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Abstract

Small interfering RNA (siRNA) has gained attention as a potential therapeutic reagent due to its 

ability to inhibit specific genes in many genetic diseases. For many years, studies of siRNA have 

progressively advanced toward novel treatment strategies against cancer. Cancer is caused by 

various mutations in hundreds of genes including both proto-oncogenes and tumor suppressor 

genes. In order to develop siRNAs as therapeutic agents for cancer treatment, delivery strategies 

for siRNA must be carefully designed and potential gene targets carefully selected for optimal 

anti-cancer effects. In this review, various modifications and delivery strategies for siRNA delivery 

are discussed. In addition, we present current thinking on target gene selection in major tumor 

types.
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 1. Introduction

The discovery of RNA interference (RNAi) has opened doors that might introduce a novel 

therapeutic tool to the clinical setting [1]. For many decades, small molecules have been 

developed and utilized in cancer therapy; however, critical problems, such as undesirable 

toxicity against normal tissues due to a lack of selectivity, still remain today. Using RNAi as 

a therapeutic tool will allow targeting previously unreachable targets with its potential to 

silence the function of any cancer causing gene [2]. This unique advantage is made possible 

by utilizing the biological functions of double-stranded RNA molecules (dsRNA). 

Endogenous dsRNA is recognized by a ribonuclease protein, termed dicer, and cleaved into 

small double stranded fragments of 21 to 23 base pairs in length with 2-nucleotide 

overhangs at the 3’ ends. The cleaved products are referred to as small interfering RNAs 

(siRNAs). The siRNAs consist of a passenger strand and a guide strand, and are bound by an 

active protein complex called the RNA-induced silencing complex (RISC). After binding to 

RISC, the guide strand is directed to the target mRNA, which is cleaved between bases 10 

and 11 relative to the 5’ end of the siRNA guide strand, by the cleavage enzyme argonaute-2. 

Thus, the process of mRNA translation can be interrupted by siRNA [3-5].

The therapeutic application of siRNA has the potential to treat various diseases including 

cancer [6, 7]. Cancer is a genetic disease caused by the generation of mutated genes within 

tumor cells; multiple gene mutations both activate disease driving oncogenes and inactivate 

tumor suppressor genes in cancer [8-10]. Small interfering RNAs that can inactivate specific 

cancer driving genes have shown great potential as novel cancer therapeutics. Several anti-

cancer siRNA based drugs have entered clinical trials, and many are actively sought after in 

preclinical research [11-13].

Even though the usage of siRNA as therapy has shown promise in the treatment of cancer, 

many obstacles that hinder the ultimate functionality of siRNAs in the clinic remain to be 

solved [14, 15]. In order to make this therapy effective, the first and most crucial step is to 
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ensure the delivery of siRNA to the tumor cells from the injection site. In practice, siRNAs 

face physiological and biological barriers that prevent their delivery to the active site when 

administered systemically [16-18]. These barriers include, but are not limited to, 

intravascular degradation, recognition by the immune system, renal clearance, impediments 

to tumor tissue penetration and uptake into tumor cells, endosomal escape once in tumor 

cells, and off-target effects [19-21]. Delivery formulations as well as chemical modification 

of siRNA are required to overcome these challenges and facilitate siRNAs in reaching their 

target cells [22]. Furthermore, selection of gene targets in cancer is also crucial in designing 

siRNA therapeutic strategies. Discoveries of mechanisms in cancer provide innovative 

targets for siRNA therapy that in many cases cannot be targeted with conventional drugs. 

However, the particular gene pool that drives cancer varies depending on the origins and 

types of the tumors. Thus, careful selection of gene targets according to their cancer type is 

essential in siRNA therapeutic strategies.

To summarize, target discovery in cancer leads to the selection of siRNA gene targets, 

followed by their incorporation of the siRNAs into suitable delivery systems that allow 

access to the desired sites. Once therapeutic effect is observed, further application in varying 

organs and tissues can be anticipated as shown in Figure 1. This review examines current 

thoughts on the therapeutic potential of siRNA delivery strategies and the optimal targets for 

siRNA in major cancer types.

 2. Strategies for siRNA based Therapeutics

In order to activate the RNAi pathway, double stranded siRNA must travel through the 

bloodstream and gain access to the cytosol of target cells. The hydrophilic nature and large 

molecular weight of siRNAs prevent the molecules from diffusing across the cellular 

membrane into the cell; therefore, modifications to the nucleic acid and generation of clever 

delivery strategies are necessary for the creation of siRNA therapeutics.

 2.1. Chemical Modifications

With current bioorganic techniques, oligonucleotides can be synthesized and modified as 

single strands, then annealed into the desired double stranded material. Customizable 

oligonucleotide synthesis incorporating artificial modifications enhances the potential of 

RNA therapeutics by overcoming problems associated with administration of naked siRNA. 

In particular, unmodified siRNA exposed in the bloodstream stimulates the innate the 

immune response and is readily degraded by serum nucleases. One of the methods to 

increase stability in serum and potency of gene silencing efficacy is to employ chemical 

modifications on the RNA-backbone of siRNA. A wide variety of chemical modifications, 

listed in Figure 2, have been proposed to overcome existing challenges of siRNA 

therapeutics.

One of the most common alterations of RNA is modification of the 2’ position on the ribose 

backbone. These modifications include 2’-O-methyl, 2’-O-methoxyethyl, 2’-deoxy-2’-

fluorouridine, locked nucleic acid (LNA), and many more [23-26]. These chemical 

modifications increase stability against nucleases and improve thermal stability. As a 

naturally occurring RNA variant, 2’-O-methyl RNA has shown reduced potency or even 
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inactivation in siRNA activity in the RNAi pathway upon heavy modification [27]. The 2’-

fluoro modification is compatible with siRNA function and lends stability in presence of 

nucleases. Combined modification with 2’-fluoro pyrimidines and 2’-O-methyl purines 

results in highly stable RNA duplexes in serum and improved in vivo activity [28]. The 2’-

O-methoxyethyl RNA modification has also shown significant nuclease resistance as well as 

increased thermal stability (Tm). Nevertheless, this modification is not generally used as 

frequently as the 2’-O-methyl and 2’-Fluoro RNAs. LNA contains a methylene bridge that 

connects the 2’-O with the 4’-C positions of the ribose backbone. This causes the siRNA to 

have “locked” sugar that results in higher stability with increased Tm. Though incorporation 

of LNA also interferes with the siRNA activity, limited modification retains the functionality 

[27].

In addition to the sugar modifications, variations in phosphate linkage of siRNA are also 

accepted as an alternative strategy to overcome functional limitations. The phosphorothioate 

(PS) linkage, perhaps the most commonly modified linkage in siRNA, often displays 

cytotoxicity when used extensively; however, PS incorporation does not appear to have a 

major effect on biodistribution of siRNA. [29]

Apart from modifications made on the backbone, chemical modifications are also made on 

other parts of siRNA to facilitate delivery to the target site. One of the hurdles in siRNA 

delivery is that weak negative charge and high molecular weight makes the nucleic acid 

more prone to serum degradation and capture by the reticuloendothelial system (RES). In 

order to form more stable delivery complexes, polymerized siRNA can be synthesized, 

resulting in greater electrostatic interactions and facilitating incorporation into nanoparticles. 

Lee et al. developed polymerized siRNA using a thiol group to form a stable complex with 

glycol chitosan via not only electrostatic interaction but also disulfide bond crosslinking. 

