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Abstract

Skeletal muscle mitochondria are highly dynamic and capable of tremendous expansion to meet 

cellular energetic demands. Such proliferation in mitochondrial mass requires a synchronized 

supply of enzymes and structural phospholipids. While transcriptional regulation of mitochondrial 

enzymes has been extensively studied, there is limited information on how mitochondrial 

membrane lipids are generated in skeletal muscle. Herein we describe how each class of 

phospholipids that constitute mitochondrial membranes are synthesized and/or imported, and 

summarize genetic evidence indicating that membrane phospholipid composition represents a 

significant modulator of skeletal muscle mitochondrial respiratory function. We also discuss how 

skeletal muscle mitochondrial phospholipids may mediate the effect of diet and exercise on 

oxidative metabolism.
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 Linking Aerobic Capacity to Skeletal Muscle Mitochondrial Phospholipids

Low aerobic capacity (see Glossary) is a stronger risk factor for all-cause mortality than 

hypertension, type 2 diabetes, or smoking [1]. Animals bred for low intrinsic maximal 

aerobic capacity have a greater emergence of complex, chronic diseases and reduced 

longevity compared to animals bred for high intrinsic maximal aerobic capacity [2]. Skeletal 

muscle mitochondrial respiration is a major contributor to whole-body respiration and 

overall energy expenditure [3]. Thus, factors that affect skeletal muscle mitochondrial 
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function have the potential to substantially impact health and longevity. For example, 

persistent metabolic overload, via its impact on bioenergetics is implicated in pathogenesis 

of insulin resistance as well as an array of metabolic and cardiovascular disorders [4], and 

loss of muscle function and mass in sarcopenia and cachexia [5].

Skeletal muscle mitochondria demonstrate extraordinary plasticity in response to metabolic 

stressors. Indeed, both aerobic exercise training and short-term high fat diets (HFD) activate 

mitochondrial biogenesis and increase the capacity for substrate oxidation [6, 7]. 

Conversely, physical inactivity decreases mitochondrial enzyme activity [8]. Although a 

great deal of attention has been devoted to deciphering the mechanisms regulating the 

expression of mitochondrial enzymes, less attention has been given to understanding the 

mechanisms regulating mitochondrial membrane phospholipid composition despite its 

recognition as an important determinant of the activity of the electron transport system 
(ETS) complexes, and thus aerobic capacity [9].

This review summarizes the current understanding of the synthesis and function of 

mitochondrial phospholipids, examples of mouse and human genetic defects in enzymes of 

phospholipid biosynthesis on skeletal muscle metabolism (Table 1), and the effect of 

exercise or diet on skeletal muscle mitochondrial phospholipids.

 Composition of Skeletal Muscle Mitochondrial Membranes

The phospholipid profile of skeletal muscle mitochondria is different compared to that of 

other organelles or the sarcolemmal membrane. Skeletal muscle mitochondria consist of 

~40% phosphatidylcholine (PC), ~30% phosphatidylethanolamine (PE), ~15% cardiolipin 

(CL), ~7% phosphatidylinositol (PI), ~3% phosphatidylserine (PS), ~3% lyso-PC, and ~2% 

sphingomyelin [10, 11]. In comparison, liver mitochondria consist of 34–55% PC, 19–36% 

PE, 12–23% CL, 5–8% PI, 1% PS, 1–2% lyso-phospholipids, 1–3% sphingomyelin, and 1–

2% phosphatidic acid (PA) [12]. The large variability in reported data, potentially resulting 

from differences in mitochondrial isolation procedures, makes it difficult to conclude 

whether there are meaningful differences in mitochondrial membrane lipids from muscle 

and liver. It is unknown whether there is a tissue-dependent relationship between membrane 

phospholipid composition and mitochondrial functions.

