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Abstract

Ribosomes—the primary macromolecular machines responsible for translating the genetic code 

into proteins—are complexes of precisely folded RNA and proteins. The ways in which their 

production and assembly are managed by the living cell is of deep biological importance. Here we 

extend a recent spatially resolved whole-cell model of ribosome biogenesis in a fixed volume1 to 

include the effects of growth, DNA replication, and cell division. All biological processes are 

described in terms of reaction-diffusion master equations and solved stochastically using the 

Lattice Microbes simulation software. In order to determine the replication parameters, we 

construct and analyze a series of Escherichia coli strains with fluorescently labeled genes 

distributed evenly throughout their chromosomes. By measuring these cells’ lengths and number 

of gene copies at the single-cell level, we could fit a statistical model of the initiation and duration 

of chromosome replication. We found that for our slow-growing (120 minute doubling time) E. 
coli cells, replication was initiated 42 minutes into the cell cycle and completed after an additional 

42 minutes. While simulations of the biogenesis model produce the correct ribosome and mRNA 

counts over the cell cycle, the kinetic parameters for transcription and degradation are lower than 

anticipated from a recent analytical time dependent model of in vivo mRNA production. 

Describing expression in terms of a simple chemical master equation, we show that the 

discrepancies are due to the lack of non-ribosomal genes in the extended biogenesis model which 

effects the competition of mRNA for ribosome binding, and suggest corrections to parameters to 

be used in the whole-cell model when modeling expression of the entire transcriptome.

 1 Introduction

In Escherichia coli, ribosomes account for approximately one fourth of the cellular dry mass 

and the majority of the total RNA2. It can be tempting, then, to think of the bacterial cell as a 
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finely tuned machine for building ribosomes. Their ubiquity and high sequence conservation 

has made them an invaluable window into the process of evolution at the molecular level3–6, 

and their role in protein synthesis involves them (either directly or indirectly) in essentially 

every process within the cell.

Ribosome production has evolved to be tightly regulated by the cell. This is no small feat, 

considering that each 70S ribosome involves the coordinated transcription, translation, 

folding, and hierarchical assembly of three strands of rRNA and over four dozen proteins, all 

within the heterogeneous, crowded intracellular space. Starting as early as 1966, pioneering 

in vitro studies began to unravel some of the mechanistic details of this process7. Work on 

the 30S small subunit (SSU), which is largely responsible for recognizing and decoding 

mRNA, showed that assembly nucleates with the folding of the so called five-way junction 

in the 16S rRNA of the SSU (residues 27–45 and 394–554 in E. coli), and then proceeds 

through the hierarchical association of sets of ribosomal proteins, each progressively folding 

and stabilizing the rRNA's growing tertiary structure8–13. Interestingly, a number of in vitro 
studies have observed this process proceeding over timescales on the order of the cell cycle 

or longer8–10, while in vivo it can take just a few minutes14. Moreover, single cell-imaging 

studies on both slow- and fast-growing cells have also shown that complete ribosomes are 

not uniformly dispersed throughout the cytoplasm, but rather they tend to aggregate to the 

cell poles15–19. Understanding these phenomena requires a model with both a complete (or 

nearly-complete) kinetic description of the assembly process and fine spatial resolution.

Recently, Earnest et al.1 reported the first spatially resolved stochastic simulations of 

ribosome biogenesis for slow-growing E. coli. In that work, a model involving 251 different 

species (including the SSU, LSU, rRNA, 18 proteins that bind to it, the genes and mRNA 

that code for them, and over 140 possible intermediates in the SSU assembly) and 

approximately 1300 reactions for transcription, translation, and ribosome assembly were 

developed and parameterized along with diffusion constants for all species. The use of a 

stochastic simulation methodology was important for a number of reasons. First and 

foremost, gene expression has been shown to be highly variable from cell-to-cell; this is 

especially pronounced when the molecules involved are in low copy numbers20–22. 

Ribosomal RNA is transcribed from seven operons interspersed throughout the E. coli 
genome, and many of the intermediate structures along the assembly pathways can exist in 

very few copies due to the rapid binding of additional proteins1. Accurately modeling the 

random diffusive motions and reactions of the individual substrates allowed Earnest et al. 

not only to investigate the mean behavior of the assembly network, but also the inherent 

variability in it.

Although unprecedentedly complete, the model did not account for some of the most basic 

functions of the cell—namely, replication of the genome, cell division, and metabolism. 

Using mRNA distributions obtained from super-resolution imaging experiments, recent 

articles by Peterson et al. and Jones et al. showed that mRNA copy numbers exhibit a 

significant amount of variability simply by virtue of the fact that the genes that encode them 

are duplicated at some point during the cell cycle (which, in turn, depends on the genes’ 

positions on the chromosome)23,24. To quantitatively describe the replicative dynamics of 

the chromosome, we have generated a series of E. coli strains with gene loci labeled by a 
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fluorescent repressor-operator system (FROS) distributed evenly around the chromosome. 

High-throughput imaging of these strains and identification and quantification of the gene 

copy number in each cell allows us to fit simple models of cell growth and genome 

replication to extract estimates for the timing of replication of each gene as a function of its 

position on the chromosome. We use these results to extend the ribosome biogenesis model 

to explicitly include cell growth, gene duplication, and division (henceforth referred to as the 

RBM, for ribosome biogenesis model). Although single-cell rRNA and ribosomal protein 

mRNA distributions are not available for direct comparison, a number of theoretical models 

of mRNA statistics—including some that account for gene duplication—have been 

proposed23,24, although, importantly, they do not explicitly account for mRNA–ribosome 

interactions. The transcription and mRNA degradation rates in the RBM differ from those 

generated by the theoretical model in fitting the simulated mRNA distributions. We 

ultimately attribute this discrepancy to the fact that the RBM does not account for 

competition from non-ribosomal gene expression (e.g. genes involved in metabolism, 

regulation, etc.) We derive a simple statistical model that accounts for messenger production, 

degradation, and interactions with the ribosomes (henceforth referred to as the SAM, for 

semi-analytical model) which we use to investigate the dependence of mRNA statistics on 

chromosome duplication as well as the expression of non-ribosomal genes within the cell.

