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Abstract

Dynamic-Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) has been used widely for 

clinical applications. Pharmacokinetic modeling of DCE-MRI data that extracts quantitative 

contrast reagent/tissue-specific model parameters is the most investigated method. One of the 

primary challenges in pharmacokinetic analysis of DCE-MRI data is accurate and reliable 

measurement of the arterial input function (AIF), which is the driving force behind all 

pharmacokinetics. Because of effects such as inflow and partial volume averaging, AIF measured 

from individual arteries sometimes require amplitude scaling for better representation of the blood 

contrast reagent (CR) concentration time-courses. Empirical approaches like blinded AIF 

estimation or reference tissue AIF derivation can be useful and practical, especially when there is 

no clearly visible blood vessel within the imaging field-of-view (FOV). Similarly, these 

approaches generally also require magnitude scaling of the derived AIF time-courses. Since the 

AIF varies among individuals even with the same CR injection protocol and the perfect scaling 

factor for reconstructing the ground truth AIF often remains unknown, variations in estimated 

pharmacokinetic parameters due to varying AIF scaling factors are of special interest. In this work, 

using simulated and real prostate cancer DCE-MRI data, we examined parameter variations 

associated with AIF scaling. Our results show that, for both the fast-exchange-limit (FXL) Tofts 

model and the water exchange sensitized fast-exchange-regime (FXR) model, the commonly fitted 

CR transfer constant (Ktrans) and the extravascular, extracellular volume fraction (ve) scale nearly 

proportionally with the AIF, whereas the FXR-specific unidirectional cellular water efflux rate 

constant, kio, and the CR intravasation rate constant, kep, are both AIF scaling insensitive. This 
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indicates that, for DCE-MRI of prostate cancer and possibly other cancers, kio and kep may be 

more suitable imaging biomarkers for cross-platform, multicenter applications. Data from our 

limited study cohort show that kio correlates with Gleason scores, suggesting that it may be a 

useful biomarker for prostate cancer disease progression monitoring.
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 INTRODUCTION

Dynamic-contrast-enhanced MRI [DCE-MRI] is widely used in the study of cancer and 

other pathologies. It provides high-resolution anatomical [lesion size, shape], microvascular 

[tumor blood volume, capillary permeability] [1–6] and, potentially metabolic [Na+,K+ 

ATPase activity] information [7,8]. The quantitative estimation of DCE-MRI 

pharmacokinetic parameters requires knowledge of the time-dependences of the plasma and 

interstitial compartmental contrast reagent (CR) concentrations, [CRp](t) and [CRo](t), 

respectively. The former is commonly referred to as the arterial input function [AIF]. In 

practice, direct determination of either concentration time-course is not straightforward. 

Classical methods using radiotracer-labeled CR require frequent blood sampling for [CRp](t) 

and sacrificial autoradiography for [CRo](t) determinations [9,10]. These make them 

cumbersome and impossible, respectively, for human studies. Furthermore, blood sampling 

is usually from a large vessel, not a capillary adjacent to the tissue of interest, and 

autoradiographic estimation of the tissue interstitial distribution volume has considerable 

systematic uncertainty.

Thus, the common practice is to estimate [CRp](t) and [CRo](t) noninvasively, from the 

DCE-MRI data themselves. However, the accuracy of AIF derived from DCE-MRI data can 

be influenced by several inherent experimental conditions, such as: 1) partial volume effect 

(signal from the image voxel, ideally containing only blood, is contaminated with signal 

from other non-blood tissues); 2) in-flow effect (signals generated by water molecules in the 

blood that were originally outside of the imaging volume flow in during signal acquisition 

and impact the final “blood” signal detected); 3) flow-profile dependency (when vessel 

cross-section contains more than one image voxel, measured voxel blood CR concentration 

is flow-profile dependent); and 4) no visible vessel in the imaging field-of-view (FOV). 
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These factors can cause errors in the AIF amplitudes computed directly from blood vessel 

signals, and a scaling factor may be applied to reduce the errors [5,6]. Alternative methods 

mitigating the challenges of AIF quantification from blood signal have been proposed. 

Examples of these include reference tissue methods [11–13] and blinded AIF estimation 

[14–16]. Unfortunately, these approaches also require AIF amplitude scaling after derivation 

of the AIF time-course curves. The scaling factor (β) is often derived from literature reported 

tissue properties and generally does not account for individual variations. The AIF scaling 

uncertainties propagate to errors in the derived DCE-MRI pharmacokinetic modeling 

parameters. Thus, it is important to understand the effect of AIF scaling variations on 

modeled parameter values.

In this work, simulated DCE-MRI time-courses based on prostate data were subjected to 

repeated model fittings with the β of an AIF being the only variable. Repeated fittings of 

actual prostate region-of-interest (ROI) data were also performed to confirm the simulation 

findings. We used both the standard Tofts model and the Shutter-Speed model for data 

fitting. The former ignores intercompartmental water exchange (equivalent to assuming 

infinitely fast water exchange kinetics [the fast-exchange-limit (FXL)] pertains throughout 

the CR time-course), while the latter accounts for the effects of intercompartmental water 

exchange. The FXR (fast-exchange-regime) version of the Shutter-Speed Paradigm (SSP) 

was used in this study with the parameter kio (unidirectional equilibrium cellular water 

efflux rate constant) accounting for transcytolemmal water exchange. Both models return the 

Ktrans (rate constant for plasma/interstitium contrast agent transfer) and ve (extravascular, 

extracellular volume fraction) parameters. When comparing all results with the common 

practice (β=1.0; i.e., using the AIFs determined from reported methods as the reference), our 

results show that the commonly modeled Ktrans and ve values scale nearly proportionally 

with β, indicating that cautions should be used comparing Ktrans and ve values among 

different subjects or across different platforms. By contrast, the kep and kio (SSP specific) 

variations are much smaller in response to the same β variations. In addition, we show that 

kio values correlate with Gleason scores in our limited data set. This indicates that the AIF-

scaling insensitive kio may offer a quantitative way for prostate cancer disease 

aggressiveness detection or monitoring.

