation (e.g. frontal lobe) 

are relatively safeguarded against serum extravasation through vasoconstriction. This 

contrasts with regions such as the occipital lobe, which receives meager sympathetic 

innervation, that are more susceptible to developing WMLs after being exposed to acute 

oscillations in cerebral blood pressure (236, 239).

There is a strong correlation between the presence and distribution of WMLs and poor 

neurological outcome in PE, particularly when accompanied by cerebral edema, intracranial 

hemorrhage, and eclampsia (6, 7). Moreover, during the peripartum period 47% of ischemic 

strokes are the result of severe PE, and these strokes account for 12% of the annual maternal 

death rate globally (240–243). One quarter of PE patients that suffer an ischemic stroke will 

incur permanent brain damage (5). Diagnostic imaging studies of PE patients that sustained 

a cerebrovascular accident demonstrate white matter lesions in the frontal, parietal, insular, 

and temporal lobes in women 10–26 years after being diagnosed with PE or eclampsia (23, 

24).

 Electrophysiological Changes Exhibited by Healthy, Preeclamptic, and Eclamptic Gravid 
Females

The electroencephalogram (EEG) is sensitive enough to distinguish if an intra-partum 

seizure has resulted from eclampsia or if the mother suffered an epileptic seizure during 

labor (244, 245). Furthermore, hypertensive PE and eclamptic women exhibit changes in 

EEG recordings compared to normotensive pregnant and non-pregnant females (244). PE 

and eclamptic women demonstrate both diffuse and focal slowing of delta and theta waves, 

typically localized to the occipital lobe (234, 244–247). Eclamptic women exhibit a 

significantly greater number of spike discharges than PE patients (234, 244–247). 

Collectively, these anatomical, hemodynamic, histopathological, and electrophysiological 

changes that result from PE are manifested in cognitive and behavioral impairments.

 Cognitive and Behavioral Impairments in PE: Associations with Increased Risk of Low 
Fetal Birth Weight, Intrauterine Growth Restriction, and Premature Birth

Maternal cognitive dysfunction is associated with PE (Figure 3) (28–30), where impairment 

severity correlates to the total number of eclamptic seizures (248). A pilot study suggested 

that these self-reported deficits from formerly PE women exhibited auditory-verbal memory 

deficits, impaired learning, and delayed recall, all of which were independent of depression 

or anxiety (29). However, a long-term follow up study found no evidence of neurocognitive 

dysfunction despite the self-reporting of impairments, but the investigators did conclude that 

this increase in self-reported deficits is an indicator for cognitive impairment and/or 

dementia later in life (28). A more recent study concluded that hypertensive pregnancy 
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disorders may be independent risk factors of cognitive decline, after adjusting for 

cardiovascular disease and known cardiovascular disease risk factors (229). Human subjects 

with a mean age of ~61 years, from a large multiracial sample, demonstrated significant 

deficits in processing speed decades after the index pregnancy, even when the results were 

adjusted for abnormal estimated glomerular filtration rate (eGFR) (229).

The indices for depression (31, 249, 250) and anxiety (31, 38, 249) are elevated in PE, while 

the frequency of PTSD is increased for several years after the index pregnancy (37–42). One 

clinical study observed that the risk for postpartum depression was associated not to the 

severity of PE, but rather to its consequences (e.g., perinatal death), even after adjusting for 

the confounding variables of age, ethnicity, and educational level of the mother (250). While 

resilience shielding against psychological stress (251) and psychotherapeutic treatment (252) 

can attenuate the duration of the episode, a previous history of depression coupled with 

experiencing a preeclamptic index pregnancy can significantly contribute to the onset of 

PTSD and exacerbate the anxiety of planning future pregnancies (39). The deleterious 

effects of prenatal maternal psychosocial stressors on fetal development are well 

documented, where increased incidences of maternal depression (34–36) and anxiety (31–

33) are significantly correlated to low fetal birth weight, IUGR, and premature birth (32–36, 

38).

 Conclusion

First reported over a century ago (253), the ischemic placenta was identified as the source of 

pathogenic factors that generate the clinical presentations of PE. Moreover, experiments 

performed in 1940 confirmed that delivery/removal of the ischemic placenta results in full 

regression of the maternal syndrome (9, 254). Current research continues to focus on the 

ischemic placenta by targeting the pathogenic factors that drive angiogenic imbalance (255), 

increases in reactive oxygen species (ROS) (256), and peripheral inflammation (257). These 

approaches are based upon the recommendations of the 2013 Task Force on Hypertension in 

Pregnancy, which concluded that current FDA-approved antihypertensive therapies have no 

effect on the progression of PE, may further exacerbate placental ischemia, and expose both 

the expectant mother and developing fetus to possible deleterious side effects (4).

