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Methods of nonuniform sampling that utilize pseudorandom number sequences to select points 

from a weighted Nyquist grid are commonplace in biomolecular NMR studies, due to the 

beneficial incoherence introduced by pseudorandom sampling. However, these methods require 

the specification of a non-arbitrary seed number in order to initialize a pseudorandom number 

generator. Because the performance of pseudorandom sampling schedules can substantially vary 

based on seed number, this can complicate the task of routine data collection. Approaches such as 

jittered sampling and stochastic gap sampling are effective at reducing random seed dependence of 

nonuniform sampling schedules, but still require the specification of a seed number. This work 

formalizes the use of subrandom number sequences in nonuniform sampling as a means of seed-

independent sampling, and compares the performance of three subrandom methods to their 

pseudorandom counterparts using commonly applied schedule performance metrics. 

Reconstruction results using experimental datasets are also provided to validate claims made using 

these performance metrics.
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 1. Introduction

The use of multidimensional NMR spectroscopy has become a staple of studies that 

characterize large or complex biomolecules. Following the introduction of two-dimensional 

acquisition methods [1], and the proliferation of three-dimensional methods for tracing 

protein backbones and sidechains [2, 3], NMR spectroscopists have utilized atomic 

connectivities to resolve biomolecular information into multiple dimensions. However, 

traditional multidimensional NMR acquisition is not without its disadvantages. Spectral 

resolution along each dimension is dependent on the longest sampled time in that dimension, 

and achieving high resolution often requires sampling to impractically long times in one or 

more dimension. Acquiring spectra to acceptable signal-to-noise (SNR) presents similar 

challenges [4]. Nonuniform sampling (NUS) of a small subset of points from a high-

resolution uniform (Nyquist) grid offers a powerful means of simultaneously increasing 

resolution [5, 6] and sensitivity [7–9] while reducing total experiment time [4, 10].

Collecting a subset of grid points – referred to as a schedule – from a Nyquist grid 

effectively multiplies the complete uniform time-domain data with that schedule’s indicator 

function. In the frequency domain, this is equivalent to the convolution of the schedule’s 
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point-spread function (PSF) with the spectrum of the complete data. Naïve application of the 

discrete Fourier transform to such data (i.e. using the nuDFT) would suffer from this 

convolution, resulting in drastically reduced signal quality and increased noise and 

interferences, or artifacts [11]. Consequently, non-Fourier methods of spectrum analysis 

must be employed to reconstruct the missing time-domain information in NUS datasets. 

Popular methods include maximum entropy (MaxEnt) estimation or interpolation [5, 12–

14], iterative soft thresholding (IST) and its accelerated equivalent NESTA [15, 16], and 

multidimensional decomposition [17, 18]. Each method approaches the problem of spectrum 

estimation using a slightly different mathematical model, but all attempt the same result: 

deconvolution of the sampling schedule’s PSF from the measured data to yield the complete 

dataset. As a result, the PSF plays an important role as a first-order indicator of signal-to-

artifact ratios that may be expected for a given sampling schedule [19–23]. Figures 1 and 2 

illustrate representative PSFs of one- and two-dimensional NUS schedules, respectively.

Along with the reconstruction method applied, the second most relevant contributor to NUS 

performance is the sampling schedule itself. While the exact relationship between sampling 

schedules and reconstructed spectral quality remains unclear, several features of schedules 

have been linked to high performance. For example, weighting sampled grid points towards 

regions having higher local signal-to-noise is known to yield sensitivity increases [8, 24]. 

Minimizing gap lengths between sampled grid points has also been shown to improve 

spectral fidelity [25, 26]. One interesting feature of effective NUS schedules, known as 

incoherence, is based on how correlated or coupled sampled grid points are to each other in 

evolution-time space. In simple terms, the incoherence of a sampling schedule is a measure 

of how random, aperiodic or non-regular that schedule appears [27, 28]. Artifacts in NUS 

reconstructions, which result from aliasing of signals within the effective measured 

bandwidth [19], are substantially diminished by incoherent sampling. As a consequence of 

this relationship, nearly all contemporary methods of nonuniform sampling employ 

pseudorandom numbers to produce incoherent schedules.