 MATERIAL and METHODS

Prostate DCE-MRI data were acquired from 13 subjects under a study protocol approved by 

the Portland VA Medical Center (PVAMC) and Oregon Health & Science University 

(OHSU) institutional review boards (IRBs). Each subject was referred for biopsy as standard 

care and volunteered for our DCE-MRI protocol before that procedure occurred. A prior 

biopsy was an exclusion criterion. All participants gave written informed consent. 

Additional details are reported in [5,6].

 MRI

All prostate MRI data were acquired with a Siemens TIM Trio (3T) system. RF transmission 

utilized the instrument whole body coil, while reception employed a combination of flexible 

body and spine matrix coil arrays. Multi-slice T2-weighted images (Turbo Spin Echo, 

Li et al. Page 3

J Magn Reson. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TR/TE/FA, 5000 ms/102 ms/90°) were acquired for anatomic contrast and ROI selection [a 

320*180*16 matrix size and 360*360 mm2 transverse FOV resulted in nominal (1.1)2 mm2 

in-plane resolution: slice thickness, 3 or 3.2 mm]. A near proton density (PD) image of the 

prostate gland was obtained using a 3D fast low-angle shot (FLASH) pulse sequence with a 

256*144*16 matrix size and a 360*203 mm2 transverse FOV, resulting in a nominal in-plane 

resolution of (1.4)2 mm2. Other parameters were: slice thickness, 3 or 3.2 mm; TR/TE/FA, 

200 ms/1.56 ms/8°. For DCE-MRI, the same FLASH sequence was run with the only 

differences being TR = 5.0 ms and a 15° flip angle, which yielded a 6.28 s imaging inter-

sampling interval. The total DCE-MRI acquisition time was ten and a half minutes. A bolus 

of 0.1 mmol/kg Prohance (Bracco, Inc.) was administered in an antecubital vein ~ 38 s after 

commencing the DCE-MRI acquisition. It was delivered in 5 to 10 s, at 3.0 mL/s, followed 

by a 20 mL saline flush.

 Prostate Biopsy and Pathology

Subsequent to the DCE-MRI acquisition, each subject underwent a standard ten core 

“geographic” prostate biopsy procedure performed using (exclusively) ultrasound guidance; 

i.e., with no MRI input. Pathology examinations of biopsy core specimen fragments revealed 

Gleason scores ranging from 6 to 8 for five of the subjects. No malignancy was found for the 

other eight subjects.

 Data Preparation

For DCE-MRI analysis, one ROI was selected for each of the 13 subjects [6] resulting in five 

malignant and eight benign ROI DCE-MRI time-courses. Since the precise biopsy track 

positions were not recorded, the spatial relationships between the DCE-MRI ROIs and the 

biopsy loci were restricted to only unilaterality. The experimental AIF was determined from 

voxels within a femoral artery visible in the FOV [6]. An individual AIF time-course was 

measureable for each subject except one, due to severe motion during the DCE acquisition in 

the latter case. A population-averaged AIF, based on the individual AIFs from six other 

subjects, was used for that individual.

 Pharmacokinetic Analyses

In DCE-MRI, ΔR1t(t) describes the time-course of the ΔR1t [≡ R1t(t) - R1t(0)] value during 

the bolus CR passage; where R1t(t) is the measured tissue 1H2O longitudinal relaxation rate 

constant time-course and R1t(0) denotes the value prior to CR administration. Individual 

R1t(0) values were calculated numerically with the Gradient Recalled Echo (GRE) signal 

expression (Eq. 7) using the average of DCE baseline images and that of the near PD-

weighted image. With R1t(0) determined, the R1t(t) time-course can be calculated from the 

DCE-MRI signal time-course using the signal mean from DCE baseline for PD computation. 

To enhance the kio detection capability, especially for the fast wash-out malignant lesion 

cases, only the first 70 time points (7.3 min total) were included in the model fitting for the 

prostate data. One critical step in quantitative DCE-MRI data analysis is to relate the 

measured ΔR1t(t) time-course to the time-course of the interstitial CR concentration time-

course, [CRo](t).
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 The Shutter-Speed Paradigm—Because most water is inside cells but the CR visits at 

most the interstitial space, the kinetics of the equilibrium exchange of water molecules 

across the cell membranes must be taken into account. In this study we used the fast-

exchange-regime (FXR)-allowed shutter-speed paradigm model that takes into account this 

exchange but assumes a single exponential recovery for the 1H2O signal [5,17,18]. This is 

expressed in

(1)

where R1i and R1o0 are, respectively, the longitudinal relaxation rate constants for the intra- 

and extracellular 1H2O signals (in the absence of exchange and CR); r1o is the interstitial CR 

relaxivity; kio is the unidirectional equilibrium cellular water efflux rate constant (reciprocal 

of the mean intracellular water lifetime, τi); and vi and ve are the respective intra- and 

extracellular volume fractions. The absolute difference in R1 between the extra- and intra-

cellular space (|R1o–R1i|) is defined as the “shutter-speed”, τ1
−1 [≡ κ1] [17].