To be sure, while PE is initiated at the maternal-placental interface, the poor patient 

outcomes are predominantly neurological and occur in the brain. As illustrated in Figure 1, 

the absence of the autonomically-regulated adaptations to pregnancy contributes to the 

development of potential life-threatening neuropathology, including increased BBB 

permeability and brain water content, the appearance of white matter lesions, and the loss of 

cerebrovascular regulation. Finally, the poor outcomes of PE are manifested as executive 

dysfunction, cognitive impairment, depression, anxiety, and PTSD. These behavioral 

outcomes are significantly associated with low fetal birth weight, IUGR, and premature 

birth.

In parallel with the current ischemic placental studies of PE pathophysiology, we have 

proposed that future studies of PE should address the neural control of blood pressure in 

animal models, and how known circulating factors (for example, anti-angiogenic proteins, 
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angII, and inflammatory cytokines) influence activity of brainstem nuclei controlling blood 

pressure. The intent of these proposed studies is to identify mechanistic targets, and to direct 

therapeutic agents against these targets so as to reduce both the neurological outcomes and 

the number of fatal cases of PE.
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Figure 1. 
The neurological consequences and life-threatening implications of PE. The initial 

pathophysiology of PE (gray boxes) originates from abnormal remodeling of the spiral 

arteries at the maternal-placental interface that creates placental ischemia/hypoxia. The 

ischemic placenta releases inflammatory cytokines, reactive oxygen species, and the anti-

angiogenic factor sFlt-1. Furthermore, in the absence of the autonomically regulated 

cardiovascular adaptations to pregnancy, perturbations in cardiovascular physiology (orange 

circles) result. The combination of ischemic placental pathogenic factors and the lack of 

cardiovascular adaptations to pregnancy, lead to cerebrovascular implications (middle red 

box) that include autoregulatory breakthrough, increased BBB permeability, CSF electrolyte 

imbalance, BRS impairment, sympathovagal imbalance. The life-threatening consequences 

(bottom left red box) include white matter lesions, cerebral edema, hemorrhaging infarcts, 

and eclamptic seizures. Executive dysfunction (bottom middle and right red boxes) include 

impaired processing speed that can persist for decades after the index pregnancy, delayed 

recall, and auditory /verbal memory impairments. The behavioral outcomes of depression, 

anxiety, and PTSD are all significantly associated with low fetal birth weight, IUGR, and 

premature birth.
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Figure 2. 
GABABR-mediated disinhibition of the RVLM as a proposed mechanistic target for future 

PE studies. Neurons in the dorsomedial regions of the caudal NTS receive and integrate BR 

afferent inputs. Normally, BR inputs excite these NTS neurons, which in turn, excites the 

caudal ventrolateral medulla (CVLM). The CVLM reduces sympathetic tone using dual 

circuitries. First, the CVLM excites preganglionic parasympathetic neurons in the nucleus 

ambiguus (NA) which projects (via the vagus nerve) to the heart to reduce the heart rate and 

stroke volume. Secondly, the CVLM projects inhibitory (GABAergic) projections to the 

“vasomotor center” RVLM. Inhibition of the RVLM reduces the sympathetic tone to the 

blood vessels, heart, and kidneys. However, in several hypertensive studies, GABABR-

mediated inhibition of these NTS neurons occurs (expanded synapse in figure). In the 

presence of AngII, upregulated expression of GABABR occurs on NTS neurons. 

Presynaptically, GABABRs inhibit N-type (CaV2.2) & P/Q-type (CaV2.1) Ca2+ channels, 

and thus reduce the probability of glutamate release into the synaptic cleft. Postsynaptically, 

GABABRs hyperpolarize NTS neurons by activating inward-rectifying K+ channels, 

inhibiting L-type Ca2+ channels, and producing a voltage-sensitive Mg2+ block of NMDA 

receptors, as well as preventing their phosphosphorylation by protein kinase A (PKA). 
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Hyperpolarization of NTS neurons by GABABRs result in insufficient excitatory input 

(dashed arrows) to the NA and CVLM. Decreased parasympathetic input to the heart via the 