 2 Results and Discussion

 2.1 Determining replication initiation timing and progression

To track the progress of replication in living cells, we constructed strains of E. coli where an 

array of 240 specific operators for tet repressor (TetR) was inserted chromosomally. The 

position of the tetO array was varied to evenly sample loci over the full genome (Figure 1b) 

at 14 positions. Expression of TetR-EYFP in trans from the plasmid pBH74 allows for the 

direct visualization of genomic loci and observation of operon counts to be gathered from 

populations of cells. These statistics can be combined with a model of cell replication to 

determine initiation time, replication time and quiescent phase time.

The strains were grown to exponential steady-state, doubling every 120 min. Approximately 

1000 epifluorescence and phase-contrast images were taken of each of the 14 strains. The 

data processing procedure was automated such that the detection of cells in a frame, the 

measurement of length and width of each cell, and the counting of fluorescent peaks were all 

handled without human intervention (Figure 1a). This yielded ~7600 total cells with an 

average length of 3.2 μm and width of 0.7 μm.

To extract the cell cycle parameters from these data, we have developed a probabilistic 

model linking cell growth with DNA replication. We assume the following about the nature 

of cell growth and DNA replication. Cell volume is proportional to length since the width of 

cells do not vary significantly over their cell cycle25. Individual cells show variability in 

widths, however not more than 10% (see Figure S3 for the distribution of cell widths in the 

Supporting Information.) Cell lengths immediately prior to cell division, ℓ0, are distributed 

log-normally
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(1)

with location parameter μlen0 and shape parameter σlen0. We base this assumption on 

experimental histograms of cell division lengths showing positive skewness25 and recent 

theoretical analysis showing that under the influence of Gaussian random noise in the cell 

division time, the cell division length distribution is log-normal.26. Since we are modeling E. 
coli with a mass doubling time of 120 min, we assume that only one round of replication 

occurs per cell cycle. We assume the duration of DNA replication, Trep, (i.e. the C period, 

Figure 2) is constant. Experimental measurements of the distribution of replication initiation 

times (i.e. duration of B period) over single cells is limited in the literature, however one 

study reports a broad distribution that could be approximated by a truncated normal 

distribution27. For the sake of simplicity and to allow for some variability we have assumed 

the DNA replication initiation times, trep, are distributed via a normal distribution truncated 

at zero:

(2)

where the normalization is

(3)

We assume that the cells expand in length exponentially following the growth law

(4)

where μtdiv is the mean division time. This assumption is supported by a great body of 

experimental evidence25,28–32. Finally, we assume that the cell length at birth and the 

replication initiation times are uncorrelated. There is evidence that the initiation time is 

correlated with the cell length at birth27, however including this effect would make analysis 

of the model significantly more difficult. Using an analytical form for the distribution of cell 

mass, m, of exponentially growing bacteria33,34,

(5)

and assuming that m ∝ ℓ, we derived the distribution of cell lengths,
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(6)

by substituting Equation 1 into Equation 5 and normalizing the distribution over positive 

lengths.

In order for our model to describe the relationship between the data we measure for each cell

—its length, the identity of the labeled gene, and the number of copies of that gene—we 

must somehow theoretically connect the length of a cell with its gene copy number. To do 

this we use the cell age, tage—a latent variable of our model. We must first compute the 

distribution of cell ages conditioned on cell length. By performing a change of variables on 

Equation 1 using Equation 4, we are left with a normal distribution of cell ages, where the 

mean age is a function of the cell length,

(7)

and the standard deviation of the age is

(8)

To prevent negative ages, we truncate the distribution and renormalize:

(9)

where the normalization is

(10)

The joint–conditional distribution function of cell ages and replication times given length is

(11)

We consider a gene i to be copied if the age of the cell, tage, is greater than the DNA 

replication initiation time, trep, plus the time required to copy up to and including gene i. 
Written in terms of the relative replication fork position , we have that
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(12)

when a cell has two copies of gene i. Here dist(x,y) refers to the distance between two genes 

along its replichore. Using the growth law, the distribution of lengths at cell division, the 

distribution of all cell lengths, and the replication time distribution, we can derive the 

probability to find a cell with length, ℓ, whose replication progress is further than 

).

To compute the probability that a gene, i, has been replicated, we change variables to  in 

Equation 11 and integrate over all  less than χi

(13)

where

(14)

(15)

and

(16)

The probability to find a cell with length ℓ and n copies of gene i is then

(17)

Thus the likelihood function is
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(18)

with

(19)

and the data for each cell is its length, ℓ, observed from the phase-contrast images, the copy 

number of the labeled gene, n, observed from the fluorescence data, and the identity of the 

labeled gene, i. Fitting Equation 18 to the data simultaneously determines the mean cell 

division length and its variance, the mean DNA replication initiation time and its variance, 

and the time necessary to replicate the full genome.

The model parameters were determined by maximizing the logarithm of Equation 18 over 

7600 observed cells. To ensure that each operon contributed equally to the likelihood, we 

used the sum of the mean log-likelihood computed for each for each gene. We used a 

bounded, global optimization scheme, differential evolution35, to maximize the objective 

function. The lower bounds were set to 10−6 to prevent numerical divergence and the upper 

bounds were set to 10 μm and 4 for the cell division length location and scale parameters, 

and 240 min for the replication time parameters. Uncertainties in the parameters were 

computed via bootstrap, using 15000 resamplings of the data. A summary of the fitting 

parameters and their uncertainties are provided in Table I.

The cell length distribution is well-described by the model (Figure 1c). The location 

parameter of the log-normal distribution describing the cell lengths prior to cell division is 

4:772 ± 0:021 μm and the shape parameter of the distribution was 0:1560 ± 0:0050. These 

parameters converted to the arithmetic mean and standard deviation are 4:830 μm and 0:575 

μm respectively, implying that new born cells are 2.415 μm long on average. These 

measurements can be compared to the division length reported for E. coli at a doubling time 

of 51 min reported by Taheri-Araghi et al.25 of 4:40±0:54 μm. The model predicts a mean 

replication initiation time of 42:2 ± 3:0 min (duration of B period) with a standard deviation 

of 22:1 ± 1:9 min, and a replication duration of 42:4±5:0 min. These results are reasonable 

in light of the experiments of Skarstad et al.36 who measured a B period of 34 min from E. 
coli B/r A doubling at 113 min and Adiciptaningrum et al.27 measured the B period 

distribution for E. coli with at 130 min doubling time and reported a broad distribution with 

a mean of 30 min and a standard deviation of 21 minutes. Michelsen37 reports a B period of 

32 min and a C period of 52 min in E. coli K-12 MG1655 doubling at 137 min and shows 

that the C and D periods increases linearly with generation time when the doubling time is 

greater than 70 min, however these measurements tend to vary depending on the particular 

strain and the method of analysis.