Mitochondria consist of two phospholipid bilayers including the outer mitochondrial 

membrane (OMM) and the inner mitochondrial membrane (IMM). The OMM is lipid rich, 

smooth, and highly fluid whereas the IMM is protein-rich, extensively folded, and highly 

compartmentalized. Imbedded within the IMM are the ETS enzymes that carry out oxidative 

phosphorylation. The phospholipid composition of the OMM and IMM of skeletal muscle 

mitochondria has not been described, but liver OMM contains 44–59% PC, 20–35% PE, 5–

20% PI, with remaining phospholipid pool consisting of PS, PA, CL, and lyso-phospholipids 

[12, 13]. By contrast, the IMM consists of 38–45% PC, 32–39% PE, 14–23% CL, 2–7% PI, 

and ~3% PS, PG and lysophospholipids. Below we provide summary on the four most 

abundant mitochondrial phospholipids including PC, PE, CL, and PI.
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 Phosphatidylcholine

Despite being the most abundant phospholipid in both the OMM and IMM, PC is not 

synthesized within mitochondria. Instead PC is imported from the circulation or synthesized 

at the endoplasmic reticulum (ER) via the cytidine diphosphate (CDP) choline pathway (or 

Kennedy pathway) (Figure 1A) [14], by the enzyme phosphatidylethanolamine N-

methyltransferase (PEMT) from PE (Figure 1B) [15], by the reversible enzyme 

phosphatidylserine synthase 1 (PSS1) from PS (Figure 1B) [16, 17], or through phospholipid 

remodeling via the Lands cycle [18]. The CDP-choline pathway involves three sequential 

reactions including: 1) choline kinase (CK) catalyzing the synthesis of phosphocholine from 

ATP and choline, 2) CTP:phosphocholine cytidylyltransferase (CT) converting CTP and 

phosphocholine to CDP-choline (rate-limiting step), and 3) diacylglycerol (DAG) molecule 

displacing the cytidine nucleotide to form PC via the enzyme choline phosphotransferase 

(CPT). PEMT tri-methylates PE to form PC, though this enzyme appears to have limited 

activity in skeletal muscle. PSS1-dependent synthesis of PC is also thought to be 

quantitatively minimal. The Land’s cycle only strictly remodels phospholipid fatty acids 

(FAs) catalyzed by phospholipases and lyso-phospholipid acyltransferases. These PC 

molecules are then trafficked into the mitochondria through the mitochondria associated 
membrane (MAM) and between the OMM and IMM through contact sites (Figure 1) [13, 

19, 20].

Although PC biosynthesis can occur through multiple pathways, acquired or inherited 

defects in the CDP-choline pathway appear to be particularly detrimental to mitochondrial 

membrane lipid composition and function. For example, choline deficiency reduces 

membrane PC content in cultured C2C12 muscle cells and leads to increased triglyceride 

accumulation, membrane fragility, and increased susceptibility to apoptosis [21, 22]. Mice 

that lack CKα die during embryogenesis [23]. A defect in CKβ promotes muscular 

dystrophy in mice [24, 25]. Skeletal muscle mitochondria from these mice are swollen and 

have lower membrane potential, suggesting mitochondrial dysfunction. A rare congenital 

muscular dystrophy disease in humans is caused by homozygous or compound heterozygous 

mutations in the CKβ gene [26]. These individuals have reduced skeletal muscle PC, 

abnormally enlarged mitochondria that are located in the periphery of muscle fibers, and 

early-onset muscle wasting, muscle weakness, and hypotonia. Absence of CTα is also 

embryonically lethal [27], whereas loss of CTβ results in viable mice with no apparent effect 

on skeletal muscle phenotype [28]. Excess membrane PC also appears to have detrimental 

effects on mitochondria, as fusing unilamellar vesicles composed of dioleoyl-PC to 

mitochondria from cardiac muscle increases PC content and reduces ETS complex I, II, and 

IV activity [29]. Together, these observations highlight the functional importance of PC in 

regulating skeletal muscle mitochondrial function.