Using the Kety-Schmitt pharmacokinetic rate law, the interstitial CR concentration time 

course, [CRo](t), is expressed by Equation (2), where Ktrans is the CR transfer rate constant

(2)

and [CRp](t), the blood plasma [CR] time-course, is the AIF. The MRI experimentally 

determined AIF can be expressed as in Equation (3):

(3)

where R1b(t) is the capillary blood 1H2O R1 time-course, R1b(0) is the pre-CR blood R1, r1p 

is the longitudinal relaxivity for CR in blood plasma and fixed at a literature value of 3.8 

mM−1s−1 [19], and hv (fixed at 0.45) is the microvascular hematocrit.

To systematically account for AIF amplitude scaling, we rewrite Eq. (2) to include the time-

independent AIF scaling factor, β, as Equation (4):

(4)

where β is a time-independent scaling factor that quantifies AIF amplitude variations.
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The differential form of Eq. (4) is given in Equation (5).

(5)

It is important to point out that there is no “extra” β term in any pharmacokinetic model 

equations. Here, the β factor is added for the purpose of simulating AIF scaling 

uncertainties, with β = 1.0 representing the “ground truth” AIF. The use of β makes it easier 

to illustrate parameter changes associated with AIF scaling. That is “β·[CRp]” is the actual 

AIF used in each fitting. In Eq. (5), the Ktrans/ve term appearing in Eq. (4) is replaced by kep 

according to its definition.

Standard mathematical approach to solve an inhomogeneous first-order differential equation 

like Eq. (5) starts with solving its associated homogenous equation (i. e., Eq. (5) with the 

right-hand-side set to zero, or [CRp] =0). This immediately reveals that the rate constant 

(kep) is not impulse function ([CRp]) dependent. Specific to DCE-MRI, as long as the curve 

shape of [CRp](t) doesn’t change, then kep is independent of β. This observation is 

associated with the Kety-Schmitt pharmacokinetic rate law and thus applies to both the FXL 

and FXR models used in this study. In practice, since the AIFs are often determined 

numerically without an analytical expression, there might be small variations of kep 

following a β change.

 The Tracer Paradigm—Very often in the literature the MRI CR is treated as a tracer 

(i.e., as if it’s directly detected) and, when the blood 1H2O contribution to the tissue signal is 

negligible, the tissue R1 change, ΔR1t(t), can be expressed using [CRo](t), as in Equation (6):

(6)

which is simpler than Eq. (1). However, Eq. (6) implies a linear [CRo]-dependence of ΔR1t, 

which is experimentally untrue [20,21]. It further implies that equilibrium transcytolemmal 

water exchange kinetics are effectively infinitely fast [kio → ∞] [21]. This is usually an 

incorrect over-simplification. The direct consequences of using tracer paradigm (TP) models 

are systematic errors in the estimated pharmacokinetic parameters such as Ktrans [example 

below] and ve [1–3,5–7]. Nevertheless, since tracer models find common use in the literature 

because of their relative simplicity, we also used one, the standard, fast-exchange-limit 

(FXL)-constrained Tofts tracer model [22], in addition to the FXR-SSP model in assessing 

the effects of AIF scaling uncertainty. The kio parameter is unique to the SSP models and 

cannot be accessed by any tracer paradigm model because such models effectively assume 

kio to approach infinity [kio → ∞]. Mathematically, Eq. (1) simplifies to the FXL Eq. (6) 

when κ1 → 0 [21]. Thus, the SSP-FXR automatically simplifies to the Tofts FXL model if 

κ1 (the shutter-speed) never rises sufficiently during a DCE time-course. However, this does 

not mean that kio → ∞, only that kio is indeterminate.
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 Simulations

The [CRo] expression in Eq. (4) was used by both the SSP and TP approaches. For a given 

Ktrans, ve, and kio (SSP only) parameter set, R1t(t) time courses are influenced by AIF 

scaling through the associated input function β·[CRp], where [CRp] (the reference or “true” 

AIF when β = 1.0) used for the simulation was based on our experimental measurements and 

further smoothed to mimic a well-determined AIF (see Figure 1A). Ktrans, ve, and kio values 

were selected based on those from the prostate data. Unless otherwise stated, we simulated 

R1t time-courses using the conventional β =1.0. After the R1t calculation, Equation (7) 

suitable for gradient-echo sequence was used to calculate the signal time-courses.

[7]

Here, S0 is proportional to the equilibrium magnetization, TR is the pulse sequence 

repetition time, α the read pulse flip angle. Noiseless signal time-courses as well as those 

with added Gaussian white noise were both used to investigate parameter variations under 

different β values.

Simulated time-courses were fitted with different AIFs defined as β·[CRp]. Eq. (4) suggests 

that β interacts inversely with Ktrans and proportionately with ve in data fitting. To investigate 

parameter variations caused by different AIF scaling, simulations were carried out by fitting 

pharmacokinetic parameters with β fixed at 13 different values from 0.8 to 2.0 with a step-

size of 0.1. A larger than 100% β variation was included for model fittings so that parameter 

trends in response to AIF scaling can be better observed.