While the use of pseudorandom numbers is a simple means of constructing incoherent 

sampling schedules, it adds further complications to the already nontrivial task of selecting a 

sampling schedule. For any selection of grid size and sampling method, there exists a nearly 

inexhaustible number of possible pseudorandom schedules, each determined by a seed 

value. In practice, each schedule in such an ensemble will perform differently and in a 

manner that cannot be predicted by its seed value [22]. As a result, most efforts to maximize 

the performance of NUS experiments involve the construction and scoring of a large number 

of sampling schedules [22, 25, 27, 29–31]. However, such Monte Carlo approaches to 

schedule optimization are limited in efficacy, as no consensus exists on how to quantitatively 

score schedule performance. Relative sensitivity (R′) metrics have been introduced to score 

schedules in the time domain, and metrics such as peak-sidelobe ratio (PSR), line width (λ) 

and mean artifact intensity (μPSF) have been proposed based on schedule point-spread 

functions [8, 22, 29]. Ultimately, accurate determination of schedule optimality depends on 

the amplitude, frequency and decay rate distributions of the signals to be measured [11], and 

thus remains a difficult challenge. For general routine spectroscopy, where these 

distributions are unknown or poorly specified, Monte Carlo optimizations must be 

performed to avoid selecting a pseudorandom schedule that performs poorly.
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In order to simplify the task of selecting a NUS schedule, substantial effort has been 

expended towards reducing the dependence of pseudorandom sampling methods on seed 

values. In all such efforts, constraints are applied to the underlying pseudorandom number 

generators in order to reduce the number of possible schedules obtained from a given 

method. For example, jittered sampling draws grid points from a set of equiprobable 

“jittered regions” based on a specified probability density function [21, 22]. On the other 

hand, gap sampling draws grid points based on a gap equation that defines the distance 

between sampled locations [15, 25, 31]. The logical end-game of efforts to reduce 

pseudorandom seed dependence is apparent: seed-independent sampling schedules that 

retain the performance and incoherence of pseudorandom methods. Towards that end, seed-

independent methods that construct one-dimensional density-based schedules [32] and 

multidimensional gap-based schedules [31] have been recently proposed. However, no seed-

independent method has yet been described to construct incoherent sampling schedules from 

arbitrary weighting functions on multidimensional Nyquist grids.

This work introduces the use of subrandom number sequences for constructing incoherent 

NUS schedules on multidimensional Nyquist grids. Three practical seed-independent 

methods are described as a direct result. The first method is a rejection sampling algorithm 

derived from quasi-Monte Carlo methods, which use subrandom sequences to efficiently 

sample the domains of multidimensional integrals [33, 34]. The second method combines 

subrandom rejection sampling with jittered region determination [22] to yield a seed-

independent result. The final method substitutes pseudorandom numbers with subrandom 

numbers in Knuth’s algorithm [35] in order to construct seed-independent Poisson-gap 

schedules. A detailed analysis of these methods is performed using multiple grid weighting 

functions on multiple grid configurations. The presented methods perform comparably to 

their pseudorandom counterparts according to several metrics of sensitivity and resolution 

enhancement, and exhibit the incoherence that is expected from NUS schedules. In 

particular, jittered subrandom rejection sampling offers strong guarantees on spectral quality 

and obviates the need for Monte Carlo schedule optimization, making it an ideal choice for 

routine spectroscopic experiments on samples with unknown signal characteristics, 

especially for multidimensional experiments.

 2. Theory

 2.1 Subrandom sequences

Pseudorandom sequences are deterministically constructed sequences of numbers that 

exhibit random character when viewed as a statistical ensemble. Methods of generating 

pseudorandom sequences must be initialized with a seed number, which will completely pre-

determine the sequence of numbers produced by the method. Subrandom sequences are also 

deterministically constructed, but do not share the statistical randomness of pseudorandom 

sequences. Nonetheless, subrandom number generators are often used within numerical 

simulations in place of pseudorandom numbers, and do not require initialization by a seed 

number. Thus, the replacement of pseudorandom sequences with subrandom sequences is a 