 Phosphatidylethanolamine

PE can be synthesized via the CDP-ethanolamine pathway (Figure 1A) [14], from PS by the 

enzyme phosphatidylserine decarboxylase (PSD) (Figure 1C) [30], or the reversible enzyme 

phosphatidylserine synthase-2 (PSS2) (Figure 1B) [31], and the Land’s cycle via a lyso-PE 

acyltransferases [18], although the latter two routes are generally considered to be 
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quantitatively minor in mammalian muscles. Mitochondrial PE is predominantly synthesized 

by the enzyme PSD, located on the IMM [30, 32]. PE is the second most abundant 

phospholipid found in mitochondria after PC, but because PC is not synthesized within 

mitochondria, PE is the most autonomously synthesized phospholipid in mitochondrial 

membranes. The CDP-ethanolamine pathway or extracellular sources do not appear to 

substantially contribute to mitochondrial PE, but PE synthesized by PSD can be exported out 

of mitochondria [32].

Whole-body deletion of the PSD enzyme is embryonically lethal [30]. Mitochondria from 

embryonic fibroblasts of these mice are swollen, rounded, and fragmented, suggesting 

mitochondrial PE is important for cristae development and the elongated shape of 

mitochondria. In CHO cells, reducing PSD expression promotes increases in mitochondrial 

fission and membrane potential, and decreases the activities of ETS complex I, II, and IV, 

protein stability, supercomplex formation and ATP synthesis [33]. Whole-body ablation of 

the CTP:phosphoethanolamine cytidylyltransferase (ET) enzyme is also embryonically 

lethal [34]. Skeletal muscle-specific ablation of the CDP-ethanolamine pathway (Figure 1A) 

has been induced by targeting ET and choline/ethanolamine phosphotransferase-1 (CEPT1). 

In mice with skeletal muscle-specific knockout of ET, reduction in cellular PE coincided 

with increased skeletal muscle mitochondrial biogenesis and exercise endurance [35]. In 

contrast, muscle-specific deletion of CEPT1 had no apparent effect on skeletal muscle 

mitochondria but promoted muscle weakness [36]. Differences in mitochondrial phenotype 

promoted by deletion of PSD, ET, or CEPT1 demonstrate the complexity of skeletal muscle 

phospholipid metabolism. These differences are at least partly explained by distinct 

subcellular localization of these enzymes.

 Cardiolipin

CL is a tetra-acyl phospholipid that is mostly uniquely present in the IMM. The synthesis of 

CL mainly occurs on the IMM (Figure 1D) by cardiolipin synthase (CLS) and tafazzin [9]. 

CLS catalyzes the synthesis of a nascent CL molecule from phosphatidylglycerol (PG) and 

CDP-diacylglycerol (CDP-DAG). Nascent CL molecules subsequently become trans-

acylated with long-chain FAs by tafazzin to yield the final mature CL. Alternatively to 

tafazzin, nascent CL molecules can be de/re-acylated by phospholipase A2 (PL-A2) and 

monolysocardiolipin acyltransferase-1 (MLCLAT-1). Some studies also suggest that re-

acylation of MLCL can occur at the ER by the enzyme acyl-CoA: lysocardiolipin 

acyltransferase-1 (ALCAT-1) (Figure 1E) [37]. CL has several important functions including 

providing osmotic stability to mitochondrial membranes, maintaining the mitochondrial 

membrane potential, stabilizing ETS enzymatic activity and supercomplexes, Ca2+ 

homeostasis, mitophagy, and apoptosis [38–40].