Fitting the simulated time-courses yielded Ktrans, ve, and τi (≡ 1/kio, SSP only) values. In 

addition, kep [≡ Ktrans/ve] [22], and the intracellular volume fraction vi [≡ 1 – ve] values 

were determined. While ve defines the CR accessible volume fraction, the vi parameter 

equals the cell density [ρ] and mean individual cell volume (<V>) product [ρ •<V>], within 

the ROI or voxel [7].

To avoid local minima in each optimization procedure, 20 different initial guess parameter 

value sets were used for each β step and each model. Parameters from the best fitting of the 

20 trials for each combination were then selected as the fitted results. In addition, two-

dimensional grid searches [3,23] were also performed to investigate the Ktrans-ve parameter 

space to gain insights into the fitting approaches and to provide assurance in avoiding 

potential local minima during fitting.

 RESULTS

Figure 1A plots the averaged blood plasma concentration, [CRp], time-course derived from 

five individual AIFs [6]. Under the condition of β =1.3 (i.e., 130% the AIF amplitude as 

show in 1A), the solid curve in 1B plots the ΔR1(t) time-course predicted by the shutter-

speed approach for kep = 1.2 min−1, vi = 0.70, and kio = 1.7 s−1 [Ktrans = 0.36 min−1, ve = 

0.30, τi = 0.60s]. The 1B dashed curve shows the prediction for kep = 1.1 min−1, vi = 0.68, 
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and kio = 1.7 s−1 [Ktrans = 0.35 min−1, ve = 0.32, τi = 0.60 s]. As expected, the ΔR1(t) wash-

out portion is rather sensitive to an only 8% kep reduction [there is also a 3% vi reduction]. 

Also as expected, the simulated ΔR1(t) time-courses with either parameter set are lower than 

the 1B curves when β=1.0 (using the AIF in 1A; not shown).

To investigate Ktrans and ve (and thus kep and vi) parameter sensitivity to AIF scaling, a grid 

search [23] rather than a non-linear data fitting was selected as the first step of data analysis. 

Although the former can be tedious and slow, a large searching range can often provide the 

global solution and avoid local minima that could trap a non-linear optimization.

For demonstration, Figure 2A shows a search of the Ktrans, ve error surface. Using the Fig. 

1A AIF, and the parameter set of Ktrans = 0.36 min−1, ve = 0.30, and kio = 1.7 s−1, the 

reference R1t and its related reference signal time-course, Sref(t), were generated. Then, the 

simulated R1(t) for each grid point (Ktrans,ve coordinate pair; kio = 1.7 s−1) and Sgrid(t) time-

course was calculated and this was compared with Sref(t). The constant difference square 

sum {χ2 = Σt[Sref(t) – Sgrid(t)]2 [3]} value contours decrease to a global minimum at the 

coordinates Ktrans = 0.36 min−1 and ve =0.30 (kep = 1.2 min−1), matching the inputs used in 

generating the reference curve as expected. The contour lines measure the χ2 value 

(“goodness”) of comparisons with the reference curve of different model curves calculated 

for the parameter values given by the coordinates [3]. The χ2 value decreases as one moves 

on the surface towards the closed contours. Figure 2B shows the best fitted kep values 

determined at different β. A near constant kep [1.2 min−1] is observed over the range of β 

tested. [Slight kep deviations are most likely due to the finite numbers of Ktrans and ve steps 

(500–600) used in the grid search.]

Using shutter-speed simulated data and analyses, Figure 3A shows Ktrans, ve, and τi changes 

associated with a 30% AIF scaling change. The reference parameter values (cross-hatched 

bars) are: Ktrans = 0.36 min−1, ve = 0.25, and τi = 0.45 s. Monte Carlo simulations (using 

Fig. 1A AIF as the β =1.0 reference) were used to estimate Ktrans, ve, and τi accuracy (mean) 

and precision (SD). 400 fittings were performed with random Gaussian noise (SNR = 10 at 

baseline, slightly better than the median baseline voxel SNR of 5.3 estimated from the 

prostate ROI slices of all subjects) added to the simulated time-course each time, and each 

fitting started with a different initial guess parameter value set. Mean and SD values of kep 

and kio derived from the 3A fittings are plotted in Figure 3B. Fig. 3A clearly shows that 

Ktrans and ve decrease proportionally (~ 30%) with the 30% β increase, while the τi change 

is negligibly small (< 3%), well below the standard deviation (~10%) associated with the 

data SNR. Defined as Ktrans/ve, kep is insensitive to β variation (Fig. 3B) as expected. Being 

the τi reciprocal, the rate constant kio has a similar relative measurement error as τi. Except 

for having different numerical means, vi and ve have the same SD values because vi ≡1-ve. 

That is, error propagation for both ve and vi is exactly the same. Results of kio (or τi) and kep 

being less sensitive to AIF scaling variations indicate that the values of these parameters are 

likely to be more consistent despite difficulties in accurate AIF determination in many 

experimental conditions. We use results from real prostate ROI data in the following figures 

to illustrate additional aspects also seen with simulations. This provides some validations of 

the simulation results and adds insights on actual data processing when AIF scaling 

uncertainty plays a factor in pharmacokinetic model parameters.
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Figure 4A shows representative ROI Ktrans variations associated with AIF scaling 

uncertainty, for malignant (black curves) and benign (gray curves) tissues. The individual 

AIF (= β·[CRp]) was used for fitting at each β value, mimicking AIF scaling uncertainty seen 

in experimental AIF derivation. Each ROI time-course was fitted with shutter-speed (solid 

curves) and tracer (dashed curves) analyses. The best fitted values returned from the 20 

different initial parameter guess sets are plotted. The Ktrans values are rather AIF scaling 

dependent, decreasing with increasing β. Similar findings are observed for the ve parameter 

(Figure 4B). Both Ktrans and ve are the most commonly reported parameters in 

pharmacokinetic model fitting.