straightforward means of removing seed-dependence from a sampling method.
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Both presented methods operate by replacing pseudorandom numbers uniformly distributed 

in [0,1) with subrandom Halton sequences [34]. This replacement is an established practice 

of quasi-Monte Carlo methods, where it is used to substantial positive effect. When used to 

approximate multidimensional integrals, subrandom sampling boasts lower error bounds 

than pseudorandom sampling. Because the discrete Fourier transform itself involves the 

approximation of multidimensional Fourier integrals, it was postulated that the lower error 

bounds of subrandom sequences could benefit NUS experiments. A one-dimensional Halton 

sequence having radix b and length M is related to the base-b representation of the sequence 

of integers m from zero to M − 1, like so:

(1)

where db,j is the j-th base-b digit of m, and J is a large number that sets the maximum 

representable value. From this representation, the base-b Halton sequence gb is formed by 

reversing the radix index in the expansion:

(2)

This radix-inverted formula will produce values that uniformly cover the unit interval with 

increasing density as m increases. Halton sequences generalize naturally to 

multidimensional spaces: sequences in higher dimensions are constructed by selecting a base 

for each dimension such that all bases are coprime. For example, the Halton sequence in two 

dimensions could be formed by the bases (2,3). The selection of small coprime bases 

ensures a minimal correlation between dimensions, which is essential for constructing 

incoherent sampling schedules.

 2.2 Rejection sampling

Rejection sampling is a method of drawing pseudorandom samples from an arbitrary 

weighting function f(x) using only uniformly distributed pseudorandom numbers. For each 

random draw, a trial point x is drawn uniformly from the domain of f, and an associated 

amplitude u is drawn uniformly between zero and the maximum of f. A trial point x is 

rejected if its amplitude u falls above f(x), at which point a new pair (x, u) is drawn. Once a 

pair (x, u) is identified such that u ≤ f(x), the trial point x is accepted and returned as a new 

sample from the distribution f. To construct a sampling schedule having a density equal to δ 

using rejection sampling, a set of n random draws are made to satisfy the following 

equation:

(3)

where Nd is the grid size along dimension d of a D-dimensional Nyquist grid. It is important 

to note that n, and not δ, is the relevant quantity for determining signal-to-noise and signal-
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to-artifact ratio in nonuniform sampling, as is outlined by Kazimierczuk and colleagues [20]. 

As a result, all on-grid methods discussed here may be used to construct nearly off-grid 

schedules by increasing Nd and proportionally decreasing δ.

 2.3. Jittered rejection sampling

The jittered sampling algorithm, previously introduced [21] and refined [22] for drawing 

NUS schedules from density functions, is an effective method of constrained pseudorandom 

sampling. Rather than drawing each sampled grid point independently from the entire 

Nyquist grid, jittered sampling establishes a set of non-overlapping regions that have equal 

total probabilities of holding a sampled grid point. Once a set of jittered regions has been 

established, a single grid point is drawn from each region using rejection sampling. Jittered 

region determination does not depend on seed number, and tightly constrains any later 

pseudorandom sampling that is applied to each region. As a consequence, jittering is an 

effective general means of reducing seed-dependent variability of NUS schedules [22].

 2.4. Poisson-gap sampling

An alternative constrained pseudorandom sampling method, known as Poisson-gap 

sampling, also achieves reduced seed-dependent variability over pseudorandom rejection 

sampling [25]. Instead of constraining each sampled point to its own jittered region, gap 

sampling constrains the distances between sampled points [31] using a gap equation. In 

particular, distances between sampled points in Poisson-gap schedules follow a Poisson 

distribution whose rate parameter varies sinusoidally over the Nyquist grid. In 

pseudorandom Poisson-gap sampling, Knuth’s algorithm is utilized for drawing Poisson 

random deviates during schedule construction [35]. In short, Knuth’s algorithm simulates a 

Poisson process by drawing uniform random deviates and counting the number of deviates 

contained in a defined interval. See Supplementary Code Listing S-1 for an exact description 

of Knuth’s algorithm as it is used in this work.