NA results in increases in heart rate and stroke volume. More importantly, the 

hyperpolarized NTS neurons cannot excite the CVLM, resulting in a disinhibition of the 

RVLM. No longer governed by the GABAergic tone from the CVLM, the RVLM increases 

sympathetic tone to the vasculature, heart, and kidneys. Given that PE is characterized by 

enhanced AngII sensitivity, an impaired BR reflex, and sympathetic overexcitation, this 

GABABR-mediated disinhibition of the RVLM is proposed as a mechanistic target for future 

PE studies.
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Figure 3. 
Cognitive and behavioral deficits associated with preeclampsia, and their relationship to fetal 

outcomes. The ischemic placenta releases a myriad of pathogenic factors that lead to 

endothelial dysfunction. The resulting pathophysiology, if left untreated, can develop into 

cerebrovascular abnormalities which include a loss of autoregulation, increase in BBB 

permeability, with a resulting imbalance in CSF electrolyte composition. Collectively, these 

insults to the CNS can manifest into learning and memory deficits that can persist for 

decades after the index pregnancy. Moreover, behavioral outcomes of depression, anxiety, 

and PTSD are significantly associated with low fetal birth weight, IUGR, and preterm birth.
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Table 1

The visceral motor autonomic influence of the cardiovascular physiological adaptations of pregnancy vs. the 

maternal hemodynamics of PE. In healthy pregnancy, higher brain centers direct autonomic neural circuitry to 

produce an expanded blood volume, increased cardiac output, decreased peripheral vascular resistance, and 

biphasic alterations in sympathetic firing. However, in PE, these adaptations are absent, resulting in an 

insufficient blood volume increase, decreased cardiac output, increased peripheral vascular resistance, and 

sympathetic overexcitation.

Autonomic Influence of the Cardiovascular Physiological Adaptations of Pregnancy

Cardiovascular
Physiological
Component

Higher
Brain
Inputs

Key
Neural
Circuitry

Adaptive
Mechanism
of Healthy Pregnancy

Maladaptive
Perturbations
of PE

Blood
Volume

Circumventricular
Organs of the

Lamina Terminals

• PVN and SON 
magnocellular 
neurons excite 
the 
hyperosmotic 
sensitive 
neurons of the 
posterior 
pituitary, which 
secrete 
vasopressin

• Vasopressin 
binding to renal 
V2 receptors 
promotes water 
reabsorption

• Stimulation of 
thirst 
mechanism

• Increase in total 
blood volume 
of 1.2–1.6 liters 
(mostly Plasma)

• Insufficient 
increase (− 200 
mL) in blood 
volume that is 
directly 
correlated to 
low birth 
weight and 
IUGR

Cardiac
Output
(CO)

Rostral Ventro-
lateral medulla

(RVLM)

• RVLM excites 
cardiac 
preganglionc 
sympathetics 
located in the 
IMLCC at 
spinal cord 
levels T1–T4

• Cardiac 
preganglionc 
sympathetic 
neurons exit the 
cord at T1–T4 
via spinal 
nerves

• Cardiac 
preganglionc 
sympathetic 
neurons release 
ACh on cardiac 
postganglionic 
sympathetic 
neurons in 
paravertebral 
ganglia

• Cardiac 
postganglionic 
sympathetics 
project to the 
cardiac 
sinoatrial (SA) 
and 
atrioventricular 
(AV) nodes

• Cardiac 
postganglionic 
sympathetic 
nerves release 
NE that binds to 
β1 adrenergic 
receptors 
expressed on 
the cardiac SA 
and AV nodes

• Increased 
CAMP and 
PKA signaling 
increases CO 
via increases in 
stroke volume, 
contractility, 
and heart rate

• Decreased CO 
with concurrent 
increase in PVR

• Asymmetrical 
remodeling and 
left ventricular 
hypertrophy
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Autonomic Influence of the Cardiovascular Physiological Adaptations of Pregnancy

Cardiovascular
Physiological
Component

Higher
Brain
Inputs

Key
Neural
Circuitry

Adaptive
Mechanism
of Healthy Pregnancy

Maladaptive
Perturbations
of PE

Peripheral
Vascular

Resistance
(PVR)

RVLM • RVLM excites 
preganglionic 
sympathetics 
located in the 
IMLCC at 
spinal cord 
levels T1–L2

• Preganglionc 
sympathetic 
neurons exit the 
cord at T1–L2 
via Spinal 
nerves, and 
release ACh on 
postganglionic 
neurons in 
paravertebral 
ganglia