The simulated results in Fig. 2B indicate that kep appears to be independent of β scaling. 

This is confirmed by results from real prostate data (Figure 5). Averaged kep values of eight 

benign and five malignant ROIs (with standard errors), respectively, are plotted versus β 

values used in this study. For each signal-averaged ROI at each β step, 20 fittings with 

different initial guess each time were performed and the one with the smallest fitting error 

was then selected for that ROI. The results from shutter-speed analyses are plotted as square 

points and those from tracer analyses as circular points. The malignant ROIs are represented 

by black color vs. gray color for the benign group. Regardless of the analysis paradigm and 

tissue type, the kep within each analysis remains nearly constant at different β values, 

indicating kep is basically unaffected by AIF scaling uncertainty. The apparent malignant/

benign discrimination [kep(M) – kep(B)] is increased with the shutter-speed paradigm 

(17,18) [double-headed vertical arrows in Fig. 5]. This trend is shown because when 

compared to their FXL counterparts, kep values determined by the FXR often increase for 

malignant cases and decrease for benign cases. Although this systematic behavior may not 

be covered by generic statistical tools, we report the Hedges’ g effect size for malignant/

benign separation by kep to provide a primitive numerical comparison. The computed 

Hedges’ g values for kep mean differences are 1.15 (95% CI: 0.24, 2.07) and 0.82 (95% CI: 

−0.06, 1.70) for the FXL and FXR approaches, respectively. Future investigation with larger 

subject cohort is needed to address this issue more thoroughly.

Figure 6A shows a portion of an axial T2-weighted image of a 66 year old subject with 

prostate malignancy. Figures 6B–6D show zoomed pharmacokinetic parametric maps (kio, 

kep, and vi, respectively) of the lesion area within the prostate, which is generally indicated 

by the yellow rectangle in Fig. 6a. The black borders in Figs. 6B–6D provide some contrast 

to the generally cold color of normal-appearing glandular tissue within the rectangular ROI 

encompassing the lesion. The parametric maps were obtained as the best results from 30 

fittings with different initial guess sets. Elevated kio values are seen in part of the lesion, 

possibly indicating increased cellular metabolic activity [7] associated with malignancy. 

Noticeably higher kep values reflecting increased vascular leakage are seen only in the 

anterior portion within the lesion ROI. Besides being on the “warm” portion of the color 

map (often brighter contrast), vi is directly proportional to cell density.

In Figure 7, lesion ROI-averaged in vivo SSP-only kio values are plotted against the 

independently-obtained ex vivo Gleason scores for the five malignant cases. Each voxel 

within each ROI was fitted 30 times with different initial guess values using both the shutter-

speed paradigm and tracer paradigm. The best fitted results from each paradigm were 
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recorded. Then, the commonly used model selection approach, the Akaike information 

criterion (AIC), was used to determine which model better described the specific voxel time-

course. In Figure 7, only those voxels favored by AIC for the shutter-speed paradigm were 

included in the averaging calculation [the tracer paradigm leaves kio indeterminate]. Using 

the lesion ROI (indicated by the yellow rectangle) from Figure 6 as an example, kio was 

averaged for 36 out of 38 voxels. The numbers of AIC-favored over the total ROI voxels for 

the remaining four malignant cases are: 23/56, 13/16, 8/11, and 20/28. A clear trend of 

increasing kio with Gleason score (Spearman’s correlation coefficient, r = 0.91; p = 0.03) is 

observed (the empirical blue dashed curve is intended only to guide the eye). The kio error 

bars show standard errors for the analysis of each small lesion. The vertical error bars also 

reflect our unknown registration of MRI ROI and biopsy locus. That is, without clear 

knowledge of the latter, voxels from benign tissues can be accidentally included in the lesion 

ROIs. As CR extravasation is generally lower in non-cancerous tissue, kio uncertainty 

increases because of decreased shutter speed [17], which results in larger error bar length 

compared to an ROI containing more malignant tissue. The horizontal error bars show 

calculated differences between clinical Gleason scores reported in another study, and the 

weighted mean Gleason scores given by an expert reviewer [24]. These bars partially 

illustrate the uncertainties in Gleason pattern reporting (e.g., if no reported Gleason scores 

differ by two categorical points or larger, a 0.1 bar length then represents 10% of the cases 

having different Gleason scores). Other fitted parameter values from the same patient group 

were reported previously [6]. None of the fitted Ktrans and ve values from either paradigm 

showed a clear correlation with Gleason scores.