Figure 3a shows the agreement of the experimental data to our model; fitting plots for all 

data are provided in the Supporting Information (Figure S4 and Figure S5). The model tends 

to underestimate the number of cells with two copies for genes near the origin and 

Earnest et al. Page 7

Biopolymers. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



overestimates for genes near the terminus. However the peaks and dispersion in the model 

distributions reflects the experimental data well.

We also computed the probability of finding a cell with one copy of a gene. This was 

accomplished by considering an expression for the distribution of cell ages38,

(20)

and assuming that the individual cell division times are distributed normally with a standard 

deviation of 10% (σtdiv = 12min). The form for the distribution of the cell ages given the cell 

division time distribution is given where n is the colony growth rate. Assuming that the bulk 

mass doubling rate, ν, is approximately equal to the mean cell division rate, μtdiv, and 

evaluating the integral we have

(21)

with

(22)

The probability to find a cell that has not replicated its labeled gene is

(23)

where

(24)

follows directly from Equation 2. Rewritten in a form amenable to numerical integration,

(25)

with the constants

(26)
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(27)

(28)

(29)

The probability to find a cell with one copy of each of the 14 genes is shown in Figure 3c, 

using the previously computed fitting parameters (Table I). Genes yrfE, yfcN, and ycaK 
show the worst agreement, neither following the model predictions nor the trend of the other 

experimental data, however the single copy fraction data for the remaining 11 genes follow 

the expected trend and are well-described by the model parameters.

As a final test of the fitting of our model parameters, our expression for the probability of 

finding a cell with a single gene copy was used to independently estimate the replication 

initiation timing, and the replication duration (see Section S2 of the Supporting 

Information). This somewhat less-sophisticated treatment yielded values of μtrep = 34:4 

minutes, and Trep = 45:9 minutes. Importantly, although different in their approaches, both 

methods estimate similar C and D periods of around 40 minutes each.

It is remarkable that a reasonable measurement of the growth parameters can be made 

indirectly without monitoring individual cell lineages and labeling the replisome. Cell cycle 

control in bacteria is highly complex and not completely understood25,26,32,34,39–42. There 

have been at least three classes of cell growth models described in the literature: size-

dependent division (“sizer”)34, time-dependent division (“timer”)41,42, and constant 

extension (“adder”)32,40 models, as well as more complicated mixed models25,26 have all 

been proposed. A major result of many of these works is the fact that the size of a cell before 

and after division is correlated. We are unable to account for this in our model since our 

experiments do not track individual cell lineages. Thus we use a simple model which ignores 

the correlations between generations.

 2.2 Modeling the effects of DNA replication on ribosome biogenesis

We built upon our previous kinetic model of ribosome biogenesis in E. coli1 to construct the 

RBM, in order to investigate the effect of both gene duplication and changing volume due to 

cell growth. This model is simulated using Lattice Microbes43,44, a software package 

designed to simulate stochastic reaction-diffusion systems through sampling of the 

underlying reaction-diffusion master equation (RDME). The spatial domain of the problem 

is discretized onto a lattice, with each lattice site containing discrete particles. Particles 

diffuse between lattice sites according to diffusion constants that are local to each cellular 
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region and specific for each species. A Gillespie type kinetic Monte Carlo simulation 

determines which reaction occurs at each lattice site and which particles diffuse to 

neighboring sites. Since this technique is highly parallelizable; it is implemented in CUDA 

to take advantage of NVIDIA GPUs, allowing for a complete cell cycle to be simulated in a 

single day.

The previous ribosome biogenesis model1 has between modified such that new ribosomal 

protein (r-protein) and rRNA operons (see Figure 1b for their loci) are added to the 

simulation at times reflecting their position in the genome using the parameters derived in 

Section 2.1, while dynamically growing the cell volume as the simulation progresses. 

Psuedocode describing the generation of the reduced assembly model (Algorithm 1), the 

dynamic construction of cell geometry (Algorithm 3), and the simulation procedure 

(Algorithm 2) is provided in the Supporting Information. The kinetic model of ribosome 

biogenesis includes seven ribosomal RNA operons which code for the 16S rRNA and nine 

operons coding for the 18 ribosomal proteins (r-protein), which along with the 16S rRNA, 

compose the 30S small subunit of the ribosome. Transcription of these operons is explicit in 

this model—the particles representing the operons are placed in the cell nucleoid region 

based on their genomic position and emit messenger RNA species at a constant rate, i.e. 

unregulated, constitutive expression. Translation of r-protein is explicit as well—the mRNA 

engage in a diffusive search in order to bind to the SSU. The resulting complex associates 

with the LSU to form a translating ribosome. R-protein are emitted from the translating 

ribosome in the order in which the r-protein genes appear in the transcript. Upon completion, 

the complex dissociates into free mRNA, LSU, and SSU species, allowing the cycle to begin 

anew. Newly translated r-protein diffuse away and associate to SSU assembly intermediates 

following the assembly network described in Earnest et al.1. A diagram of the assembly 

network is shown in Figure S8 of the Supporting Information. DNA replication is 

implemented by choosing a replication initiation time trep, from a normal distribution with 

mean μrep and variance σrep
2. New operon copies are added to the simulation at times ti = 

trep + χiTrep which are taken directly from the experimental analysis in Section 2.1. The 

operon species are not subject to diffusion in our model, rather they are moved along the 

long axis of the cell such that they will be found in the same position in the daughter cells as 

in the mother cell at the start of the cell cycle (Figure 4b). This is a vast simplification of the 

dynamics of the chromosome, however it is the simplest approach given the lack of detailed 

time-dependent gene localization information available in the literature.