There are two human genetic defects attributed to enzymes of mitochondrial CL 

metabolism. Barth syndrome is an X-linked genetic disorder that is caused by a mutation in 

the tafazzin gene [41]. These individuals lack mature CL and have abnormal mitochondrial 

cristae and reduced oxidative capacity in heart and skeletal muscle. Patients with Barth 

syndrome experience muscle weakness and exercise intolerance due to impaired skeletal 

muscle O2 extraction and utilization [42]. In a mouse model of Barth syndrome, exercise 
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capacity is reduced [43]. Skeletal muscle from these mice is characterized by reduced 

complex IV activity and lower intracellular pH after electrical stimulation, suggesting 

metabolic abnormalities in response to contraction [44]. Sengers syndrome is an autosomal-

recessive disorder caused by a mutation in the mitochondrial enzyme acylglycerol kinase 

(AGK) [45, 46]. Individuals with Sengers syndrome suffer from congenital cataracts, 

hypertrophic cardiomyopathy, skeletal myopathy, exercise intolerance, and lactic acidosis. It 

is thought that the mutation leads to a loss of AGK enzymatic activity, decreasing the 

synthesis of mitochondrial PA, an important precursor for CL synthesis [46]. Loss of AGK 

also leads to a decreased pyruvate/succinate metabolism and ATP deficiency, consistent with 

mitochondrial dysfunction representing the primary defect.

Increased mitochondrial CL content alone may be sufficient to improve mitochondrial 

respiratory function. Skeletal muscle ATP citrate lyase appears to orchestrate a coordinated 

response to elevate mitochondrial CL synthesis, as muscle-specific overexpression of this 

enzyme results in increased abundance and activities of ETS complexes [47]. However, the 

effect of CL to improve mitochondrial function is likely limited to mature CL. Deletion of 

group VIA or VIB PL-A2 (iPLA2β or iPLA2γ) that would be expected to result in 

accumulation of nascent CL impair skeletal muscle FA oxidation [48, 49]. Indeed, in iPLA2γ 

knockout mice, skeletal muscle mitochondria are larger but contain greater heterogeneity of 

CL subspecies [49]. These findings highlight a critical role that mitochondrial CL plays on 

skeletal muscle oxidative metabolism.

 Phosphatidylinositol

The enzyme PI synthase catalyzes the formation of PI from the substrates CDP-DAG and 

myo-inositol (Figure 1F) [50]. The synthesis of PI is thought to occur predominately on the 

ER membrane (ERM) [51]. The majority of mitochondrial PI is located within the OMM 

[19]. PI often plays a role as a lipid signaling molecule to regulate cellular vesicular 

trafficking and ion channel activity, but the role of PI in mitochondria has not been well 

characterized. Masking or removing PI(4,5)-bisphosphate from the OMM increases 

mitochondrial fission, mitophagy, and fragmentation, suggesting PI may be an important 

signaling molecule for regulating mitochondrial morphology [52].

 Saturation of Phospholipids

Skeletal muscle mitochondrial phospholipids contain lower amounts of polyunsaturated FAs 

(PUFAs) compared with whole muscle phospholipids [11], and slow-twitch soleus muscles 

contain less PUFAs in mitochondrial PC, PE, and CL compared to fast-twitch plantaris 

muscles [10]. The impact that FA saturation of skeletal muscle mitochondrial phospholipids 

has on mitochondrial function is not completely clear, but skeletal muscle mitochondrial 

phospholipid PUFA content appears to be inversely correlated with longevity across multiple 

mammalian species [53, 54]. For example, naked-mole rats live exceptionally long (> 28 

yrs) and have low PUFA-containing mitochondrial phospholipids [55]. The inverse 

relationship between mitochondrial PUFA content and longevity might be due to greater 

propensities for these molecules to become peroxidized in response to reactive oxygen 

species [56, 57]. It has been postulated that these peroxidized phospholipids promote release 
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of mitochondrial cytochrome c to induce apoptosis [58]. However, lifespan is determined by 

complex interactions of health in multiple tissues, and it is unlikely that muscle 

mitochondrial PUFA level can be used as a single reliable predictor of longevity. There are 

mixed reports on whether diet with low PUFA content extends lifespan [59, 60]. Whether 

direct manipulation of skeletal muscle mitochondrial phospholipid FA profile is sufficient to 

alter metabolic health is also unknown.