 DISCUSSION

Accurate AIF quantification has been one of the primary challenges in quantitative 

pharmacokinetic analysis of DCE-MRI data. Many AIF derivation methods [5,6,11–16] 

require an AIF amplitude scaling in the process. Since the ground truth of the scaling factor 

is often unknown (for example, using muscle as a reference tissue for AIF scaling runs into 

the problem of varying pharmacokinetic properties of the muscle itself under different 

physiological conditions), this makes investigation of AIF scaling effects important. By 

explicitly including an AIF scaling factor (β) into the pharmacokinetic modeling, this work 

investigated the pharmacokinetic model parameter variations associated with AIF scaling 

uncertainty. Our results show that the kep and the SSP-specific kio parameters are insensitive 

to AIF scaling. In a theoretical scenario where kep is truly time and [CR] independent, its 

insensitivity to [CRp] scaling can be directly predicted from Eq. (5). That is, kep insensitivity 

to AIF scaling is a direct result of the Kety-Schmitt pharmacokinetic rate law. This is the 

reason that insensitivity of kep to AIF scaling is observed for both the TP and the SSP 

approaches [Fig. 5]. On the other hand, the relative insensitivity of the SSP-specific kio to 

AIF scaling is the result of multiple factors. First, kio quantifies water exchange, which is a 

separate process independent of CR pharmacokinetics; second, the interstitial CR 

concentration, [CRo], generally experiences a more slow-varying temporal feature and 

reaches its maximum at a much later time when compared with [CRp] (i.e., [CRo] is less 

sensitive to [CRp] first pass); third, kio does not appear with [CRp] in the same term in a 

pharmacokinetic equation or within a [CRp] expression. One the other hand, a larger [CRp] 
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helps reduce kio uncertainty in CR-extravasating tissues by generating a larger [CRo] and 

thus a larger shutter speed [17].

Traditionally, the most common parameters extracted from quantitative DCE-MRI are Ktrans 

and ve. We found these parameters to be quite sensitive to the AIF scaling factor β over a 

range from 0.8 to 2.0 for both simulated (Fig. 3) and real prostate ROI data (Fig. 4). This 

may partially explain the no statistical difference findings [25,26] reported in literature when 

comparing pharmacokinetic parameters (Ktrans and ve) derived from population averaged 

AIFs vs. individually measured AIFs -- it is possible that the errors (specially AIF scaling 

uncertainty) in individually measured AIFs propagate to the fitted Ktrans and ve parameters 

and thus negatively impact their precisions as quantitative imaging biomarkers. Thus, when 

AIF amplitude uncertainty is high, the kio and kep parameters are more robust DCE-MRI 

biomarkers for their relative AIF-scaling insensitivity. As long as the AIF time-course curve 

shape can be well captured, kio and kep should be the more reproducible parameters than 

Ktrans and ve. With the recent discovery that kio is a measure of on-going Na+,K+-ATPase 

turnover [7], the capability to quantify kio using the SSP model potentially ushers DCE-MRI 

into the emerging field of high-resolution metabolic imaging [8], in addition to its well-

known function of quantifying microvascular properties. The parameter kep could be a better 

measure of capillary CR permeation than Ktrans. The parameter Ktrans usually well-

approximates the permeability coefficient capillary surface area product, PCR
†•S [8,27]. 

Thus, it can have a significant contribution from the voxel blood volume surface area. In 

addition, Ktrans magnitude closely tracks the initial slope of the tissue enhancement time-

course, a feature that describes similar characteristics of vb•[CRp] (vb is the blood volume). 

This is one reason that Ktrans accuracy depends heavily on AIF. On the other hand, kep 

quantification depends more on the washout period of the tissue enhancement time-course. 

As shown in Figure 1B, a 10% kep change causes noticeable difference in only the washout 

phase. In this case, the Ktrans difference is relatively small (~ 3 %) as the rising phase of the 

curves are nearly indistinguishable.

Figure 7 demonstrates the tumor grading potential of the new kio biomarker for prostate 

cancer. Despite the kio and Gleason score uncertainties shown by the error bars, the data 

show a strong correlation: kio increases “hyperbolically” with Gleason scores above 5, the 

traditional malignancy threshold. The smooth curve drawn through the points serves only to 

guide the eye. Therefore, the kio parameter may be a useful noninvasive imaging biomarker 

that can be potentially used to reduce the number of biopsies performed in current clinical 

practice.

It is worth noting that even though accurate AIF quantification remains challenging, 

especially during the CR first pass, an AIF scaling error of less than 30% can be managed 

from the washout phase, taking into account the total blood volume and CR elimination rate. 

It is important to point out that the precision in kio quantification is better when CR 

extravasation is extensive (large Ktrans) [7]. To insure kio accuracy, we used 30 initial guess 

sets for each voxel during fitting, and limited our kio report to voxels with AIC statistics 

favoring the shutter-speed paradigm.
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The uncertainty in [CRo](t) quantification (because of AIF uncertainty) affects kio and vi 

accuracy, and the maximum [CRo] magnitude affects kio precision [6,7]. It has recently been 

suggested it might be possible to determine kio and vi without the use of CR [28]. Though 

this is not yet established, it would preclude parametric errors due to AIF uncertainty. 

However, the Ktrans and kep parameters are not accessible without the use of CR.

With faster imaging speed as a result of ever improving MRI scanner hardware and software, 

DCE-MRI data acquisition can achieve improved AIF temporal resolution and better tissue 

curve-shape quantifications. Still, intrinsic challenges, like the in-flow effect, associated with 

AIF quantification remain. These mostly affect the AIF magnitude. This study only 

examines the effects of this primary AIF scaling error. Implications of other AIF 

uncertainties on pharmacokinetic parameters will require separate investigation.