Polymerized siRNA synthesized with thiol groups was also shown to form stable complexes 

with PEI, albumin, transferrin, hyaluronic acid, and other nanoparticles [30-35]. This 

delivery reagent was shown to have an anti-tumor effect in xenograft cancer models when 

systemically injected.

Other chemical alterations of siRNA include base modification, change in overhangs and 

termini of the RNA duplexes, and varying tertiary structure of the siRNA. In an attempt to 

develop siRNA for use in clinical trials as drugs, various chemical modifications are being 

investigated to improve qualities such as serum stability, siRNA potency, low 

immunostimulation, off-target effects, and target organ/cell delivery [36].

 2.2. Polymeric Nanoparticles

Incorporation of siRNAs into nanoparticles is widely used to overcome limitations of 

nucleic acid formulations. Biodegradable polymeric nanoparticles synthesized via a variety 

of methods have shown significant therapeutic potential allowing improved stability in 

serum, better delivery and controlled release. Nanoparticles used in siRNA delivery studies 

are divided into two categories—natural polymers and synthetic polymers. Cyclodextrin, 

chitosan, atelocollagen, albumin, gelatin and others are promising natural polymer 

candidates for siRNA delivery in cancer and other diseases [31, 33, 37]. Synthetic polymers 
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such as polyethylene glycol (PEG), polyethyleneimine (PEI), poly (d,l-lactide-co-glycolic 

acid) (PLGA), and others have also been extensively investigated as siRNA delivery agents.

Cyclodextrin polymer (CDP) was used as a raw material for first nanoparticles delivery 

system for siRNA used in clinical trials [38]. CDP is a polycationic oligosaccharide 

produced during bacterial digestion of cellulose and used by the pharmaceutical industry to 

deliver small molecules [39]. As a siRNA delivery formulation, self-assembled CPD with 

PEG and human transferrin (Tf), denoted as CALAA-01, has demonstrated improved 

targeting ability for cancer cells in preclinical tests. Subsequently, this system was tested in a 

clinical phase trial 1. Another polymeric nanoparticle class frequently used in nanomedicine 

is chitosan-based systems. Chitosan, a polysaccharide originally derived from chitin, is 

comprised of β-(1-4)-linked D-glucosamine (deacetylated unit) and N-acetyl-D-glucosamine 

(acetylated unit). The cationic nature of the resulting nanoparticle allows electrostatic 

interactions with negatively charged siRNAs facilitating formulation into the delivery 

system. Various modifications of chitosan, such as PEGylation and thiolation, have also 

shown potential in cancer models via a variety of routes of administration [30, 40-43]. 

Atelocollagen/siRNA complexes have also exhibited anti-cancer effects in several xenograft 

cancer models. Collagen is a fibrous structural protein in connective tissue. By pepsin 

treatment, the telopeptide of collagen is removed to reduce immunogenicity generating 

highly purified type I collagen, also known as atelocollagen. Atelocollagen particles have 

shown improved cellular uptake, nuclease resistance, and controlled release of nucleic acids 

[44]. Inhibition in tumor growth of an orthotopic xenograft cancer model has been seen 

when atelocollagen/siRNA complexes were intratumorally administered [45]. Several 

factors, such as low toxicity, biodegradability, reduction in immunostimulation, and facile 

condensation with nucleic acids, contribute to advantages of using natural polymers as 

delivery agents for siRNA.

Synthetic polymers have been extensively investigated in the drug delivery field because of 

their well-defined chemistries and the high degree of molecular diversity obtainable via 

chemical modifications [46]. PEI is considered the most potent in its ability to form stable 

complexes with nucleic acids due to its highly positive charged nature. Branched PEI 

(bPEI), which has been found to have lower toxicity than linear PEI, and its derivatives have 

demonstrated successful siRNA delivery to the tumor sites with resultant anti-cancer effects 

in preclinical studies. In addition to PEI/siRNA complexes, PEGylation is often incorporated 

into nanoparticles to increase stability in biological fluids and lend protection against 

nucleases. Several groups have demonstrated a PEI-PEG platform for effective siRNA 

delivery in various cancer models [32, 47-49]. Another widely studied synthetic polymer is 

PLGA. PLGA is a copolymer made from lactic acid and glycolic acid that is approved in 

therapeutic applications due to its high biodegradability and biocompatibility. With a 

sustained drug release profile due to slow hydrolytic degradation, PLGA was linked with 

siRNA through disulfide linkage to form spherical micelles which showed gene silencing 

effects in breast cancer cells [50].

Though other delivery strategies are gaining attention, particularly including lipid-based 

siRNA delivery, many investigators continue to use and seek to improve polymeric 

nanoparticles, based on their stability, flexibility of modification, and high targetability. 
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Nevertheless, deeper understanding into the toxicity and immunogenicity of these delivery 

methods is necessary to develop polymers as a siRNA delivery strategy for clinical use.

 2.3. Lipid-based Delivery

Among various strategies to overcome challenges of siRNA therapeutics, lipid-based 

nanoparticles have great potential due to their biocompatibility and low toxicity in 

comparison to inorganic, viral and synthetic polymers. In particular, cationic lipids have 

emerged as attractive siRNA delivery vehicles owing to their electrostatic interaction with 

nucleic acids, high transfection efficiency into mammalian cells, and improved 

pharmacokinetic profiles. 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) is a type of 

cationic lipid that is commonly used in laboratories and is also commercially available. Kim 

et al. demonstrated a liposomal siRNA/DOTAP/Cholesterol platform for liver-targeting 

delivery of siRNAs against HBV [51]. Yagi et al. demonstrated a siRNA delivery complex 

utilizing cationic DOTAP attached to egg phosphatidylcholine (egg-PC) and PEG lipid in a 

weight ratio of 24:14.8. This complex has been shown to inhibit tumor growth in a xenograft 

cancer model via systemic injection [52].

For in vivo delivery studies, stable nucleic acid-lipid particles (SNALPs) have been 

formulated and tested in multiple disease models. SNALPs consist of a lipid bilayer of 

fusogenic and cationic lipids entrapping nucleic acids in the core. The surface of the SNALP 

is coated with PEG to provide enhanced hydrophilicity for improved stability in the serum. 

The half-life of a siRNA-SNALP complex is much longer compared to unformulated 

siRNA. An HBV targeted siRNA-SNALP has shown specific reduction in HBV mRNA 

when intravenously administered in a mouse model of HBV replication at a dosage of 3 

mg/kg/day [28]. A siRNA-SNALP delivery complex was also tested against Ebola virus 

(EBOV) related genes in a guinea pig model [53]. Furthermore, an ApoB specific siRNA 

encapsulated in a SNALP has shown to have >90% maximal silencing effect of ApoB 

mRNA in liver upon a single systemic dosage of 2.5 mg/kg in cynomolgus monkeys [54]. 

Thus, RNAi-mediated gene silencing in non-human primates has clearly demonstrated the 

therapeutic potential of this new class of drug using SNALP technology.

Although cationic lipid-based siRNA delivery has demonstrated potential in therapy in 

various disease models, several hurdles remain to enter commercialization of this class of 

drugs. Toxicity and immediate immune responses elicited by lipid-based delivery designs 

must be further investigated, and it is likely that further thoughtful modifications will need to 

be devised.

 2.4. Bioconjugated siRNAs

In addition to chemically modifying siRNA or incorporating it into nanoparticles, covalently 

conjugating biological agents to siRNA cargo is an alternative method to overcome barriers 

to siRNA efficacy in vivo. Such conjugated delivery systems currently include cholesterol, 

various peptides, antibodies, aptamers, and biopolymers with various physicochemical 

profiles, as summarized in Table 1.