 Exercise/Inactivity and Skeletal Muscle Mitochondrial Phospholipids

Exercise training increases skeletal muscle aerobic capacity and mitochondrial density [6, 

8]. Biogenesis of mitochondria induced by exercise training would be predicted to require 

additional membrane phospholipid molecules (Figure 2). Likewise, a reduction in 

mitochondrial content with inactivity would require corresponding removal of these lipids. 

Because proliferation or removal of mitochondrial phospholipids must occur while 

maintaining ionic gradients of membranes and activities of ETS enzymes to maintain 

substrate oxidation, it is expected that synthesis/import/export of mitochondrial 

phospholipids occurs in a highly regulated and coordinated fashion. Furthermore, it is 

reasonable to suspect that changes in muscle contractile activity may induce a remodeling of 

mitochondrial membrane phospholipid composition to adapt to changing energetic demands 

imposed by regular exercise or physical inactivity. Indeed, exercise training alters skeletal 

muscle total phospholipid content in rodents and humans [61–64], but very few studies have 

reported responses that occur specifically in mitochondrial phospholipids. Data on total 

cellular phospholipids are informative, but they do not necessarily reflect changes that occur 

in mitochondria. Treadmill exercise training in rats appears to increase mitochondrial PC 

without affecting PE, CL or PI [65], although the findings from this study were not 

conclusive. Because CL is mostly unique to mitochondria, abundance of this molecule has 

been used as a marker for mitochondrial density. Indeed, total CL content increases with 

exercise training in rodents and in humans [47, 66]. Intriguingly, time-course experiments 

suggest that while CL content and ETS enzyme activity increase synchronously in response 

to exercise training, detraining promotes a decrease in total CL content that precedes a 

decrease in ETS enzyme activity [67]. It is unclear whether this represents accelerated 

removal of all classes of phospholipids (PC, PE, PI, etc.) induced by inactivity, or simply an 

observation unique to CL. Additional studies on exercise- or physical-inactivity induced 

adaptation of mitochondrial phospholipids are needed to more rigorously examine how the 

abundance of each class of phospholipids becomes altered, and in turn affect mitochondrial 

respiratory function.

Mechanisms that drive exercise-stimulated generation of skeletal muscle mitochondrial 

membranes are also not clearly understood. Exercise training increases abundance of 

enzymes of CL and PI synthesis [47, 68]. It is not clear how exercise training increases 

synthesis/import of other mitochondrial phospholipids, but such a mechanism(s) likely 

involves an action of peroxisome proliferator-activated receptor gamma coactivator 1α 

(PGC1α). Skeletal muscle-specific overexpression of PGC1α is sufficient to increase PC and 

PE, while its absence results in ablation of exercise-induced increases in cellular PC and PE 

[63, 69]. PGC1α may also play a role in CL synthesis [68], though Akt and AMP-activated 

protein kinase (AMPK) are also likely involved [47, 70].
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 Impact of Diet on Skeletal Muscle Mitochondrial Phospholipids

Short-term HFDs induces skeletal muscle mitochondrial biogenesis [7], an effect that 

presumably coincides with an increase in mitochondrial phospholipid biosynthesis/import. 

Alteration in diet (composition or total caloric intake) also affects cellular processes that 

control mitochondrial quality such as fusion, fission, and mitophagy [71], each requiring 

complex reorganization of mitochondrial membrane phospholipids [72]. There is a 

surprising lack of studies on the effect of diet on mammalian skeletal muscle mitochondrial 

phospholipid composition. Total cellular phospholipids appear to decrease in response to 

HFD, even in the presence of mitochondrial biogenesis [73]. One study reported increased 

saturated and polyunsaturated FAs and decreased monounsaturated FAs in skeletal muscle 

mitochondrial phospholipids, changes that coincided with enhanced capacity of the ETS 

[74]. Another study reported increased cellular CL content with HFD, with increased 

heterogeneity of CL molecular species that coincided with reduction in substrate oxidation 

[49]. It remains unclear how short- or long-term HFDs alter skeletal muscle mitochondrial 

phospholipids, and how such changes may mediate a shift in mitochondrial phenotype 

induced by these interventions.