• Postganglionic 
fibers terminate 
in the tunica 
adventia layer 
of arteries and 
arterioles, and 
release NE

• NE diffuses to 
tunica media to 
bind to α1/α2 

receptors

• Prostacyclin 
counteracts 
AngII 
vasoconstriction

• Nitric oxide 
release 
counteracts 
thromboxane by 
preventing the 
phosphorylation 
of myosin light 
chains in 
vascular smooth 
muscle

• Progesterone, 
relaxin, and 
prostaglandins 
promote 
vasodilation

• Decreased PVR

• Increased PVR 
due to enhanced 
AngII 
Sensitivity

• AT1R-AABs 
and AT1-B2 
heterodimers 
contribute to 
increased AngII 
sensitivity

• Decreased Ang 
1–7 levels fail 
to Counteract 
AngII 
vasoconstriction

Sympatho-
vagal

Balance

Solitary Tract
Nucleus (NTS),
Caudal Ventro-
lateral Medulla

(CVLM), RVLM

• Dorsomedial 
regions of the 
caudal NTS 
receive BR 
inputs via CNs 
IX and X

• Caudal NTS 
projects to and 
excites CVLM

• Based upon BR 
inputs, CVLM 
inhibits RVLM, 
in addition to 
exciting 
preganglionic 
parasympathetic 
inputs to the 
heart in the 
nucleus 
ambiguus (NA)

• Reduced LF:HF 
ratio in 1st 

trimester

• Vagal 
withdrawal and 
dominant 
sympathetic 
tone in 3rd 

trimester 
(increased 
LF:HF ratio)

• LF:HF ratio is 
higher than 
normotensive 
pregnant 
females and 
hypertensive 
non-pregnant 
females

• Impaired 
placental 
perfusion and 
renal blood 
flow

Abbreviations: PVN, paraventricular nucleus; SON, supraoptic nucleus; IUGR, intrauterine growth restriction; IMLCC, intermediolateral cell 
column; T1–T4, thoracic spinal cord levels 1–4; ACh, acetylcholine; NE, norepinephrine; cAMP, cyclic AMP; PKA, protein kinase A; T1–L2, 
thoracic spinal cord levels T1–L2; AT1R-AABs, agonistic autoantibodies to the angiotensin AT1 receptor; AT1-B2 heterodimer, AT1 receptor – 

Bradykinin-2 receptor heterodimer; Ang 1–7, Angiotensin 1–7; CN IX, cranial nerve X (glossopharyngeal nerve); CN X, cranial nerve X (vagus 
nerve); BR, baroreceptor; LF:HF, low frequency to high frequency ratio (index of sympathovagal balance).

Clin Sci (Lond). Author manuscript; available in PMC 2017 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Logue et al. Page 32

Table 2

Alterations in brain volume, cerebral hemodynamics, white matter integrity, and electrophysiological profile 

observed in maternal brains after a preeclamptic index pregnancy. Normal pregnancy is associated with a 

reduction in both gray and matter volumes, and an enlargement of the ventricular spaces, with these changes 

reversing postpartum. However, in preeclampsia this atrophy in brain volume and expansion of the ventricles 

can persist for decades. In moderate to severe case of PE, cerebrovascular autoregulation is lost, resulting in 

increased BBB permeability, brain water content, and an exacerbated risk of vasogenic edema. The pattern and 

distribution pattern of white matter lesions correlate to neurological outcome. The occipital lobe, a region of 

interest in visual disturbances, exhibits electrophysiological changes as a result of preeclampsia.

CNS Component Healthy Pregnancy Preeclampsia

Brain Volume

Gray Matter
Atrophy reverses postpartum Atrophy persists decades after index pregnancy

White Matter

Ventricular Spaces Expansion reverses
postpartum

Enlarged ventricles persist
decades after index pregnancy

Cerebral
Hemodynamics

Cerebrovascular Autoregulation --- Decreased

Cerebral Perfusion Pressure ---

Increased
BBB Permeability ---

Brain Water Content ---

Risk of Vasogenic Edema ---

White
Matter
Lesions
(WMLs)

WML Distribution Pattern --- Strong correlation to neurological
outcome

Sympathetic Innervation ---
Regions with meager innervation
(e.g., occipital lobe) are more
susceptible to WMLs

Electrophysiology EEG --- Diffuse and focal slowing of delta
and theta waves in occipital lobe
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