Cholesterol conjugation of siRNA facilitates cellular import and improves intracellular 

activity of siRNA when injected systemically [22]. Cholesterol in circulation is transported 
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by lipoproteins in serum and taken up by hepatocytes through low density lipoprotein (LDL) 

receptor-mediated endocytosis. Apolipoprotein B (apoB) targeted siRNA conjugated with 

cholesterol showed enhanced stability in serum and greater suppression in apoB mRNA 

levels in the liver [55].

Biofunctional or cell-penetrating peptides can be covalently conjugated to siRNA for 

improved targeting of cancer cells. In a study by Choi et al., siRNA conjugated with 

branched PEG was functionalized with a cell penetrating peptide, Hph1, as well as a cationic 

self-crosslinked fusogenic KALA peptide to form a polyelectrolyte complex micelle for 

gene silencing in MDA-MB-435 breast cancer cells [56]. In an attempt to reduce innate 

immune responses, siRNAs directed against the p38 MAP kinase conjugated to the HIV TAT 

cell penetrating peptide were intratracheally administered to in the lung [57].

For targeted delivery of siRNA to specific tissues or cell types, antibodies or aptamers are 

being conjugated directly to siRNAs. A considerable number of antibody based drugs 

including Trastuzumab, Pertuzumab, and Cetuximab are currently given to cancer patients 

with great success. Antibodies conjugated to chemotherapeutic small molecules have also 

shown successful therapeutic results, with TDM-1 serving as a prominent example of this 

class of antibody conjugate [58]. Recently, an anti-EGFR antibody conjugated to a siRNA 

targeted to KRAS has shown activity in vitro and in vivo in colon cancer resistant to EGFR 

inhibitors [59].

An alternative target agent that can be conjugated to siRNA is the nucleic acid based 

aptamer. These aptamers consist of synthetic short single-stranded RNA or DNA ligands that 

have been selected for target binding with high affinity and specificity. Ever since the 

generation of aptamers that target the extracellular domains of transmembrane receptors 

overexpressed in cancer cells, aptamers have gained extensive attention as active targeting 

moieties for cancer therapeutic agents including siRNA [60]. Meyerholz et al. developed an 

aptamer conjugated RNA-only approach for prostate cancer therapy. When siRNAs targeting 

the pro-survival genes, Plk1 and Bcl2, were conjugated with aptamers that specifically binds 

to prostate-specific membrane antigen (PSMA) and injected intratumorally in a xenograft 

cancer model, inhibition in tumor growth was observed [61]. Despite the high specificity and 

binding affinity of aptamers, aptamer-siRNA conjugation faces barriers arising from, among 

other causes, stability issues due to unprotected negative charge.

In addition to being used as for direct coupling to siRNAs both antibodies and aptamers can 

be used to target nanoparticles containing siRNAs. As a surface targeting moiety, different 

types of aptamer facilitate nanoparticle delivery to the specific tumor sites.

 3. Current Targets for siRNA in Cancer

Cancer occurs as a result of a series of gene mutations in a cell. Generally, a combination of 

activating mutations in so-called oncogenes and the loss of tumor suppressor genes lead to 

uncontrolled cell growth and blockage of natural apoptotic processes [62, 63]. Because 

many key gene mutations involved in driving cancer, also known as driver genes, have been 

identified [64, 65], it is easy to see that siRNA therapeutics could be effective in cancer 
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treatment [66, 67]. A major advantage of using siRNA in cancer treatment is its ability to 

specifically inhibit any of the large set of cancer-associated genes without regard to the 

druggability of their protein products [67]. This allows us to potentially drug the 

undruggable. Furthermore, a diverse set of therapeutic siRNA molecules can be developed to 

target genes associated with the multiple signaling pathways which are aberrantly activated 

in tumors [68]. Table 1 summarizes the current status of siRNA targets for major cancers, 

which are discussed in more detail below.

 3.1. Lung Cancer

Worldwide, lung cancer is the most frequently occurring tumor type with the highest 

incidence of cancer-related mortality. Among three main types of lung cancer, non-small cell 

lung cancer (NSCLC) is the most common, comprising approximately 85% of all lung 

cancers [69, 70]. Lung cancers often metastasize, leading to treatment failures. Despite the 

development of novel molecular therapies, aggressive surgery and radio–chemical therapy, 

prognosis for most of these patients is still very poor. It is possible to deliver siRNA based 

therapeutics to the lung either by systemically or via intrapulmonary administration [71, 72]. 

The latter route allows lower doses of siRNAs, reducing undesirable systemic side effects, 

and also improves the half-life of siRNAs in tumors. Hence, siRNA based therapeutics 

should be considered for lung cancer treatment [73].

Since cancer is a genetic disease it is always worth asking which genes are most frequently 

altered in a given tumor type. Epidermal growth factor receptor (EGFR) nucleotide variants 

are found in various types of cancer including lung cancer [74]. NSCLC in particular 

displays frequent EGFR mutations, which occurs on exons 18-21, encoding a portion of the 

EGFR kinase domain. The most common mutation class consists of exon 19 deletions, 

which activate the tyrosine kinase activity of EGFR, resulting in induction of downstream of 

pro-growth and survival signaling pathways [75]. Notably, it has been possible to construct 

allele specific siRNAs against certain oncogenic EGFR mutants, which have displayed 

significant therapeutic effects in lung tumor models with mutant EGFR alleles. The wet-

weight of tumors treated with siRNAs targeting mutant EGFR were observed to be much 

lower than those of the control siRNA treated group. Furthermore, caspase-3 activity was 

upregulated in EGFR treated tumor tissue, indicating the induction of apoptosis. The allele 

specific EGFR siRNA treatment inhibited specific oncogenic EGFR alleles without affecting 

the normal EGFR allele, leading to a safe and effective treatment [76].

Activating mutations in KRAS frequently occur in lung tumors. Notably, in EGFR mutant 

lung tumors KRAS mutations can render them resistant to treatment with EGFR directed 

therapies. A seminal recent publication explored the anti-cancer therapeutic effect of 

targeting of both KRAS activation and loss of p53 function, another common lesion in many 

tumor types including lung tumors. The authors used siRNA and miRNA loaded polymer 

based nanoparticles in a genetically engineering mouse (GEM) model of lung cancer [77]. 

Nanoparticles loaded with siRNAs targeting KRAS and with a miRNA-34a mimic, which 

partially restores p53 downstream functions, were intravenously injected in a kras/p53 GEM 

model (KrasLSL-G12D/wt;p53flox/flox). Combination treatment with miR-34a and KRAS 

siRNA resulted in average lung tumor regression of 63% of its original volume and 
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increased apoptotic cells. This form of targeted multi-gene combination therapy is perfectly 

suited for siRNA strategies and allows personalized cancer therapy adaptable to various 

mutations identified in a particular patient cancer type. The mice which were treated both 

cisplatin and the nanoparticle formulation consisting of a combination of miR-34a and a 

KRAS siRNA survived significantly longer compared with mice treated with either single 

treatment. (Combination of miR-34a/siKRAS and cisplatin; 159.5±19.5d, siLuc ; 93.7±16.1 

d, cisplatin; 127.4±9.0d, miR-34a/siKRAS; 129.2±16.2d)

Human-ribophorin II (RPN2) is part of an N- oligosaccharyltransferase complex. Generally, 

this protein is known to facilitate human cancer resistance against chemotherapy drugs such 

as docetaxel. In addition, it has been reported RPN2 can serve as an anti-apoptotic protein 

that regulates tumor survival and cancer stem cell properties through the stabilization of 

mutant p53 [78]. To deliver naked RPN2 siRNA to the lung through inhalation, specifically 

astructured siRNAs termed, PnkRNATM and, nkRNATM were used [79]. The RPN2 

targeting siRNAs inhibited the growth of a A549 luc-C8 lung xenograft and suppressed 

RPN2 expression.