Using a mouse model, a recent study [29] utilizing X-ray fluorescence microscopy showed 

that gadodiamide (Omniscan) enters normal murine prostatic epithelia and lumens. Although 

it remains unclear whether CR also enters some tumor cells, this new finding may require to 

be accounted for with an additional compartment in prostate DCE-MRI pharmacokinetic 

modeling. It is unclear at this point whether the CR concentration differences between the 

prostatic epithelia, the lumens, and the EES are large enough to be separately resolved. Still, 

the new finding may partially explain the large ve values reported in prostate DCE-MRI 

literature.

It is interesting to point out that for extracellular Gadolinium based CRs with appreciable 

extravasation, CR molecules will present in blood plasma and extravascular extracellular 

space (EES) after a bolus IV injection. The associated compartment-specific relaxivities for 

the EES and blood plasma are r1o and r1p, respectively. In most DCE-MRI studies it is 

generally assumed that r1o and r1p are numerically equal. However, there are some indirect 

evidences suggesting potential differences [30,31] between the two. Under the condition that 

r1o and r1p are both time-and [CR]-independent, the effect of unequal r1o and r1p on 

pharmacokinetic model parameter estimations is very similar to that of DCE data modeled 

under different AIF scaling factors, as was undertaken in this study. The similarity is shown 

in the APPENDIX.

The data studied here have also been used in two earlier reports [6, 5]. The former showed 

the shutter-speed Ktrans and kep as well as the ΔKtrans [≡ Ktrans(FXR) - Ktrans(FXL)] 

imaging biomarkers exhibit improved malignant/benign tissue discrimination [6]. The latter 

paper showed the CA extravasation magnitude effect on commonly modeled DCE parameter 

(Ktrans, ve, vb τi, τb) precisions. Specifically, τi (1/kio) uncertainty and the feasibility of τi 

(1/kio) mapping of the entire normal prostate were demonstrated [5]. In this paper, after 

identifying kep and kio as the AIF-scaling-insensitive DCE parameters, the potential for kio 

(with its newly discovered metabolic activity nature) as a disease aggressiveness biomarker 

was shown: a kio Gleason score correlation.

One limitation of this study is that we investigated the effect of only AIF scaling uncertainty 

on estimations of pharmacokinetic parameters. Other confounding factors, like variable T2* 

effect during CR passage and in-flow effect, etc., can result in AIF curve shape variations, 
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which will cause different variations in the derived kep values. Future studies will be needed 

to address these issues. It is encouraging that a recent multi-center prostate DCE-MRI data 

analysis study showed that the variations of the kep parameter were substantially smaller 

than those of the Ktrans parameter when they were derived from AIFs quantified with 

different methods, leading to both AIF curve-shape and amplitude differences [32].

 CONCLUSIONS

AIF quantification remains a major challenge for DCE-MRI pharmacokinetics. Several AIF 

derivation approaches require AIF magnitude scaling, which generally suffers from the lack 

of ground truth knowledge. This simulation work demonstrates that the kep and the Shutter-

Speed Paradigm specific kio (1/τi) parameters are nearly insensitive to AIF scaling. This 

supports the notion that both the kep and kio parameters are more robust DCE-MRI 

biomarkers.
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 Abbreviations

AIF arterial input function

AIF scaling factor β

CR contrast reagent

[CRp] contrast reagent concentration in blood plasma

[CRo] contrast reagent concentration in the extravascular, 

extracellular space

[CRt] contrast reagent concentration in tissue

DCE-MRI dynamic contrast-enhanced magnetic resonance imaging

FOV field of view

FXL fast-exchange-limit

FXR fast-exchange-regime

hv microvascular hematocrit

Ktrans rate constant for plasma/interstitium contrast agent transfer

kep = Ktrans/ve, rate constant for contrast reagent intravasation

kio = 1/τi, unidirectional equilibrium cellular water efflux rate 

constant

PD proton density
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r1 longitudinal contrast reagent relaxivity

r1o longitudinal relaxivity for CR in the extravascular, 

extracellular space

r1p longitudinal relaxivity for CR in the blood plasma space

R1b = 1/T1b, blood longitudinal relaxation rate constant for 

blood 1H2O

R1t = 1/T1t, tissue longitudinal relaxation rate constant for 

tissue 1H2O

ROI region of interest

ρ cell number density [number of cells/unit volume]

SD standard deviation

SNR signal-to-noise ratio

SSP Shutter-Speed Paradigm

SXR slow-exchange-regime

τi mean intracellular water lifetime

T1
−1 = (|R1o –R1i|), the NMR R1“shutter-speed”, [≡ κ1]

TP Tracer Paradigm (Tofts model)

ve extravascular, extracellular volume fraction; the EES

vi intracellular volume fraction (= 1- ve, when ignoring blood 

volume fraction)
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 APPENDIX

The relaxivity of a contrast reagent (CR) is defined as the slope of the R1 and [CR] equation 

as expressed in Eq. (1a),

(1a)

where r1 is the relaxivity in unit of (mM−1s−1).

The r1 values are specific to the compartments occupied by CR molecules. In DCE-MRI, 

low molecular weight Gadolinium based CR can present in blood plasma and the 

extravascular, extracellular space (EES).

Eq. (3) can be used to convert measured blood R1 time-course to that of blood plasma CR 

concentration time-course, [CRp].
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For the FXR and the FXL models, the relationships of tissue R1 and the EES CR 

concentration, [CRo], is given by Eq. (1) and Eq. (5), respectively.