We use  μm from the modeling of the experimental data (Section 2.1) as the 

initial length of the cell and the mean cell width, 0.7 μm computed from the raw cell data, as 

the simulated cell's width. The cell grows to μlen0=4.7 μm over the course of its 120 minute 

cell cycle following the growth law, Equation 4. The new cell geometry, which includes the 

membrane, cytoplasm, and nucleoid cellular compartments, is computed using constructive 

solid geometry directly into the lattice data structure. The nucleoid compartment dimensions 

are chosen to match the proportions of nucleoid to cytoplasm observed in cryo-electron 

tomograms of slow-growing E. coli15 (available in Figure S7 of the Supporting 

Information). When the lattice changes, sites where particles were once forbidden are now 

allowed and the chemical species rapidly undergo diffusive relaxation to fill the empty 
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space. During the constriction of the cell during division, particles in sites which were once 

cytoplasm can end up outside of the cell. This problem is mitigated by using the membrane 

compartment to direct outlying particles back into the cytoplasm. For all particles in the 

simulation, their transition rate from the membrane to the cytoplasm site type is set to the 

maximum diffusion rate, a2=4Δt, where a is the lattice constant, and Δt is the time step. 

Transitions from the cytoplasm into membrane sites are all set to zero. By changing the 

lattice slowly as well as using the membrane sites to redirect straying species, no particles 

are lost into the extracellular compartment.

Since the volume of the cell and number of gene copies change throughout this simulation, 

the original parameters used in Earnest et al.1 were slightly modified. The mRNA and rRNA 

transcription rates were scaled by a factor of 0.65 and 0.60, respectively, and the zeroth-

order large subunit (LSU) birth rate was scaled by 2.1. The change in the transcription rates 

reflect the changing copy numbers, where as the change in the LSU birth rate is a 

consequence of the changing volume. These changes were executed in order to ensure the 

same particle copy numbers at the end of the cell cycle were reached as in the original 

simulations1 (fixed-volume RBM) to allow for a direct comparison which investigates the 

effect of cell growth and gene duplication. In order to compare the RBM on even footing 

with the fixed-volume RBM, the fixed-volume RBM was simulated again using the current 

development version of Lattice Microbes (version 2.3a) over 16 replicates.

Comparing the two models, the initial and final species counts are practically identical for 

all classes of particles with the exception of the SSU intermediates (see Figure 4c and Table 

III.) Here we see that the final intermediate count in the fixed-volume RBM is 

approximately a factor of five larger than the count seen in the RBM. The origin of this 

effect is due in part to the increased protein concentration at the start of the cell cycle in the 

RBM. Though the absolute protein numbers are approximately equal, the RBM volume is 

smaller than the constant cell volume over the full cell cycle. The fixed-volume RBM cell 

geometry is significantly greater than the RBM geometry since we had used dimensions of 

4μm × 0.9μm in the original study1. However there appear to be other effects at play since 

the volume difference of 1.4× is not enough to account for the total difference.

The changing volume due to cell growth causes particle concentrations to remain relatively 

constant throughout the cell cycle (Table IV). For example the ribosome concentration in the 

RBM spans 5.5–5.9 μM over the cell cycle, where as in the fixed-volume RBM the 

concentration spans 2.4–4.16 μM. However in the RBM the concentration tends to peak 

before and after cell division (Figure 4c). In the bottom panel of Figure 4c, the increase in 

volume slows down near the end of the cell cycle when the cell begins dividing. The 

ribosome number increases linearly over the whole cell cycle, however the growth of the cell 

volume can no longer keep the pace with ribosome production during this slowing, leading 

to an increase in ribosome concentration at the end of the cell cycle. When the cell finally 

divides, the protein concentration can now relax to the steady state concentration.

Though the majority of the chemical species in the RDME simulations show no spatial 

heterogeneity, e.g. r-protein (Figure 5, top), two classes of particles exhibit nonuniform 

distributions throughout the cell. Translating ribosomes, composed of an SSU particle, an 
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LSU particle, and an mRNA, are partially excluded from the nucleoid region by imposing a 

bias in the transition rates between the nucleoid and cytoplasm compartments. The transition 

rate from the nucleoid region to the cytoplasm is four times greater than the reverse 

transition. These biased transition rates model the excluded volume effects arising from the 

folded chromosome which is not included in the simulation due to a restriction of the 

number of species allowed in the present version of Lattice Microbes. Heterogeneous 

distributions of ribosomes have been observed in single particle tracking experiments, which 

showed that the fully associated ribosome is partially excluded from the nucleoid17 region 

while the individual subunits are not19, as well as in cryo-electron tomography of slow-

growing E. coli15 (see Figure S7 of the Supporting Information.) Since the fate of particles 

in these RDME simulations are determined by reaction and diffusion processes alone, biased 

transition rates are necessary to implement excluded-volume effects which arise due to 

intermolecular forces between particles. Though this is a simplistic approach, it is sufficient 

for the needs of this study.

The other particle class exhibiting a nonuniform spatial distribution are the SSU assembly 

intermediates (Figure 5 bottom). Ribosomes assemble in a well-defined binding order, where 

some proteins can only bind once other proteins are associated with the nascent subunit (see 

Figure S8 in the Supporting Information.) The earliest SSU intermediates, consisting of the 

primary and secondary binding proteins associated with the 5′ and central domains of the 

16S rRNA1, are short lived and are found only within a few hundred nanometers of the site 

from which the rRNA was transcribed. Due to their short lifetime, their density tracks the 

position of the rRNA operon tightly. Later intermediates which are beginning to include 

tertiary binding proteins diffuse farther away from the originating rRNA operon until all 

memory of their birthplace is washed out.

 2.3 Effects of DNA Replication and Translation on mRNA Statistics

As there are no experimental distributions available, computed distributions of the rRNAs 

and ribosomal protein operon mRNAs obtained from our simulations were compared to 

theoretical results from Peterson et al.24. The theory derived in Peterson et al. considers a 

constitutively expressed gene that is replicated during the cell cycle and includes the time-

dependent messenger degradation. It was found that modeling the time-dependence was 

critical to capturing the correct shape and statistical features of the messenger distribution 

for highly expressed genes or genes with long half-life, both criteria which are met by the 

ribosomal protein operon genes. We found that the simulated RNA exhibited significantly 

higher expression and greater variability than the theory of Peterson et al. predicted. 