The oncoprotein mouse double minute 2 (MDM2) is a negative regulator of the p53 tumor 

suppressor, which inhibits the transactivation activity of p53 via a direct interaction. A high 

level of MDM2 gene amplification has been detected in many human tumor types, including 

lung carcinomas [80, 81]. While inhibition of MDM2 function could obviously be beneficial 

in tumors with wild type p53, it has also been reported that MDM2 can play a significant 

role in tumors featuring mutant p53. Thus MDM2 could be a potential therapeutic target for 

treatment of human NSCLC with either wild type or mutant p53 [82]. In this regard it has 

been found that MDM2 siRNA modified with a pH-responsive diblock copolymer (termed 

MDM2 siRNA/PMPC-b-PDPA), showed significant downregulation of MDM2 expression 

in a xenograft of the p53 mutant H2009 cell line. MDM2 knockdown also resulted in 

impaired growth of H2009 tumors through cell cycle arrest and apoptosis. The tumor sizes 

of MDM2 siRNA/PMPC-b-PDPA treated H2009 tumor xenograft mice were significantly 

smaller than the tumors in control siRNA treated mice [83].

 3.2. Liver Cancer

The total set of cancers in each organ type almost invariably constitutes a family of unique 

diseases. The major form of liver cancer is hepatocellular carcinoma (HCC), which is one of 

the most frequently occurring cancers worldwide. HCC is a complicated disease due to its 

broad epidemiology. Its causes include not only mutagenic environmental insults common to 

many tumors but also viral insults including those arising from hepatitis viruses. Hepatitis B 

and C infections are major risk factors for the development of HCC. Currently the treatment 

of HCC is limited. Surgical resection and transplantation are available to a minority of HCC 

patients who have an organ donor and are free of preexisting liver conditions [84, 85]. In the 

search for alternative modes of liver cancer treatment, many nucleotide based therapies, 

including siRNA therapeutics, that target signaling pathways specific to liver tumors, are 

now undergoing clinical trials [86].

HDACs, histone deacetylases, are crucial enzymes that regulate gene expression by deleting 

acetyl groups from histone substrates [87]. HDACs interact with key cancer-associated 
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transcription factors, such as ß-catenin, Myc, p53, Stat3, NF-Kb, TFIIE, etc., to regulate the 

expression of numerous proteins implicated in tumor formation and development. Thus, 

altered expression and pathological activity of HDACs can lead to tumor onset and 

progression. HDAC2, which is overexpressed in solid tumors, promotes cell cycle 

progression and prevents apoptosis by inhibiting action of the tumor suppressor p53 [88]. 

HDAC2 targeting siRNAs have demonstrated a reduction of liver cancer cell proliferation in 
vitro. The therapeutic effect of HDAC siRNA/Lipid nanoparticles (LNP) was demonstrated 

in effectively reduced liver tumor growth in an orthotopic xenograft model [89].

Integrins are a superfamily of cell adhesion receptors that bind to and interact with the 

extracellular matrix (ECM). They are assembled from small families of α and ß glycoprotein 

subunits, generating 24 unique noncovalent α/ß heterodimers. The roles of integrins are both 

important and diverse; they take part in the regulation of cell motility, differentiation, 

survival, and proliferation. Among the integrin subunits, Itgb1 (ß1-integrin subunit) plays a 

critical role in liver formation and in the proliferation of liver tumor cells [90]. 

Overexpression of Itgb1 promotes survival and induces resistance to chemotherapy. It has 

been reported that activating mutations in Itgb1 affect tumorigenesis [91, 92]. Daniel G. 

Anderson's group reported that HCC progression can be delayed by targeting Itgb1 with 

siRNAs. In this study human MET and δN90-ß-catenin were delivered to mice hepatocytes 

to construct a mouse model of spontaneous HCC [93, 94]. After the introduction of the 

oncogenes, injection of Itgb1 siRNA/LNP inhibited HCC progression [95]. Liver weights of 

the Itgb1 siRNA/LNP treated group were significantly reduced compared to those of control 

groups. HCC tissues also showed a significant reduction in the size and number of tumor 

foci and enlarged hepatocytes in the residual tumor nodules.

Survivin is a protein inhibitor of apoptosis that is strongly expressed in hepatocellular 

carcinomas, but is not expressed in differentiated adult tissues [96]. Over-expression of 

survivin protein can inhibit caspase activation, thereby leading to inhibition of apoptosis and 

stimulation of HCC cell proliferation [97]. A tumor growth inhibition study using survivin 

targeting siRNA delivered by RGD-PEG-g-PEI-SPION nanoparticles was reported [98]. 

Mice bearing tumors arising from human HCC cell line, Bel-7402, were injected with 

survivin siRNA/RGD-PEG-g-PEI-SPION and exhibited delay in tumor growth. Inhibition of 

the survivin gene expression by siRNA resulted in an increase of cleaved caspase-3 

expression.

Pokemon, a member of the POK family of transcriptional repressors, has been observed to 

have aberrant overexpression in multiple human cancers including liver tumors [99]. 

Pokemon plays a critical role in cellular transformation, as a central regulator of the ARF 

(Alterative reading frame)/p53 pathway and the Rb (retinoblastoma)/ E2F (Early- region −2 

transcription factor) pathway [100]. A reconstituted high density lipoprotein (rHDL) based 

delivery system was used for Pokemon siRNAs in a tumor model with HepG2 cells 

overexpressing scavenger receptor class B type I (SR-BI). SR-BI, which is expressed in the 

liver and most malignant cells, interacts with the major component of HDL, apoprotein A-I, 

to maintain cellular cholesterol homeostasis. The relative expression levels of the Pokemon 

and Bcl-2 protein were markedly reduced in tumor tissues of the mice treated with 
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cholesterol conjugated Pokemon siRNA/ rHDL as compared to the control group resulting in 

tumor growth inhibition [101].

Human telomerase reverse transcriptase (hTERT) is an essential component of human 

telomerase, which is often required to maintain stable telomere length in cancer cells. In 

liver and breast cancer cells, hTERT is highly expressed, which correlates with telomerase 

activity. Treatment with a siRNA targeting hTERT conjugated with bioreducible 

polyethylenimine(SS-PEI) reduced telomerase activity levels and proliferation of HepG2 

cells in vitro. Also, when hTERT siRNA/SS-PEI was injected into HepG2 tumor bearing 

mice by intratumoral (i.t.) injection, tumor sizes were significantly smaller compared to the 

control siRNA treated tumors [102].