 2.5. Subrandom sampling

By replacing all pseudorandom draws with numbers from an appropriately constructed 

subrandom sequence, the rejection sampling method can be transformed into a algorithm 

that no longer depends on seed numbers. For a schedule having D grid dimensions, a set of 

D + 1 coprime numbers is selected as the basis set of a Halton sequence [33, 34]. As an 

example, the bases 2, 3, 5 and 7 would be used for constructing three-dimensional schedules. 

These four bases would be used in a (2,3,5,7)-Halton sequence that produces uncorrelated 

values in [0,1)4. The first D values in each Halton sequence term are mapped onto trial grid 

points x, while the last value in each term is used as the amplitude u during rejection 

sampling. Jittered rejection sampling may similarly be transformed into a seed-independent 

algorithm using subrandom number sequences. Transforming jittered sampling into a seed-

independent method is a straightforward matter of replacing each pseudorandom draw with a 

subrandom draw from a (2,3)-Halton sequence, which yields a sampling algorithm that 

performs nearly identically to jittered pseudorandom sampling. Finally, Poisson-gap 

sampling may be stripped of its seed dependence by replacing its pseudorandom draws in 

Knuth’s algorithm with subrandom draws from a 2-Halton sequence.

Worley Page 6

J Magn Reson. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 3. Methods

 3.1. Schedule construction

In order to evaluate the effectiveness of subrandom number sequences in NUS, a Monte 

Carlo analysis was performed to compare subrandom schedules with their pseudorandom 

counterparts. All sampling schedules were constructed using a set of small C programs that 

use the srand48 and drand48 functions to generate uniform pseudorandom numbers. 

Exponentially weighted schedules were drawn from the following function:

(4)

where αd and xd are the forward-bias and grid index along dimension d, respectively, and D 
is the grid dimensionality. Gaussian weighted schedules were drawn from a similar function:

(5)

and sinusoidally weighted schedules were drawn from a quarter-sine function [8]:

(6)

A set of 200 pseudorandom schedules was constructed by rejection sampling from each 

weighting function at 30%, 10% and 5% sampling density. A second set of 200 schedules 

was constructed by jittered pseudorandom rejection sampling from each weighting function 

and sampling density. A final set of 200 pseudorandom Poisson-gap schedules was 

constructed at each sampling density. Nyquist grids having 1024, 64×64, 128×128 and 

32×32×32 points were utilized for each weighting function and sampling density, resulting 

in a total of 16,800 unique pseudorandom schedules. Each group of 200 pseudorandom 

schedules was paired with a subrandom schedule having equivalent Nyquist grid 

configuration, grid weighting, sampling density and sampling method.

 3.2. Performance metric calculations

In order to quantify various aspects of performance in each of the compared methods, a 

battery of several metrics was computed over all constructed sampling schedules. Using 

each schedule’s indicator function K, the adjusted relative sensitivity R′(K) was computed as 

previously described [8, 22]. All other metrics were computed using the PSF of each 

schedule, which was calculated as the magnitude of the hypercomplex multidimensional 

Fourier transform of each schedule’s indicator function. Each PSF was normalized to a 

maximum intensity of one. Figures 1 and 2 illustrate several representative PSFs for one- 

and two-dimensional schedules constructed using exponential and sinusoidal weighting. 

Further examples are shown in Supplementary Figures S-1 and S-2. The line width (λ) of 
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each schedule’s fundamental (zero frequency component) was estimated from its PSF 

according to a Lorentzian line shape, and a Lorentzian peak having that line width was 

subtracted from the PSF to yield only artifacts. Following subtraction of the fundamental, 

the mean and standard deviation intensity of all remaining artifacts – μPSF and σPSF, 

respectively – were computed as previously described [22]. Peak-sidelobe ratios (PSRs) 

were also computed as the inverse of the maximum artifact intensity (after fundamental 

removal) for each schedule [11]. Figure 3 summarizes the resulting performance metric 

computations for rejection-based schedules on one-dimensional grids. Analogous summaries 

for two- and three-dimensional rejection sampling schedules and gap sampling schedules are 

provided in Supplementary Figures S-3 through S-7. To simplify interpretation of Figure 3, 

sidelobe-peak ratios (SPRs) were plotted using the inverses of computed PSR values.