Attempts to fit the messenger distributions to theoretical distributions (see Figure 6 green 

lines; described in Section S3) yielded estimates of kt,eff and kd,eff (the messenger 

transcription and degradation rates, respectively) that differed systematically from the rates 

used in the RBM simulations—fit kt,eff values were approximately four times larger than 

those used in the RBM simulations while fit kd,eff values are about four times smaller (see 

Table V and Figure S9). We note, however, that the distributions based on the results of the 

theory24 do show better agreement than those of an earlier model of mRNA production that 

accounted for gene duplication, but neglected mRNA decay23. This is due to the high 

expression value of the mRNA and the long half-life of the messengers (8–12 min) both of 
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which require the mRNA relaxation to be explicitly accounted for to capture the correct 

statistics24.

An important omission in the RBM, and the underlying reason for the disagreement we see 

with the results of Peterson et al.24, is that the simulated cells express only the genes 

involved in ribosome biogenesis. In reality, cells express a multitude of other mRNA and 

proteins in order to perform other cellular functions (e.g. metabolism and gene regulation, 

etc.) In order to investigate how these “missing” mRNA may affect our ribosomal mRNA 

statistics, we constructed a simple model of messenger production that accounts for both 

gene duplication and interactions with the cell's ribosomes (denoted SAM) consisting of the 

reactions

(30)

Here D(t) represents the gene copy number on the DNA; its time-dependence signifies that 

at some time tr (the replication time) it will double from one copy to two copies, and kt and 

kd are the transcription and degradation rate of the mRNA, respectively. Importantly, this 

model includes transitions of the messenger, m, into and out of a second state, n, which 

represents the ribosome-bound mRNA. The ribosome binding and unbinding rates are 

denoted kb and ku, respectively, and the binding rate is understood to be a function of the 

free ribosome concentration. The binding rate is kb = 4.2 × 108M−1s−1 while the unbinding 

constants can be estimated as described in Supporting Information Section S1.2 (also found 

in Table V). This model assumes (as do our simulations) that ribosome-bound messengers 

are protected from degradation.

A chemical master equation (CME) corresponding to Equation 30 (see Equation S1 in the 

Supporting Information) was used to derive a set of ODEs and boundary conditions that 

describe the mean and variance of m and n (see Equation S2 and Equation S3 in the 

Supporting Information). By assuming some number, c, of other genes whose mRNA 

compete for the available ribosomes, we estimated the equilibrium concentration of free 

ribosomes by solving the system numerically. Subsequent time-averaging over the cell 

cycle24 yielded values for the mean and variance of the modeled mRNA. We computed the 

mean and Fano factor for each of the ribosomal protein operons based on their respective 

rate parameters and gene doubling times (see Table V). When c = 8, which approximates the 

case of the RBM simulations (there are a total of 9 ribosomal protein operons in E. coli; 
messengers from 8 operons actively compete with the messengers from the operon of 

interest), we found that the resulting means from the SAM showed very good agreement 

with simulated RBM values, although the resulting Fano factors tended to be slightly 

overestimated (see Figure S10a, red and blue dots). However, when the value of c in the 

SAM was set closer to a biologically realistic value (on the order of 1000, assuming roughly 

25% of the E. coli genome is actively expressed45), the resulting means and Fano factors 

essentially matched those predicted by Peterson et al.24 (see Section S4 and Figure S10a, 
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green triangles and black “+” signs). These results underscore the need for including the 

expression of other non-ribosomal messengers in future RBM simulations.

Our analysis of the SAM indicates that when in the biologically realistic regime (c ~ 1000), 

messengers are generally not bound by ribosomes and their statistics can be described by the 

theory of Peterson et al. The question then arises: What is the expected mean count of 

messengers for each of the ribosomal protein operons and how should the RBM be modified 

when competing mRNAs are modeled? Using values from the CyberCell Database, which 

tabulates statistics describing an average E. coli cell46, we estimate that the total count of 

mRNAs to be between 3800 and 10000 in cells with our measured average length and width 

(3.2 μm and 0.715 μm, respectively; see Figure 1c and Figure S3). Using relative gene 

expression values from high-throughput sequencing data for E. coli47 we then estimate the 

mean mRNA counts for the ribosomal operons are between 20 and 120, which are in good 

agreement with the RBM values (55 and 145). In the biologically realistic regime for c the 

transcription and degradation kinetics used in the RBM give mean and noise values that are 

much lower than these estimates (Figure S10a green dots). This indicates that future 

applications of the RBM which include competing mRNAs will require transcription rate 

parameters that are about four times higher and degradation rate parameters that are about 

four times lower than in the current RBM to achieve mean mRNA counts that match 

experiments (as indicated by linear regression between fit and RBM rate parameters; see 

Figure S9). Using the theory of Peterson et al. we have estimated that the kt and kd values 

required for the ribosomal protein operons necessary to capture the correct mean messenger 

counts when modeling all competing mRNAs (see Table V).

 3 Conclusions

In this article we performed fluorescence imaging studies at the single-cell level in order to 

estimate the timing and duration of DNA replication in slow-growing E. coli (doubling time 

of approximately 120 minutes). We described a simple analytical model describing growth 

and DNA replication in slow-growing E. coli (only one replication process per cell cycle) 

which does not require the explicit tracking of cell lineages and applied it to our single-cell 

studies. The B and C parameters determined by the model, 42.2 min and 42.4 min 

respectively, are reasonable when compared more direct measurements in bulk36,37 or in 

single cells25,27. These parameters were used to improve a recent spatially resolved, whole-

cell model of ribosome biogenesis1 that involved the transcription and translation of the 

rRNA and ribosomal protein operons involved in production of the ribosomal 30S small 

subunit (SSU), as well as its assembly. This model was augmented through the use of the 

experimentally measured parameters to include the effects of cell growth and gene 

replication, the latter of which has been shown to significantly impact the copy number 

statistics of mRNA in models of gene regulation23,24. We found that the ribosomal protein 

operon messenger counts that emerged from our ribosome biogenesis model without 

regulation did not appear to be well-described by published theoretical models23,24. 