The CSN5 protein is the catalytic center of the mammalian COP9 signalosome (CSN) 

complex and plays a crucial role in cell proliferation and senescence. In particular, CSN5 

binds to transcription factors c-Jun and JunD. It also regulates the stability and controls the 

function of numerous intracellular regulators of cell proliferation and/or apoptotic signaling 

such as MYC, c-Jun, JunD, NFkB, and p53 [103]. Generally, high expression of CSN5 has 

been found in numerous human cancers, suggesting that knockdown of CSN5 could be an 

effective anti-cancer strategy [104, 105]. Therapeutic efficacy of CSN5 gene knockdown 

was reported as early as 2011 [106]. In orthotopic mouse model of hepatocarcinoma, Huh-

luc cells, were treated with either ß-galactosidase siRNA/SNALP or CSN5 siRNA/SNALP 

(2mg/kg) by intravenous injection. The CSN5 siRNA/SNALP effectively inhibited the 

hepatic tumor growth whereas the ß-galactosidase siRNA/SNALP injected group showed 

partial liver parenchyma. Tumor growth inhibition effect arising from CSN5 knockdown was 

driven by induction of apoptotic cell death and delay of cell cycle progression.

 3.3. Prostate Cancer

Prostate cancer is the most frequent malignant cancer in men. Several therapies are 

recommended for prostate cancers including prostatectomy, anti-androgenic hormone 

therapy, chemotherapy and radiotherapy. However, these therapies often permanently lower 

the quality of life or result in negative impact to healthy organs. A frequent genetic lesion in 

prostate cancer is the loss of the PTEN tumor suppressor gene, the protein product of which 

antagonizes the PI3K pathway. However in clinical trials, PI3K inhibitors have showed little 

effect as monotherapies. Thus the area is wide open for new targets and therapies directed 

toward them. Notably, oncogenes related to proliferation and metastasis of prostate cancer, 

have been identified as potential targets for RNAi based prostate cancer therapy [107].

Myc is a transcription factor associated with various biological processes, including 

replication, transcription, protein synthesis, cell division, and more [108]. Overexpression of 

Myc is observed frequently in primary and metastatic prostate cancers. A recent study by the 

Catapano lab provides insight into the efficacy of Myc inhibition by siRNA in prostate 

cancer-stem like cells using in vitro and in vivo models of human prostate cancer. Treatment 

with Myc targeting siRNAs resulted in a reduction of stem-like properties such as self-

renewal and tumor-initiation, while further inducing cell senescence in monolayer cultures 

of human prostate cancer cells. Tumor masses of Myc siRNA/jet-PEI treated mice group 
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were almost completely suppressed, whereas the control group had a sharp increase in tumor 

growth [109].

Casein kinase II (CK2) is a serine/threonine kinase, which exists as tetramer of two α 

catalytic subunits and two ß regulatory subunits. CK2 is amplified in various cancer types 

and can activate and regulate the stability of several tumor suppressor proteins, oncogenes, 

and even key transcription factors like c-Myc, c-Jun, and NFκB [110, 111]. To test whether 

CK2 might be a suitable target for therapy, mice bearing human prostate cancer cell 

xenografts were treated with CK2 siRNA using nanocapsules. The treated mice resulted in 

about 50% less tumor mass and reduced tumor nodules compared to the vehicle treated 

animals [112].

As noted above prostate cancer is largely promoted by altered signaling in the androgen 

receptor (AR) and the PI3K/PKB/mTOR pathways. Notably, signaling in both pathways is 

coordinated by KLK4 (Kallikrein-related peptidase 4). Thus KLK4 has an important role in 

PCa progression via its role in regulating cell-cycle gene expression. Although KLK4 is 

expressed in the normal prostate gland, it is significantly more expressed in malignant 

prostate cancer. [113, 114]. Therefore, it is not surprising that LNCaP or VCaP prostate 

cancer cells treated with siRNA/liposome targeting KLK4 showed down-regulated AR 

signaling and KLK4 gene expression. Furthermore, the KLK4 siRNA treated mice showed a 

dramatic tumor regression of 90% [115].

Notch signaling is associated with multiple cellular processes including differentiation, 

proliferation, and apoptosis. Dysfunctional regulation of the Notch pathway has been 

demonstrated in a range of cancers. In prostate cancer cells, abundant Notch1 expression 

influences tumor invasion. Recent studies indicate that siRNA mediated Notch1 knockdown 

inhibited invasion and proliferation of prostate cancer cells [116]. Down-regulation of 

Notch1 expression by a Notch1 targeting siRNA/PSAM-protamine inhibited tumor growth 

and increased apoptosis in a LNCaP subcutaneous murine xenograft model [117].

 3.4. Breast Cancer

Breast cancer is the most frequently diagnosed type of cancer and the leading cause of 

cancer related death in women [118]. Breast cancer can be divided into distinct subtypes by 

using either immunohistochemical (IHC) staining patterns for key receptors or, more 

recently, molecular profiling. The resulting subtypes display different clinical behaviors and 

responses to treatment [119]. There are many treatments for breast cancer including surgery, 

chemotherapy, and radiotherapy as well as the use of targeted therapies. Notably, inhibition 

of various genes that cause breast cancer through siRNA has been tested in animal models.

As one common way of subdividing breast cancers, tumors are classified by their expression 

of three receptor molecules: the estrogen receptor, the progesterone receptor, and the human 

epidermal growth factor receptor 2 (HER2). The estrogen receptor alpha (ER-α), a ligand-

activated transcription factor, is one of two types of estrogen receptor. It plays a crucial role 

in regulation of the cell cycle progression of mammary epithelial cells. Approximately 70% 

of breast cancer cases are observed to be ER-α positive often with overexpression of 

estrogen receptors [120]. To test siRNA targeting the estrogen receptor, MCF-7 cells, an ER-
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α positive cell line, were used to create xenografts. Intravenous injection with ER-α targeted 

siRNA-encapsulated stealth nanocapsules composed of PEG-co-poly(ε-caprolactone-co-

dodecyl ß-malate) reduced tumor growth and downregulated the level of ER-α [121].

Approximately 15 % of breast tumors are known as triple-negative breast cancer (TNBC), 

because they lack IHC expression in HER2, estrogen receptor, and progesterone receptor 

[122, 123]. Since the growth of TNBC is not dependent on the hormones and/or HER2 

receptors, common therapies such as anti-hormonal or HER2 targeting therapies are 

ineffective. Goga et al. provided a potential target for TNBC treatment by discovering that 

inhibition of cyclin-dependent kinase 1(CDK1) induced synthetic lethality in TNBC 

overexpressing c-Myc. As a synthetic lethality-based TNBC treatment, CDK1 targeting 

siRNA were used with cationic lipid assisted poly(ethylene glycol)-b-poly(D,L-lactide) 

(PEG-PLA) nanoparticles (lipid NP) as the siRNA carrier . CDK siRNA/lipid NP delivered 

by systemic injection significantly reduced tumor growth in mice bearing c-Myc 

overexpressing SUM149 and BT549 xenografts without any systemic toxicity or innate 

immune response [124]. Obviously, siRNA directly targeting Myc described earlier could 

also be tried in this setting.

Another kinase target that has been examined in breast cancer is the ataxia-telangiectasia 

mutated (ATM) protein, a serine/threonine kinase that regulates DNA damage repair and cell 

cycle checkpoints and activates downstream signals including p53, CHK2, and BRCA 

following as DNA damage. For breast cancer therapy, an ATM targeting siRNA/porous 

silicon-based multistage vector (MSV) was administered in an orthotopic MDA-MB 231 

mouse model. Biweekly treatment of ATM siRNA/MSV inhibited tumor growth and 

reduced ATM expression in IHC assay of tumor tissue [125].