In addition to the data-independent performance metrics described above, one data-

dependent metric was computed to compare all methods on one- and two-dimensional grids. 

Two previously described uniformly collected datasets, a 1H-15N HSQC and an HNCA, 

were used in the computations [31]. For each one-dimensional schedule, the HSQC dataset 

was subsampled and reconstructed using 500 iterations of convex accelerated maximum 

entropy reconstruction (CAMERA) [14] in the MINT regime. For each two-dimensional 

schedule, the HNCA was also subsampled and reconstructed using the same parameters. 

Each reconstructed dataset was then compared to its uniformly sampled and DFT-processed 

equivalent using an ℓ2-norm:

(6)

where A holds the uniform reference spectrum and B holds the CAMERA-reconstructed 

spectrum. Unlike data-independent performance metrics that focus on the schedule and its 

PSF, the ℓ2-norm uniquely includes the effect of noise on schedule performance. In short, the 

ℓ2 error metric of a schedule quantifies the ability of CAMERA to reconstruct the true 

uniform data from its subsampled form in the presence of experimental noise. While the ℓ2 

errors in this work are specific to the CAMERA algorithm, it is wholly expected that any 

similar reconstruction method (i.e. regularized solvers like IST-D, IST-S, NESTA, or 

Cambridge/Rowland MaxEnt) would exhibit equivalent figures. Figures 4 and 5 summarize 

the ℓ2 errors of one- and two-dimensional rejection sampling schedules, respectively. 

Equivalent summaries for gap sampling schedules are shown in Supplementary Figures S-8 

and S-9.

As a final means of summarizing sampling schedule performance, each HSQC and HNCA 

reconstruction was peak-picked and subjected to an automated peak matching analysis. For 

each reconstructed HSQC spectrum, a peak list was generated using the NMRPipe 

peakHN.tcl utility [36], with a minimum intensity threshold of 3.0 × 107. A greedy 

algorithm was then used to construct a maximum-cardinality bipartite matching between the 

reconstruction’s peak list and the peak list of the reference spectrum. Chemical shift 

windows of 0.015 ppm and 0.08 ppm were used for matching along the 1H and 15N 
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dimensions, respectively. The number of peaks matched, lost and gained in the reconstructed 

spectrum were all counted. Lost peaks were any picked peaks in the reference spectrum 

without a match in the reconstruction. Gained peaks were any picked peaks in the 

reconstruction without a match in the reference. The intensities of matched peaks were 

compared against their true intensities using a Pearson correlation coefficient, rint, which 

captures the linearity of reconstructed peak intensities. Finally, root-mean-square chemical 

shift deviations of all matched peaks along 1H (dH) and 15N (dN) were also computed. 

Identical procedures, excepting a peak intensity threshold of 5.5 × 105, were used to 

generate peak-picking performance figures for 1H-15N projections of each reconstructed 

HNCA spectrum. Performance figures for exponentially sampled HSQC and HNCA spectra 

are summarized in Tables 1 and 2, respectively. Gaussian, sinusoidal and poisson-gap 

weighting methods all produced highly similar trends in peak-picking performance.

 4. Results

According to nearly all utilized performance metrics, subrandom rejection sampling yields 

comparable NUS schedules to those produced by pseudorandom rejection methods. 

Examination of Figure 3 and Supplementary Figures S-3 and S-4 provides several intriguing 

insights, most importantly that jittered subrandom sampling performs identically to it’s 

equivalent pseudorandom schedules at all dimensionalities. On the other hand, non-jittered 

subrandom sampling only truly performs equivalently to pseudorandom sampling in two or 

more dimensions (i.e. for NMR experiments having three or more dimensions). While 

pseudorandom sampling produces one-dimensional schedules with a range of PSR values, 

non-jittered subrandom sampling produces highly coherent schedules that exhibit very large 

artifacts (Figure 3, solid lines). Jittered subrandom sampling reduces artifact intensities in 

one-dimensional schedules, fully recovering the performance of pseudorandom sampling at 