Specifically, the simulated messengers were expressed in greater numbers and with greater 

variability than the theory of Peterson et al. predicted. We found that this was associated 

with the low number of non-ribosomal genes in the RBM. By constructing a simple semi-

analytical model (SAM) that accounts for varying numbers of non-ribosomal genes to be 
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expressed, we showed that the mRNA statistics of a cell expressing realistic numbers of non-

ribosomal genes should be close to those predicted by Peterson et al. This means that in 

order to recover the proper ribosomal messenger counts, future versions of the RBM that 

include other cellular networks like metabolism and regulation will also require adjustments 

to the ribosomal protein operon transcription and mRNA degradation parameters.

 4 Materials and Methods

 4.1 E. coli operon quantification

 Strains and plasmids—All strains used in this study are derivatives of E. coli K-12 

MG1655 Δlac48–50, in which the entire lac operon has been deleted from the N-terminus of 

lacI to the C-terminus of lacA using the method of Datsenko and Wanner51. Gene locations 

and numbers were determined using the fluorescent repressor operator system (FROS), 

where of the integration of an array of 240 operators for tet repressor, TetR, was performed 

at each of 14 loci at evenly spaced intervals around the chromosome using Landing Pad 

technology48–50,52,53.

 Fluorescent repressor operator system—Gene locations were determined using 

the fluorescent repressor operator system (FROS) performed as described54. Integrations 

were made at each site consisting of an array of 240 operators for tet repressor, TetR, using 

Landing Pad technology. After growth to steady state as described below, 0.01% L-arabinose 

was added to each culture 1 hour before fixation to induce expression of TetR tagged with 

fluorescent EYFP in trans from the plasmid pBH7454. Cells were then fixed and processed 

as above.

 Media and growth conditions—At the start of an experiment, a seed culture of each 

strain was inoculated from a glycerol stock into 2 ml Lysogeny Broth (LB) with appropriate 

antibiotics in 14 ml polypropylene round bottom tubes (Falcon) and allowed to grow to 

saturation in a 37 °C shaking water bath. This seed culture was then diluted 1000× into 3 ml 

of M63 minimal medium (100 mM KH2PO4, 15 mM (NH4)2SO4, 1.7 μM FeSO4, 1 mM 

MgSO4) + 0.5% glycerol in 20 mm diameter glass test tubes and allowed to grow with 

extremely vigorous shaking in a 37 °C water bath (New Brunswick Scientific model G76) 

until OD600 of the culture reached 0.5–0.6 as measured with a spectrophotometer (Bio-Rad 

SmartSpec 3000). These cultures were then used to inoculate another 25 ml baffled 

Erlenmeyer flasks of identical fresh medium pre-warmed to 37 °C at an initial density of 

OD600 = 0.005 and again grown with vigorous shaking in a 37 °C water bath. Samples were 

taken and the OD600 of the culture was measured at regular intervals to determine the 

doubling time of the culture. When the density of the culture reached OD600 = 0.2–0.4, the 

culture was harvested and fixed by the direct addition of an equal volume of freshly prepared 

and filtered 5% paraformaldehyde in phosphate buffered saline (PBS). The resulting solution 

was allowed to continue shaking at 37 °C for 10 minutes and was then placed on ice for 30 

min. Cells were washed three times via centrifugation and resuspension in 1 ml filtered, ice-

cold PBS. At the time of harvest, we estimate that the cultures had been growing in 

exponential steady-state for ~10 generations.
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 Microscopy—After preparation, samples were mounted on glass slides using 40% 

glycerol. Imaging was performed using a Nikon Eclipse TE2000U microscope with an 

Applied Scientific Instruments PZM-2000 automated stage utilizing Metamorph automation 

software. 1000 images per strain were collected using epifluorescent illumination with a 

100× phase-contrast objective combined with a 4× telescope attachment using a Roper 

Scientific Cascade:512 camera.

 4.2 Data analysis

 Image analysis—All image analysis was performed in performed in the Jupyter 

environment55 using the SciPy Stack56 and scikit-image57. Following background 

subtraction of all phase-contrast images, a binary mask was computed from each frame 

using adaptive thresholding to identify potential cells. The potential cell regions from the 

phase-contrast images were then normalized to [0,1], where by a second binary mask of the 

cell was constructed from pixels with a normalized intensity less than 0.37. Cell lengths 

were measured from the arc length of a 5th degree polynomial fit to the cell mask in order to 

prevent measurement error due to cell curvature. Regions of YFP fluorescence were 

evaluated for suitability by computing the intensity histogram and only accepting regions 

with a skewness greater than 1. Locations of labeled operons were determined by finding the 

local maxima of the Gaussian filtered fluorescence image and accepting only peaks with 

values 1.45× greater than the median signal over the cell mask.

 Model fitting—The gene replication model was fit to the experimental data by 

maximizing the objective function Equation 17, which was implemented in Cython58 for fast 

numerical optimization using differential evolution35 implemented in the SciPy library56. 

Uncertainty calculations using bootstrapping were performed on NCSA Blue Waters

 4.3 Simulations

All simulations were performed using Lattice Microbes v2.3a on a local cluster consisting of 

three Cirrascale GB5600 Multi-GPU nodes, two equipped with 8 NVIDIA GeForce GTX 

TITAN X GPUs, and one equipped with 4 NVIDIA Tesla K80 GPUs. Analysis of simulation 

data was performed in the Jupyter environment55 using the SciPy Stack56.

Lattice Microbes 2.3a expands the capability of the GPU-based MPD-RDME algorithm43 by 

adding support for extended capacity lattices where sixteen different particles may occupy 

each lattice site. Previous versions allowed up to eight particles per site. When more 

particles occupy a lattice site than capacity allows, the extra particles are said to have 

“overflowed” and special handling is required to rectify the situation. A procedure on the 

CPU locates candidate neighboring lattice sites and moves the excess particles into them. 