Aberrant epigenetic regulation is frequently associated with the tumorigenic process. DNA 

methylation is a key epigenetic marker that serves as an important regulator of gene 

transcription. DNA methylation is organized and maintained by DNA methyltransferases 

(DNMTs). Aberrant patterns of DNA methylation have been identified in many types of 

human malignancies; for example, hypermethylation of tumor suppressor genes at CpG 

islands is associated with gene inactivation [126]. Jun Wang et al. reported that a DNMT 

targeted siRNA coupled with a fusion protein consisting of an anti-HER2 single-chain 

antibody fragment with a positively charged protamine carrier has successfully suppressed 

DNMTs in the HER2-expressing BT474 breast tumor model. Down regulation of DNMTs 

by siRNA induced re-expression of the RASSF1A tumor suppressor gene, which led to 

inhibition of tumor growth [127].

The osteopontin (OPN) protein binds to multiple cell surface receptors to induce cell 

adhesion and migration. OPN has been considered as a potential prognostic marker in breast 

cancer progression because elevated levels of OPN have been found in blood and plasma of 

patients with metastatic breast cancer. For this reason, suppression of OPN may be utilized 

as a therapeutic strategy. When mice bearing MDA-MB-231 xenografts were treated with an 

OPN targeting siRNA encapsulated in glycerol propoxylate triacrylate (GPT) and spermine 

(SPE) nanoparticles, significant inhibition of breast tumor growth with accompanying 

knockdown of OPN were observed [128].
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 3.5. Ovarian cancer

Ovarian cancer is one of the most common types of cancers in women and the leading cause 

of death in gynecologic cancers. Debulking surgery and chemotherapies with platinum-

taxane drugs are generally used in the treatment of ovarian cancer. Despite treatment, the 

majority of ovarian cancer patients develop recurrant tumors that are resistant to 

chemotherapy. Consequently, there is an important need for alternative therapeutics for 

ovarian cancers [129, 130]. However, in contrast to the situation discussed above for TNBC, 

for ovarian cancers there is a relative dearth of genetically defined targets. One frequent 

genetic lesion is the loss of the tumor suppressor BRCA1, which has been attacked via 

PARP inhibitors. Genetic or epigenetic loss of expression of the tumor suppressor PTEN is 

also frequent, a lesion that can be attacked with PI3K inhibitors. However, there is a clear 

need for new targets and strategies in this disease.

Recently, Cheung et al. used genome-scale pooled shRNA screens in human cancer cell lines 

to define 54 overexpressed and essential genes in ovarian cancer that require further 

validation in vivo [131]. Among them, ID4, a helix-loop-helix (HLH) transcriptional 

regulator, is highly expressed in most primary ovarian cancers and is, moreover, 

overexpressed in 32% of high-grade serous ovarian cancers but not in normal tissues 

including ovary. In a flank xenograft tumor model using OVCAR-8 cells, both intravenous 

and intraperitoneal injection of ID4 siRNA in a tumor penetrating nanocomplex (TPN) 

lowered tumor burden compared to control groups. Histological analysis of tumor tissues 

from ID4 siRNA/TPN treated mice revealed suppression of ID4 expression levels and higher 

levels of apoptosis in tumor tissues [132].

Ephrin type-A receptor 2 (EphA2) is a tyrosine kinase receptor in the ephrin family that 

functions as an oncoprotein. EphA2 is highly expressed in many cancer types, but expressed 

at low levels in normal tissue in adults. This is particularly true for ovarian cancer, where 

approximately 70% of human ovarian tumors overexpress EphA2. Treatment of several 

orthotopic ovarian cancer models with paclitaxel and an EphA2 siRNA/DOPC liposome via 

intraperitoneal injection significantly reduced tumor growth by 81% in the case of a 

SKOV3ip1 model and by 48% in a HeyA8 model [133].

Enhancer of Zeste Homolog 2 (EZH2) functions as an epigenetic regulator of gene 

expression that works via histone methylation. Overexpression of EZH2 appears to be 

involved in cancer progression, functioning by silencing the expression of tumor suppressor 

genes via specific histone modifications [134]. Recently, EZH2 targeting siRNA were 

incorporated into chitosan nanoparticles and utilized along with docetaxel conjugated 

PLGA-PRINT nanoparticles as a combination treatment for ovarian cancer. The 

combination therapy resulted in 95% reduction in tumor weight and further reduced 

metastasis in orthotopic mice models of ovarian cancer [135].

CD44 is a cell-surface glycoprotein and a major receptor for hyaluronic acid. Hyaluronic 

acid is a main component of the peritoneum, where ovarian cancer metastases frequently 

occur. CD44 is involved in cancer progression and metastases but is not expressed in normal 

cells [136]. For ovarian cancer treatment, paclitaxel and CD44 targeting siRNA with a tumor 

specific targeting peptide conjugated dendrimer were intraperitoneally administered in mice 
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bearing human cancer cells directly isolated from malignant ascites of patients with 

advanced ovarian carcinoma. The combination treatment group showed almost complete 

tumor inhibition of tumor growth compared to tumors in mice treated with paclitaxel and a 

control siRNA [137].

C-Jun-NH2-kinases (JNKs) are serine/threonine kinases that bind and phosphorylate c-Jun. 

They are members of the mitogen-activated protein kinase family that regulates cell 

proliferation, apoptosis, and differentiation. Continuous activation of JNKs leads to cancer 

initiation and progression [138]. Of the two major JNK isoforms, JNK1and JNK2, JNK1 

specifically plays an important part in cell survival by controlling cell cycle arrest and 

apoptosis [139]. To determine whether JNK1 knockdown by siRNA is indeed capable of 

eliciting anti-ovarian tumor effects in vivo, JNK1 siRNA packaged in DOPC-liposomes was 

used to treat to HeyA8-bearing and SKOV3ip1-bearing nude mice in combination with 

docetaxel, the current standard of care. Significant decreases in tumor weight and the 

number of metastatic nodules were observed in the combination treatment group in 

comparison to the groups treated with either JNK1 siRNA/DOPC or docetaxel alone [140].

X-linked inhibitor of apoptosis protein (XIAP) is an anti-apoptotic protein that prevents 

apoptotic cell death in tumors. XIAP binds to caspase proteases that are primarily 

responsible for cell death and stops the proteolytic activation of caspases. Because 

deregulation of XIAP can contribute to cancer, high level of XIAP expression has been 

identified as a tumor marker. In SKOV-3 tumor bearing mice, administration of XIAP-

siRNA/HER2-PLI (HER2 targeting PEI and PLL based copolymer) via tail vein injection 

significantly delayed tumor growth and increased survival time compared to the control 

groups [141].

 4. Future prospects

Despite our ever-increasing knowledge of cancer, cancer is still the second leading cause of 

death, overall, and is predicted to become the leading killer as heart disease therapies 

improve. Thanks to a multitude of large scale sequencing efforts, numerous genetic 

alterations have been identified in tumors, opening the way for the generation of siRNA 

therapeutics targeting both the mutant genes and in lesions in cancer signaling pathways 

arising from these genetic defects. Small molecule or antibody drugs have proven quite 

effective for targeting certain cell surface and intracellular protein targets. Recently small 

molecules and antibodies for cancer immunotherapy have been shown to have strong 

antitumour effects [142, 143]. However, transcription factors and certain key oncoproteins 

such as Ras have proven difficult to access and block with conventional drug-based or 

antibody mediated approaches. In terms of “undruggable” disease targets, siRNA 

therapeutics have the potential to specifically target and silence almost any gene target [144]. 

In addition, their process of identifying and optimizing an siRNA for a target is relatively 

rapid and siRNAs are easy to synthesize [145]. These characteristics strongly support the 

need to develop siRNA therapeutics for cancer treatment.