The effect of PUFA-containing diets on skeletal muscle mitochondrial phospholipids has 

been more extensively studied across various animal models. In trout, a diet with high levels 

of PUFAs leads to modest changes in abundance of skeletal muscle mitochondrial PC and 

PE [75], without having an effect on skeletal muscle O2 consumption or activity of ETS 

complexes [76]. In rats, PUFA-containing diets do not alter head-groups of skeletal muscle 

mitochondrial phospholipids, but increase PUFAs in mitochondrial CL. Mitochondrial CL 

PUFA content is in turn positively correlated with cytochrome c oxidase activity [77]. In 

humans, some studies suggest that PUFA-containing diets induce mitochondrial biogenesis 

[78], while other studies provide evidence that some functions of mitochondrial respiration 

might be improved [79]. In all cases, the effect of a PUFA-containing diet on mammalian 

muscle mitochondrial phospholipids appears to be mostly limited to their FA composition 

and not on the classes of phospholipids. These studies provide evidence for how diet can 

influence skeletal muscle mitochondrial phospholipids and respiratory function.

 Concluding Remarks

Cellular organelles are separated by hydrophilic cytosol, and as such, compositions of 

membrane phospholipids are highly compartmentalized, providing unique physiochemical 

environments ideal for their specific physiological processes. In turn, phospholipid 

molecules are often thermodynamically unfavorable to transport from one organelle to 

another. Thus, subcellular localization of the enzymes of phospholipid biosynthesis must 

have significant biological importance (Figure 1). Although an understanding of the 

biochemistry of phospholipid biosynthesis has come a long way, the complex roles of 

phospholipids in regulating cellular homeostasis remain under appreciated and under 

studied. Thus, a challenge moving forward is to decipher the physiological implications of 

these reactions in the context of the three-dimensional arena of the cell.

Heden et al. Page 7

Trends Endocrinol Metab. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The strongest predictor of all-cause mortality is low aerobic capacity, which is highly 

dependent on skeletal muscle mitochondrial respiration. Across all organisms, activities of 

the respiratory enzymes are modulated by composition of membrane phospholipids in which 

they reside, but there is little information regarding the role that these lipids play in 

modulating skeletal muscle mitochondrial function. In skeletal muscle, lipid fate towards 

oxidation or lipid droplet has been extensively studied, but it is unclear how new membrane 

phospholipids are generated for the highly dynamic and proliferative mitochondria (Figure 

2). Diet and exercise are known stimuli that promote skeletal muscle lipid influx, each 

promoting unique adaptive responses to mitochondrial substrate handling [80]. We speculate 

that some of these adaptive responses are mediated by alteration in composition of 

mitochondrial membrane phospholipids.

Genetic studies in mice and in humans provide evidence that alterations in mitochondrial 

phospholipids can have significant, often detrimental effects on skeletal muscle respiration. 

Altered concentrations of PC, PE, CL, and PI all appear to have unique effects on 

mitochondrial phenotype. The functional importance of these phospholipids extends well 

beyond maintaining the structural integrity of mitochondria, and includes such processes as 

maintaining and regulating membrane potential, substrate transport, Ca2+ homeostasis, 

activity of ETS enzymes, and gross morphological changes to mitochondria (Figure 2). 