Because r1 always appears in the form of r1•[CR] product in a relaxivity expression, the 

r1o•[CRo] term which quantifies EES R1 change can be expanded to:

(2a)

where r1o is the longitudinal CR relaxivity for the EES, and r1p is the longitudinal CR 

relaxivity for blood plasma. All other parameters are defined in MATERIALS and 

METHODS section.

It is common practice in DCE-MRI pharmacokinetic modeling to assume that r1o = r1p. 

However, there is some evidence indicating unequal r1o and r1p values [30,31].

When both r1o and r1p are [CR]- and time-independent, the r1o/r1p ratio can be moved to 

either side of Eq. (2a). That is, r1o/r1p ≠ 1.0 has a similar effect as that of employing an AIF 

scaling factor (β) in pharmacokinetic modeling. Here, the AIF is assumed to be well-

characterized and the r1o/r1p ratio depends on the compartments the CR molecules occupy. 

When the r1o/r1p ratio is unknown or there is strong evidence indicating that r1o/r1p ≠ 1.0, 

then results from this work show that kep can be the parameter preferred over Ktrans for 

characterizing microvasculature. This is because of its insensitivity to AIF scaling 

uncertainties.
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Highlights

• In DCE-MRI pharmacokinetic modeling, arterial input function (AIF) 

scaling is often needed for AIF derivation.

• Contrast reagent transfer constant (Ktrans) and extravascular, 

extracellular volume fraction (ve) model parameters are affected by 

AIF-scaling.

• The contrast reagent intravasation rate constant (kep) is insensitive to 

AIF-scaling error.

• The unidirectional rate constant for equilibrium cellular water efflux 

(kio) is insensitive to AIF-scaling error.
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Figure 1. 
Figure 1A plots the averaged blood plasma concentration ([CRp]) time-course derived from 

five individually determined arterial input functions [AIFs]. Under the condition of β =1.3 

(i.e., 130% the 1A AIF amplitude), the 1B solid curve plots the ΔR1(t) time-course 

calculated with Ktrans = 0.36 min−1, ve = 0.3 (kep =1.2 min−1), τi = 0.6. The dashed curve 

traces ΔR1(t) with a different parameter set: Ktrans = 0.35 min−1, ve = 0.32 (kep =1.1 min−1), 

τi = 0.6 s.
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Figure 2. 
Figure 2A shows a Ktrans vs. ve error surface. The contour plot shows the chi square 

statistic, χ2 = Σ[Sref(t) – Sgrid(t)]2, for simulated DCE-MRI time-courses from parameters 

equal to the Ktrans,ve coordinates. The χ2 value decreases as the contour lines move towards 

the center of the closed loops. B shows the best kep (≡Ktrans/ve) values determined at 

different β values. A near constant kep is observed within the entire β range tested.
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Figure 3. 
Figure 3A depicts the Ktrans, ve, and τi changes associated with a 30% change in β. Monte 

Carlo simulations were used to estimate Ktrans, ve, and τi accuracy (mean) and precision 

(SD) changes resulting from a 30% β increase. It is seen that Ktrans and ve change 

proportionately (~ 30%) with β, while the τi change is negligibly small (< 3%), well below 

the standard deviation (>10%) associated with the data SNR. 3B shows the similar plots for 

kep and kio. Defined as Ktrans/ve, kep is insensitive to β variation as discussed in the text. 

Being the τi reciprocal, the rate constant kio has the same relative error as that of τi.
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Figure 4. 
Figure 4A shows representative Ktrans changes for malignant (black curves) and benign 

(gray curves) tissues with increasing β. Each ROI data set was fitted with models from the 

shutter-speed (solid curves) and tracer (dashed curves) paradigms. The best fitted values 

from 20 different initial guesses are plotted. The Ktrans values decrease with β increase. 4B 
shows the same trends for ve.

Li et al. Page 22

J Magn Reson. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Figure 5 plots the β-dependence of the mean kep values for the five malignant (black) and 

eight benign (gray) cases. The shutter-speed kep values have square symbols while the tracer 

values have circle symbols. Regardless of the pharmacokinetic paradigm and tissue 

characteristics, the kep value for each model remains constant, indicating kep is insensitive to 

AIF scaling.
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Figure 6. 
Figure 6A shows a portion of an axial pelvic T2-weighted image of a 66 year old subject 

with left prostate malignancy (anterior up). Figures 6B–6D show zoomed parametric maps 

of a tumor-encompassing ROI in the left prostate indicated by the 6A yellow rectangle. 

Figure 6B is the kio map, which displays metabolic activity. Significantly elevated kio is 

clearly visible in the anterior half of the ROI. Figure 6C shows increased kep in only the 

most anterior portion of the ROI. The kep parameter measures capillary CR permeability. 

Figure 6D shows vi slightly elevated in the anterior half of the ROI. This most likely 

represents increased cell density. Black borders are added in 6B–6D to provide contrast with 

the elevated parametric color maps.
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Figure 7. 
Figure 7 plots lesion ROI-averaged in vivo kio values against independently obtained ex 
vivo Gleason scores for the five malignant cases. A clear trend of increasing kio with 

Gleason score (Spearman’s correlation coefficient, r = 0.91; p = 0.03) is observed (the 

empirical blue dashed curve is intended only to guide the eye). The error bars show kio 

standard errors and estimated Gleason score errors (see text).
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