δ ≤ 10% (Figure 3, dashed lines). In two dimensions (Supplementary Figure S-3), 

subrandom sampling performs almost equivalently to pseudorandom sampling, with the 

exception of PSR, which is once again consistently improved by jittering. Finally, the 

performance metrics of both jittered and non-jittered subrandom rejection sampling exhibit 

very tight agreement to pseudorandom sampling in three dimensions (Supplementary Figure 

S-4). In the cases of two- and three-dimensional sampling, jittering produces a heavier 

forward weighting of grid points, leading to increased relative sensitivity at the slight 

expense of line width. The slight forward weighting of jittered sampling is readily 

observable in schedules having 30% and 10% density, as illustrated in Supplementary 

Figures S-3 and S-4.

The ℓ2 reconstruction errors in Figures 4 and 5 shed further light on the performance of each 

method, and confirm the fundamental challenge of Monte Carlo schedule optimization. In 

the one-dimensional case, ℓ2 errors from non-jittered subrandom schedules (Figure 4, solid 

lines) display a sharp upward trend as δ decreases. This trend is corroborated by PSR values 

of the same schedules, which clearly indicate that one-dimensional non-jittered subrandom 

schedules are highly coherent (cf. Supplementary Figure S-2). However, the poor 

performance of these schedules is remedied by the incorporation of jittering (Figure 4, 

dashed lines). In all cases, 1D jittered subrandom sampling yields ℓ2 errors squarely within 

(if not below) the jittered pseudorandom ensemble. An identical theme was observed for ℓ2 
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errors from two-dimensional schedules (Figure 5), where the ℓ2 errors indicate that jittered 

subrandom sampling performs identically jittered pseudorandom sampling. In effect, 

moving from pseudorandom to subrandom jittered rejection sampling has achieved complete 

seed independence at no cost to schedule performance.

In the case of gap sampling, nearly all performance metrics indicated that subrandom 

Poisson-gap is a much poorer performer than pseudorandom Poisson-gap sampling (cf. 
Supplementary Figures S-5 through S-7). In general, subrandom Poisson-gap sampling 

suffered from larger artifacts and higher ℓ2 errors than its pseudorandom equivalent 

(Supplementary Figures S-8 and S-9). Compared to rejection-based methods, Poisson-gap 

schedules had lower relative sensitivities and PSF line widths, though the latter is largely due 

to the non-Lorentzian character of Poisson-gap PSF fundamentals (Supplementary Figure 

S-2). Both pseudorandom and subrandom Poisson-gap sampling tended to produce 

noticeably “striped” sampling patterns (Supplementary Figures S-10 and S-11) in two or 

more dimensions. The effect was even more noticeable at 5% sampling density. As sampling 

densities at or below 5% are becoming increasingly common in three- and four-dimensional 

NUS NMR [16, 28], this could limit the scope of usefulness of Poisson-gap sampling.

In addition to comparative insights between methods, Figures 3, S-3, and S-4 also offer 

several general insights into the behavior of pseudorandom nonuniform sampling. As 

expected, the intensity of artifacts increases as δ is decreased, which is reported by 

decreasing PSR and increasing μPSF and σPSF metrics. Furthermore, PSR appears to be a 

more sensitive reporter of relative artifact intensity, as it takes on a much broader range of 

values than μPSF or σPSF. Finally, it is observed that decreasing δ tends to affect the variance 
of R′ and λ more than it affects their central tendencies. In contrast, μPSF and σPSF appear to 

be relatively low-variance metrics that depend primarily on sampling density and less on 

seed number.

To further underscore the challenges of data-independent Monte Carlo pseudorandom 

schedule optimization, correlations between all performance metrics and ℓ2 were computed. 