Mitochondrial phospholipid desaturation is inversely correlated to lifespan, an effect that 

may be mediated by the ability of the unsaturated fatty acids to become peroxidized. With 

tools such as mass spectrometry, tissue-specific gene-targeting and high resolution 

respirometry, we are now better equipped to study how these phospholipid molecules affect 

mitochondrial function, and aerobic capacity of skeletal muscle (see Outstanding 

Questions).
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 Glossary

Aerobic capacity (VO2max)
Maximal rate of oxygen consumed during all-out aerobic exercise, usually assessed by 

indirect calorimetry during a graded treadmill running test. Aerobic capacity is the best 

predictor of all-cause mortality. The largest contributor of VO2max is mitochondrial 

oxidative phosphorylation in skeletal muscle

Barth syndrome
An X-linked genetic disease caused by a mutation in tafazzin, a cardiolipin (CL) remodeling 

enzyme. This condition results in impaired synthesis of mature CL, an essential membrane 

phospholipid for mitochondrial function. Individuals with Barth syndrome suffer from 

cardiomyopathy, neutropenia, underdeveloped skeletal muscles, muscle weakness, and 

exercise intolerance

Electron transport system (ETS)
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Located within the inner mitochondrial membrane (IMM), ETS consists of five enzyme 

complexes including Complex I (NADH dehydrogenase), Complex II (succinate 

dehydrogenase), Complex III (cytochrome bc1 complex), Complex IV (cytochrome c 

oxidase), and Complex V (ATP Synthase). Redox reactions by complexes I–IV promote the 

transfer of protons across the IMM, creating an electrochemical proton gradient used to 

drive ATP synthesis by complex V

Kennedy Pathway
First identified by Eugene Kennedy in 1956, CDP-choline and CDP ethanolamine pathways 

are the predominant mechanisms by which mammalian cells synthesize phosphatidylcholine 

(PC) and phosphatidylethanolamine (PE)

Mitochondria Associated Membrane (MAM)
The MAM is a specialized compartment of the endoplasmic reticulum (ER) that directly 

interacts with mitochondria. The MAM is the main site of phospholipid import/export 

between the ER and mitochondria

Phospholipids
Cellular membranes are largely composed of phospholipid molecules. The basic 

phospholipid structure consists of a glycerol backbone with the sn-1 and sn-2 positions 

occupied by two fatty acid chains and the sn-3 position occupied by a phosphate head group. 

The phospholipids are classified according to molecules attached to the head group, such as 

PC, PE, phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidylglycerol (PG), and 

CL. Conically-shaped phospholipids such as PE and CL form membrane curvature and are 

more highly concentrated at cristae compared to cylindrically-shaped phospholipids such as 

PC, PS, PG and PI

Sengers syndrome
An autosomal-recessive disorder caused by a mutation in the gene encoding mitochondrial 

acylglycerol kinase (AGK). Clinical manifestations of the disease resemble that of Barth 

syndrome and include cardiomyopathy, congenital cataracts, myopathy, and lactic acidosis. 

The skeletal muscle of these individuals has defects in mitochondrial ATP synthesis

Skeletal Muscle Mitochondrial Biogenesis
Energetic demands such as exercise, promotes proliferation of skeletal muscle mitochondria. 

This process involves a highly coordinated and synchronized supply of mitochondrial 

enzymes and phospholipids. Transcriptional regulation of skeletal muscle mitochondrial 

biogenesis appears to be highly regulated by PGC1α
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Outstanding Questions Box

• What are the mechanisms by which phospholipids are imported into or 

exported out of mitochondria? Do class-specific mechanisms exist for 

phospholipid exchanges between the OMM and IMM, and at MAM?

• Mitochondrial phospholipids modulate the activity of enzymes of the 

ETS. Does exercise training or diet induce a remodeling of existing 

skeletal muscle mitochondrial membranes that results in an alteration in 

respiratory function, capacity or substrate preference?

• What are the mechanisms that mediate membrane phospholipid 

biosynthesis with exercise- or diet-induced skeletal muscle 

mitochondrial biogenesis?

• What is the fate of phospholipids in degraded mitochondria? Are they 

recycled to make new mitochondria or other organelle membranes?
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Trends Box

• The strongest predictor of all-cause mortality is aerobic capacity, which 

is highly dependent on skeletal muscle mitochondrial function.