Key challenges to siRNA usage in clinic lie both in selecting the best of this vast selection of 

possible targets and in optimizing delivery of the siRNA agents to individual tumors. Choice 
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of target and delivery route are very important for enhancing therapeutic efficacy in cancer, 

and should be done in a manner designed to minimize side effects in normal tissue. Since 

delivery and target selection are perhaps the ultimate limitations for siRNA based therapy we 

will conclude with a few thoughts on these final challenges.

 4.1. Delivery challenge

Problems with pharmacokinetics and delivery are known to limit the usefulness of many of 

the small molecule cancer therapeutics that have been developed in recent years. However, 

delivery of siRNA into target cells is even more challenging than delivery of conventional 

molecular drugs to deliver into target cells. Inherent characteristics of siRNAs, including 

negative charge, rigid structure, size, and stability, complicate their passive diffusion across 

the cell membrane; thus, endocytosis is the major mechanism for intracellular delivery of 

siRNA. Another challenge in siRNA therapy is the off-target silencing of unintended genes. 

While the design of an siRNA is meant to maximize knockdown of a specific gene target, 

nevertheless, marginal mismatch of the complementary sequence in mRNA is often 

tolerated, leading to non-specific knockdown of genes [146].

Exogenous siRNA triggers Toll-like receptor (TLR) mediated innate immune response in 

both sequence-dependent and independent manners. The TLR-3 pathway is activated by 

siRNA independent of sequence, whereas TLR-7 in dendritic cells and TLR-8 in monocytes 

are activated to produce proinflammatory cytokine in a sequence-specific manner [147-149]. 

Several modification strategies, including 2’-O-methyl chemical modification, have proved 

to avoid stimulation of the innate immune response; however, the mechanism behind the 

activation of the immune system still needs further explanation to help avoid side effects in 

clinical trials.

The pharmacokinetics and pharmacodynamics of siRNA based therapeutics in vivo are just 

beginning to be studied in the clinic. Optimal dosage levels, timing and duration are 

expected to vary depending on delivery and targeting strategy, choice of target genes, and 

disease. Thus our understanding of siRNA based therapies is in its infancy.

 4.2. Targeting challenge

As can be seen in the previous sections on specific diseases, cancer is a target rich disease. A 

major question is which targets deserve the most attention, in the target rich environment 

that we have described. Here perhaps we can rely on a combination of our knowledge of the 

genetic basis of cancer and common sense to help make these difficult choices. Cancer is a 

genetic disease and many successful small molecule therapeutics have directly targeted key 

genetic lesions. Thus, we should strongly consider potential genetic targets but perhaps 

concentrate our efforts on targets that are difficult to reach with small molecules. For 

example, oncoproteins like c-Myc or KRAS are presented in mutated form in about 50% of 

human cancer types [150]. However, no drugs targeting either c-Myc or KRAS directly have 

been approved, mainly because of their chemically intractable characteristics. Therefore, 

RNAi therapeutics against these genes justifiably rank high on target lists.

Further targets are being identified that will allow marshalling of the immune system against 

tumors and blocking cancer support systems such as the vasculature that facilitate tumor 
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growth. Immunotherapies targeting programmed cell death protein 1 (PD1, Nivolumab), 

programmed cell death ligand 1 (PDL1) and cytotoxic T lymphocyte antigen 4 (CTLA4, 

Ipilimumab) have shown exceptional success in melanoma, Hodgkin lymphoma, non-small-

cell lung cancer (NSCLC) and bladder cancer, by blocking immune-inhibitory signals, thus 

enhancing the immune response against cancer [151]. SiRNA therapy is also suited for 

targeting immune cells because it can be modified to target a specific cell type and used for 

individual or multiple targets. Anti-tumor immunotherapies with siRNAs against 

immunosuppressive factors have been reported in dendritic cells [152-155], monocytes[156] 

and tumor associated macrophage [157] and have exhibited significant results in cancer 

treatment. In study by Dolina et al., Pdl1 was effectively silenced in Kuffer Cells via in vivo 

administration of PD-L1 siRNA encapsulated in lipidoid nanoparticles (LNP) into mice. 

Silencing of Pdl1 effectively enhanced the NK cell and CD8+ T cell intrahepatic 

accumulation, viral clearance, and CD8+ T cell memory to hepatotropic viral infection. This 

study demonstrated that transient knockdown of PD-L1 using siRNA directly on the disease-

causing cell type might even have benefits when compared to monoclonal antibody usage 

[158].

Alternatively, a high priority should be placed on investigating multi-targeted gene therapy 

utilizing a combination of siRNAs to block several pathways. This approach parallels efforts 

to generate combinations of small molecule therapies, but can be more easily achieved using 

siRNAs. As mentioned earlier, different types of small RNAs (e.g., siRNA and miRNA) can 

be partnered in combination therapy [77].

Combination therapy with siRNAs and chemotherapeutic drugs is a credible alternative 

method to combat tumor heterogeneity and chemo-resistant tumors [159-161]. The 

combination therapy can overcome multi-drug resistance and improve drug therapeutic 

response. Amiji group tested combination treatment with two anti-apoptotic genes, bcl-2 and 

survivin, targeting siRNA and cisplatin to overcome drug resistance in NSCLC [162]. 

Overexpressed bcl-2 in NSCLC is involved in tumorigenesis and drug resistance as an 

activator of anti-apoptotic cellular defenses. Using cisplatin-resistant tumor-bearing mice, 

combination therapy exhibited more effective tumor growth inhibition compared to single 

therapies as proved by following % inhibition: control siRNA + cisplatin 29%, bcl-2 siRNA 

+ cisplatin 58%, and survivin siRNA + cisplatin 52%. Furthermore, the combination of bcl-2 

and survivin siRNA and cisplatin treatment suppressed tumor growth by 62%.

Finally, a combination approach using siRNA with a variety of cancer therapies such as 

chemotherapy, immunotherapy, radiation therapy, or photodynamic therapy may 

dramatically improve the efficacy of cancer therapy. In this strategy, each form of therapy 

can be used on targets particularly suited to the therapy type, such as small molecules 

inhibitors for kinase targets and siRNAs for targets that are structurally unsuited to small 

molecule attack. Moreover since different therapeutic modalities may trigger different forms 

of resistance mechanisms such as P-glycoprotein (P-gp), multidrug resistance-associated 

proteins (MRP1, MRP2) for small molecules drugs and other yet to be determined modes for 

siRNAs, such multimodal therapies may be harder for tumors to circumvent. It is our strong 

hope that by skillful delivery and careful target selection siRNA nanoparticles may take a 
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prominent place in the armamentarium that is being assembled to treat the many diseases 

that constitute cancer.
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Figure 1. 
Development process of siRNA therapeutics for cancer treatment
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Figure 2. 
Chemical Modifications and siRNA
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Table 1

Types of Conjugated siRNA

Conjugation Structure Function Example

Cholesterol Increases hydrophobicity for stability, free 
nucleases resistance of siRNA in serum, 
and mRNA suppression by polyplexes

Cholesterol (C27) [55, 57, 163, 164]
Cholesteryloxypropan-1-amine (COPA) and 
Cholesteryl-2-aminoethylcarbamate (CAEC) [165]

Peptide Cell-penetration peptides (CPP) is able to 
cross the biological membrane for 
intracellular delivery

TAT [166, 167]
MPG8 [168]
Pep-3 [169]
Penetratin [57]
Transportan [170]

Antibody Antibody increases the target ability by 
ligand binding to specific receptors of 
cancer

Trastuzumab
anti-TENB2, anti-NaPi2b [171]
F105-P[172]
F5-P [173]
HIRMAb, TfRMAb [174]
Anti-EGFR [59]

Aptamer Aptamer selectively deliver siRNA to 
affected tissue via specific binding with 
reduced side effects

PSMA aptamer [61, 175-177]
BAFF-R aptamer [178]
HER2 aptamer [179]
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Table 2

siRNA Targets for Treatment of Major Cancers

Cancer type siRNA/target gene Route Animal model siRNA modification/Delivery system Ref.