This is costly, as the lattice must be copied to host memory and then back to the GPU after 

overflows are corrected. Additionally, a higher capacity lattice incurs a cost as well, as the 

diffusion and reaction operators must access a larger amount of memory to account for the 

greater number of particles. However, simulations that experience overflows on a frequent 

basis benefit from the greater capacity, as the cost of accessing more memory is offset by the 

savings gained from not needing to perform overflow handling.
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 RDME—Running a single replicate per GPU, the simulations completed 120 minutes of 

simulated time in 29 hours on the TITAN X nodes at a time step of 25 μs59. Cell growth and 

DNA replication was implemented using a custom RDME solver using pyLM60, whereby 

the lattice of site types was modified in situ every 2000 time steps. Initial species counts 

were taken from a chemical master equation based simulation of the growth ribosome 

biogenesis model at steady state. Operon placement was performed by estimating the 

position of a locus along the cell axis assuming that the chromosome is organized linearly. 

The operon position in the cross-sectional plane of the cells is distributed uniformly within 

the nucleoid region.

 CME—Cell growth and DNA replication was implemented using a custom chemical 

master equation (CME) solver implemented using pyLM60. CME simulations of the SAM,

(31)

were used to validate the semi-analytic theory derived in this paper by varying the number of 

genes  from 10 to 500 and the position of the gene between the oriC and terC in 

increments of 10%. In each simulation, c identical genes were produced. Each gene is 

associated with three species in the simulation, a gene (Di) that is transcribed to produce 

unbound messengers (mi) which can bind and unbind to a ribosome to become sequestered 

messengers (ni). The rates transcription, degradation, ribosome binding and unbinding rates 

(kt, kd, kb, and ku, respectively) were taken to be identical for each gene. Simulations of 100 

replicate cells growing for 11 generations were performed to acquire convergent statistics. 

Each cell was seeded with identical initial conditions; therefore, the first generation was 

excluded when computing statistics (therefore, each average was over 100 replicate cells 

each growing for 10 generations). Each gene (Di) was replicated according to the fitted 

replication start (ts) and replication (Tr) times, and its position along the genome. Cell 

division was performed every tD = 120 minutes with cell components binomially distributed 

between daughter cells. Only a single daughter cell was followed after each cell division 

event. To allow comparison with theory a single set of rate were used for all genes, namely 

kt = 0.0042s−1, kb = 0.079s−1, ku = 0:008s−1 and kd = 9:84 × 10−4s−1.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
(a) Composite phase-contrast and epifluorescence images of representative imaging data 

used to determine cell length and operon positioning. The cell boundaries (cyan) and operon 

locations (green) are determined computationally. Examples of rejected cells are presented 

in Figure S1 of the Supporting Information. (b) Diagram showing the position of labeled 

genes used to track DNA replication (fiducial, orange) and those involved in ribosome 

biogenesis (rRNA, red; ribosomal protein, blue). The black lines indicate the origin of 

replication (oriC) and the replication terminus (terC) (c) Abundance of cell lengths (green 

histogram) from imaging experiments are fitted to a simple exponential growth model 

(orange line, Equation 6) to estimate the average and variance of cell lengths after division 

(black line). Approximately 7600 cells are included in this histogram.
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FIGURE 2. 
A schematic of the replication time parameters extracted from experimental images in the 

context of a 120 minute doubling cell.
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FIGURE 3. 
(a) Fraction of cells found with one gene copy (green) and fraction predicted by the model 

(blue). The distance from the origin of replication to the gene, relative to the distance 

between oriC and terC along its arm of the chromosome is plotted in black. (b) Abundance 

of cells with length ℓ and either one (green histogram) or two (blue histogram) gene copies. 

The probability densities associated with these histograms predicted from the model 

Equation 17 are plotted as lines. (c) Abundance of cells with age  and 

either one (green histogram) or two (blue histogram) gene copies for the same genes as 

shown in (a). The cumulative distribution function of gene replication times is plotted with a 

black line. Plots for all operons are available in the Supporting Information.
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FIGURE 4. 
(a) Schematic of geometry used in RBM simulations. The lattice is 32 × 32 × 192 sites in the 

x, y, and z directions respectively, with a lattice spacing of 32 nm. The simulation volume 

consists of 4 regions: (1) extracellular space (gray), (2) membrane (green), (3) cytoplasm 

(orange), and (4) nucleoid (not colored, found in center of cytoplasm). The initial length, 2.4 

μm, and the width of the cell, 0.7 μm, were chosen from the previous experimental analysis 

(Section 2.1). The proportion of the nucleoid region to the cytoplasm is based on 

measurements of cryo-electron tomograms of slow-growing E. coli15. Operon species are 

placed within the nucleoid region based on their genomic loci and replicated at times 

computed from their genomic distance to the origin of replication. The position of the 

operon species is evolved in time such that the operons in the daughter cell are found in the 

same position as the operons in the mother cell. The cell volume grows constantly 

throughout the cell cycle at an exponential rate, where upon it divides into two daughter 

cells of length 2.4 μm. (b) Kymograph showing the evolution of spatial compartments and 

operon locations over one cell cycle. The jagged steps arise from the discreteness imposed 

by the 32 nm lattice. (c) Comparison between RBM (green) and fixed-volume RBM (blue) 

models using 16 replicates. Means are represented by solid lines and the interquartile range 

is given by the shaded area. There is an significantly lower average SSU intermediate count 

seen in the RBM compared to the fixed-volume RBM (top panel), which is a result of the 

changing cell volume. In the last three panels are plotted the absolute count of ribosomes 

(translating as well as dissociated), the absolute ribosome concentration, and the cell 

volume. The RBM produces ribosomes at approximately the same pace as volume 

expansion, leading to a constant ribosome concentration over the cell cycle.
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FIGURE 5. 
xz copy number projections of cells at evenly spaced times throughout the cell cycle. The 

time evolution of the cell geometry is evident in this series of projections. Constriction 

begins approximately 100 minutes into the cell cycle through the constriction of the cell 

membrane. Ribosomal protein (top) diffuses rapidly through all compartments, leading to a 

distribution which mirrors the thickness of the cell at each (x, z) coordinate. The transition 

rates of translating ribosomes (middle) between the nucleoid and cytoplasm regions is biased 

to limit the number of ribosomes in the nucleoid, leading to localization of ribosomes to the 

cell poles and membrane. The most pronounced spacial heterogeneity is due to the SSU 

intermediates (bottom), where the earliest intermediates which result from the binding of 

primary proteins are found near the rRNA operon from which the 16S rRNA was 

transcribed.
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FIGURE 6. 
Messenger distributions simulated in the ribosome biogenesis model (RBM; blue histogram) 

with fits from the theory of Peterson et al. (red curve)24. Fit parameters for the theory with 

mRNA relaxation can be found in Table V.
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TABLE I