• Phospholipid composition of mitochondrial membrane phospholipids 

modulates respiration through its effects on the activity of enzymes of 

the electron transport system (ETS), ultrastructure of cristae, and 

signaling for mitophagy, fusion, and fission.

• Clinical and experimental evidence links disruption of skeletal muscle 

mitochondrial phospholipid synthesis to functional defects and 

abnormal morphology, leading to myopathy, exercise intolerance, and 

shortened lifespan.

• The transcriptional control of mitochondrial enzymes has been well 

studied, but there is limited information on mechanisms that regulate 

mitochondrial phospholipid synthesis.
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Figure 1. Biosyntheses and functional relevance of mitochondrial membrane phospholipids
A. PC and PE syntheses by the Kennedy pathway. Choline or ethanolamine undergoes 

sequential reactions with ATP, CTP, and DAG to produce PC or PE. The first two reactions 

are mediated by cytosolic enzymes, while the final steps involving DAG are mediated by 

enzymes that are embedded in the ERM.

B. Phospho-headgroup modifications of PC, PE, and PS mediated by PEMT, PSS1, and 

PSS2. PEMT is located at ERM/MAM, whereas PSS1/PSS2 are located at MAM.

C. Mitochondrial synthesis of PE by PSD at IMM.

D. Mitochondrial CL synthesis by CLS, tafazzin, PL-A2, and MLCLAT-1. Nascent CL 

molecules produced by CLS are subsequently de/re-acylated to form mature and functional 

CL.

E. Small quantity of CL can be synthesized on the ERM by ALCAT-1.

F. PI synthesis by CDS and PI synthase on the ERM. Molecules synthesized in ERM, OMM 

and IMM can be transported at MAM or intra-mitochondrial contact site.

Abbreviations: ALCAT-1 (acyl-CoA: lysocardiolipin acyltransferase-1), c (cytochrome c 

oxidase), CDS (CDP-DAG synthase), CK (choline kinase), CL (cardiolipin), CLS 

(cardiolipin synthase), CPT (CDP-choline phosphotransferase), CT (CTP:phosphocholine 

cytidylyltransferase), DAG (diacylglycerol), Eth (ethanolamine), EK (ethanolamine kinase), 

ERM (endoplasmic reticulum membrane), EPT (CDP-ethanolamine phosphotransferase), 

ET (CTP:phosphoethanolamine cytidylyltransferase), ETS (electron transport system), IMM 

(inner mitochondrial membrane), MAM (mitochondrial associated membrane), M-I (myo-

inositol), MLCLAT-1 (monolysocardiolipin acyltransferase-1), OMM (outer mitochondrial 

membrane), PA (phosphatidic acid), PC (phosphatidylcholine), PE 

(phosphatidylethanolamine), PEMT (phosphatidylethanolamine N-methyltransferase), PG 
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(phosphatidylglycerol), PI (phosphatidylinositol), PL-A2 (phospholipase-A2), PS 

(phosphatidylserine), PSD (phosphatidylserine decarboxylase), PSS1/2 (phosphatidylserine 

synthase 1/2), Q (co-enzyme Q10).
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Figure 2. Membrane phospholipids in the regulation of mitochondrial mass and morphology
1. Mitochondrial biogenesis requires a synchronous supply of enzymes and membrane 

phospholipids while maintaining electrochemical gradient across the IMM.

2. Mitochondrial fusion is in part regulated by phospholipids that reside in the OMM. 

Membrane phospholipid composition immediately around the fusion site is likely rearranged 

for membrane stalk formation.

3. Conversely, mitochondrial fission may be signaled by phospholipids in the OMM. 

Phospholipid composition immediately around the fission site is also likely reorganized.

4. Mitophagy can be promoted by membrane phospholipids in the OMM. Some evidence 

suggests that autophagosomes preferentially target smaller mitochondria produced by 

mitochondrial fission.

5. It is unknown whether phospholipid molecules derived from lysosomal degradation are 

recycled to form new membranes.
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