Lung

RPN2 inhalation A549-luc-C8 cells via I.V. naked PnkRNA and nKRNAs [79]

C7orf24 jet injection EBC-1, S.C. naked siRNA [180]

Mcl1 Intratracheal B16F10 or LLC, metastatic lung 
cancer

liposome [71]

CD31 i.v. LLC, metastatic lung cancer loposome [181]

Bcl2 i.v B16, metastatic lung cancer Protein, cationic bovine serum 
albumin (CBSA)

[182]

NPT2b inhalation K-ras LA1 model polymer [183]

MDM2 i.v. H2009, S.C. Polymer [83]

Survivin/cyclin B1 i.v. TSA-Luc, metastatic lung cancer stickty siRNA/polymer [184]

HDM2/C-Myc/VEFG i.v. H460 or A546 NSCLC, S.C. liposome [185]

Survivin/Bcl-2+Cisplatin i.v. A549 resistant, S.C. Polymer [162]

Liver

HDAC2 i.v. Huh7-luc+, orthotopic liver tumor 2′-OMe modification / LNPs [89]

Polo-like kinases (PLKs), i.v. induction by Diethyl nitrosamine 
(DEN)

fusogenic liposome [186]

β1-integrin i.v. MET/DN90-β-catenin-induced tumour 2′-OMe-modification/ LNPs [95]

RRM2, adriamycin i.v. HepG2 Orthotopic HCC liposome [187]

various siRNA (KRAS, NHP2L1, 
BIRC5,CDCA1,PSMA2, Aurora B, 

etc)

i.v. HuH7 liver tumors liposome [188]

Survivin i.v. Bel-7402, S.C. RGD-Polymer [98]

Pokemon i.v. HepG2, S.C. Cholesterol conjugation/Liposome [101]

hTERT i.t. HepG2, S.C. Cationic Polymer [102]

RhoA i.v. SMMC-7721, S.C. anti-EGFR Fab’-liposomes [189]

CSN5 i.v. Huh7, orthotopic transplantation 2′-Ome modifications / LNPs [106]

COP1 i.v. HepG2, Huh7, orthotopic 2′-Ome modifications / LNPs [190]

Prostate

HSP 27 i.t. PC-3, S.C. amphiphilic dendrimer [191]

survivin i.t. PC-3, S.C. lipid+PEI hybrid nanocarrier (LPN) [192]

Bcl2 i.v. PC-3, Orthotopic cholesterol conjugation/ lipid 
nanoplatform,

[193]

Myc i.p. PC-3, S.C. in vivo-jetPEI [109]

plk-1 i.t. PC-3 and LNCaP, S.C. Aptamer [175]

YB- 1+ rapamycin retro orbital PC3, S.C. trilayer polymeric micelle [194]

notch1 i.v. LNCaP, S.C. anti-PSMA scFv fusion proteins [117]

HIF-1α+ Dox i.v. PC3, S.C. Micellar nanoparticle (MNP) [195]

VEGF

i.v. PC3, S.C. thiolated siRNA/chitosan based 
polymer

[30]

i.v. PC3, S.C. cyclodextrin modified polymer [196]

i.v. TRAMP C1, S.C. pH-triggered amphiphilic polymer [197]

AR i.v. LNCaP, S.C. LNP [198]
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Cancer type siRNA/target gene Route Animal model siRNA modification/Delivery system Ref.

Bcl-Xl+ cisplatin i.v. PC-3, S.C. atelocollagen [199]

PKN3 i.v. DU1-45, S.C. / PC-3, Orthotopic Atu027 [200]

AURKB, and EGFR i.t. PC3, S.C. Hiperfect [201]

cyclin B1 i.v. PC3, S.C. Amphipathic peptide carrier MPG-8 [168]

EZH2, and p110a plk-1+ paclitaxel 
Plk1

i.v. PC-3M-luc-C6, heart injection/bone 
metastasis

atelocollagen [202]

Breast

AURKB, and EGFR i.v MDA-MB-435s, S.C. polymer based Micelleplex [203]

cyclin B1 i.v. MDA-MB-435s, S.C. cationic lipid assisted PEG-PLA 
nanoparticles

[204]

CDK1 i.v SUM149 or BT549, S.C. cationic lipid assisted PEG-PLA 
nanoparticles

[124]

Erα i.v. MCF-7, S.C. polymer nanocapsule [121]

DNMTs i.v. BT474, S.C. anti-Her2 ScFv-protamine (F5-P) [127]

RhoA i.t. MDA-MB-231, S.C. Cytofectin™ Transfection Reagent [205]

ataxia-telangiectasia mutated (ATM) i.v. MDA-MB-231, orthotopic porous silicon-based multistage vector 
(MSV)

[125]

osteopontin (OPN) i.t. MDA-MB-231, S.C. glycerol propoxylate triacrylate-
spermine copolymer

[128]

Mcl-1 +RPS6KA5 i.t. MDA435_WT and MDA435_resistant 
(R), S.C.

lipid-substituted polymer [206]

P-gp +DOX i.v. MCF7/A, S.C. RGD-Liposome [207]

MnSOD _ MCF7-BK-TR cells co-transplanted 
with siRNA/NPs

PAMAM dendrimer based 
nanoparticles

[208]

Raf-1 i.t. MDA-MB-435, S.C. histidine–lysine carrier [209]

VEGF i.v. MCF-7 and HT1080, S.C. cholesterol conjugation/ high density 
lipoprotein

[210]

Ovary

EZH2+Docetaxel i.v. HeyA8 or SKOV3ip1, Orthotopic PLGA-PRINT nanoparticles [210]

VEGF i.t. A2780, S.C. arginine-grafted polymer-microbubble [211]

EphA2+pacritaxel i.p. HeyA8, orthotopic neutral liposomes [133]

Akt+pacritaxel i.t. SKOV-3, S.C. dendrimer [212]

XIAP i.v. SKOV-3, S.C. ternary copolymer [141]

Vasohibin2 i.v. DISS and SKOV-3, S.C. atelocollagen [213]

CD44+paclitaxel i.p. human ascitic cells, S.C. Dendrimer [137]

POSTN, FAK, and PLXDC1 i.v SKOV3ip1, HeyA8, and A2780, 
Orthotopic

RGD-Labeled Chitosan Nanoparticles [214]

EphA2 i.v. SKOV3ip1 or HeyA8, Orthotopic Mesoporous Silicon Particles [215]

c-Jun-NH2-kinases (JNK)+Docetaxel i.p. HeyA8 or SKOV3ip1, Orthotopic liposomes [140]

KLF6-SV1+Cisplatin i.p. SKOV3-Luc, Orthotopic Accell chemically synthesized 
siRNAs (Dharmacon)

[216]

FAK+Docetaxel i.p. SKOV3ip1, A2780-CP20, and 
HeyA8MDR, Orthotopic

Neutral liposome [217]
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