Parameters derived from model fitting along with uncertainties computed from bootstrapping

Symbol Description Value from fit (mean ± std)

μ len0 Location parameter of cell lengths immediately prior to division 4.772 ± 0.021 μm

σ len0 Scale parameter of cell lengths immediately prior to division 0.1560 ± 0.0050

μ trep Mean replication initiation time 42.2 ± 3.0 min

σ trep Standard deviation of replication initiation time 22.1 ± 1.9 min

T rep Replication duration (C period) 42.4 ± 5.0 min

μ tdiv Mean time between divisions
120 min

a

σ tdiv Standard deviation of time between divisions
12 min

b

a
From experiment

b
Assumed

Biopolymers. Author manuscript; available in PMC 2017 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript
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TABLE II

Summary of reactions and reaction rates used in the whole-cell model of ribosomal biogenesis. Parameters 

which differ between the RBM and fixed-volume RBM are provided for each with the fixed-volume RBM 

parameter in parenthesis. The complete assembly network is provided in Figure S8 of the Supporting 

Information, the complete list of all 1300 reactions is available in the Supporting Information of Earnest et 

al.1.

Type Reaction Parameter values Units Compartments

Assembly Ii + Pj → Ii+1 (1° prot.) 0.041 – 1.69 μM–1 s–1 cytoplasm, nucleoid

Ii + Pj → Ii+1 (2° prot.) 0.24 – 31. μM–1 s–1 cytoplasm, nucleoid

Ii + Pj → Ii+1 (3° prot.) 0.025 – 1.75 μM–1 s–1 cytoplasm, nucleoid

Degradation mRNAi → Ø 1.0 × 10–3 – 1.4 × 10–3 s–1 cytoplasm, nucleoid

Transcription DNArrnX → DNArrnX + 16S 0.037 (0.062) s–1 nucleoid

DNAx → DNAx + mRNAx 3.2 × 10–3 – 7.8 × 10–3 s–1 nucleoid

(4.9 × 10–3 – 0.012) s–1

Translation mRNAx + SSU Ribinit
x 1.0 × 102 μM–1 s–1 cytoplasm, nucleoid

Ribinit
x + LSU Rib0

x 3.0 μM–1 s–1 cytoplasm, nucleoid

Ribi
x Ribi + 1

x + Pxi
0.019 – 0.27 s–1 cytoplasm, nucleoid

Ribterm
x SSU + SSU + mRNAx

0.015 s–1 cytoplasm, nucleoid

LSU birth Ø → LSU 6.5 × 10–4 (3.1 × 10–4) 3.1 × 10–4 cytoplasm, nucleoid

Dimerization uS6 + uS18 → uS6 : uS18 1.0 μM–1 s–1 cytoplasm, nucleoid

uS6 : uS18 → uS6 + uS18 8.7 × 10–3 s–1 cytoplasm, nucleoid
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Earnest et al. Page 28

TABLE III

Initial and final particle counts from the RBM and fixed-volume RBM trajectories (mean±std).

RBM counts fixed-volume RBM counts

Particle Class Initial Final Initial Final

All ribosomes 3125 ± 54 6191 ± 58 3094 ± 49 6208 ± 73

Translating ribosomes 545 ± 15 1088 ± 23 528 ± 18 1045 ± 26

Dissociated ribosomes 2580 ± 57 5103 ± 60 2566 ± 53 5163 ± 71

SSU intermediates 1.1 ± 1.4 1.2 ± 1.2 11.4 ± 3.5 5.8 ± 2.7

Ribosomal proteins 34000 ± 3500 69800 ± 4800 33200 ± 2700 66400 ± 4200
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TABLE IV

Initial and final concentrations from the RBM and fixed-volume RBM trajectories (mean±std).

RBM concentrations [μM] fixed-volume RBM concentrations [μM]

Particle Class Initial Final Initial Final

All ribosomes 6.11 ± 0.10 6.055 ± 0.056 2.184 ± 0.034 4.382 ± 0.052

Translating ribosomes 1.065 ± 0.030 1.064 ± 0.023 0.373 ± 0.013 0.738 ± 0.018

Dissociated ribosomes 5.04 ± 0.110 4.991 ± 0.059 1.811 ± 0.038 3.644 ± 0.050

SSU intermediates 0.0022 ± 0.0028 0.0012 ± 0.0011 0.0081 ± 0.0024 0.0041 ± 0.0019

Ribosomal proteins 66.5 ± 6.9 68.2 ± 4.6 23.5 ± 1.9 46.9 ± 2.9
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TABLE V

Transcription (kt), degradation (kd), and messenger unbinding (ku) rate parameters for the ribosomal protein 

operon mRNA in the RBM (scaled from those in Earnest et al.1 as discussed in Section 2.2). Each value for 

the unbinding rates ku was estimated according to Equation S9. The last line gives the harmonic mean over all 

individual operon rate parameters. These mean values were used to make Figure S10b. Effective rate 

parameters (kt,eff, kd,eff) are from fitting the simulated messenger distributions with the theory of Peterson et 

al.24.

Operon kt (s−1) kd (s−1) ku (s−1) kt,eff (s−1) kd,eff (s−1)

alpha 0.0047 8.363 × 10–4 0.0079 0.01813 0.00023

rplM 0.0030 1.197 × 10–3 0.0119 0.01431 0.00030

rpsF 0.0036 8.955 × 10–4 0.0103 0.01513 0.00027

rpsJ 0.0060 1.029 × 10–3 0.0059 0.02091 0.00022

rpsO 0.0045 1.238 × 10–3 0.0082 0.01810 0.00025

rpsP 0.0038 9.785 × 10–4 0.0092 0.02220 0.00037

rpsT 0.0027 1.144 × 10–3 0.0139 0.01519 0.00036

spc 0.0069 9.206 × 10–4 0.0055 0.02225 0.00020

str 0.0058 8.062 × 10–4 0.0063 0.02065 0.00022

Mean 0.0042 9.8359 × 10–4 0.0080
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