Rather intruigingly, patterns of correlation differed as a function of schedule dimensionality, 

sampling density and weighting function. Correlations from all metrics to ℓ2 remained 

within ±0.5 for one-dimensional schedules, with one exception: highly sparse schedules 

yielded correlations between R′ and ℓ2 around −0.8. However, the expected negative 

correlation between PSR and ℓ2 error was not observed. For exponentially weighted two-

dimensional schedules, μPSF was found to slightly positively correlate with ℓ2 (circa 0.7), 

and R′ was slightly negatively correlated (circa −0.6). No other substantial correlations were 

observed between data-independent metrics and ℓ2 errors. In short, data-independent metrics 

failed to reliably predict reconstruction performance of a real experimental dataset in Monte 

Carlo analyses of one- and two-dimensional schedules. Given these results, it appears that 

the intuitive metrics commonly used to score schedule performance (e.g., PSR and R’) may 

not be robust predictors of practical NUS performance. This lack of consensus among data-

independent metrics, as well as between data-independent and data-dependent metrics, is 

exactly the challenge faced by practicioners of Monte Carlo schedule optimization. Indeed, 

prior knowledge of the signal characteristics to be measured would greatly improve 

estimates of schedule optimality.
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 5. Discussion and Conclusions

Three novel methods of on-grid nonuniform sampling were described based on subrandom 

number sequences. On one-, two- and three-dimensional Nyquist grids weighted by three 

common probability density functions, these methods performed almost indistinguishably 

from pseudorandom schedules, as measured well-established metrics of sensitivity 

enhancement (R′ and PSR), resolution enhancement (PSF line width), and artifact intensity 

(PSR, μPSF and σPSF). In addition, jittered subrandom schedules were found to perform well 

in concert with CAMERA reconstructions of experimental data. This work confirms 

previous results that jittered pseudorandom schedules exhibit performance that depends very 

little on seed value [22], and further demonstrates that jittered subrandom schedules fall 

within their pseudorandom ensembles. As a consequence, jittered subrandom sampling 

completes the logical journey from unconstrained sampling, to partially constrained 

(jittered) sampling, to completely constrained (jittered subrandom) sampling. Jittered 

subrandom sampling is therefore an ideal method for seed-independent NUS schedule 

selection.

The methods proposed in this work do not perform unequivocally better than their 

pseudorandom counterparts. Rather, they fall within or near the distribution of performance 

metrics computed from an ensemble of equivalently weighted pseudorandom schedules. 

From a statistical viewpoint, this implies that subrandom nonuniform sampling is 

indistinguishable from pseudorandom nonuniform sampling based on the computed metrics. 

As the subset of collected grid points is decreased below 10% of the total grid point count, 

the distinguishability of these methods further decreases (e.g., third columns of Figures 4 

and 5). When paired with a suitable reconstruction method, this indistinguishability is also 

reflected in the final spectra (e.g., Figure 6). Even at 5% sampling density, CAMERA 

reconstructions of nonuniformly sampled HSQC spectra display remarkable fidelity to the 

original data, whether sampled via pseudorandom or jittered subrandom schedules. 

However, as the third panel of Figure 6 illustrates, the high coherence of non-jittered 

subrandom sampling makes it a poor candidate for practical NUS experiments. Thus, while 

it is certainly possible to identify a pseudorandom schedule that performs slightly better in 

one or more of the above utilized metrics, the improvement in reconstructed spectral quality 

may still be minimal. Accurate determination of schedule optimality still largely depends on 

the data to be measured [11, 26]. Further studies are still required to determine the proper 

use of prior knowledge of signal characteristics in schedule construction.

Where reproducibility is concerned, it cannot be understated that these new subrandom 

methods confer no advantages over existing pseudorandom sampling schemes. As long as 

the complete sampling schedule is provided alongside its measured nonuniform data, exact 

reproduction of reconstruction results is possible. Instead, the proposed subrandom methods 

offer increased simplicity and control over experimental design, at the expense of potentially 
optimizable degrees of freedom found in pseudorandom sequences. As evidenced by the 

Monte Carlo experiments performed herein, no data-independent metric truly quantitatively 

captures the concept of schedule optimality for experimental data. Therefore, it is still 

possible to obtain a schedule with a high PSR or relative sensitivity from Monte Carlo 

optimization that performs poorly on real, noisy experimental data. Using jittered 
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subrandom sampling, spectroscopists can avoid the task of schedule optimization and still 

have performance guarantees on their NUS datasets.

An open-source tool for generating sampling schedules using both introduced methods is 

freely available for download from http://github.com/geekysuavo/nusutils. As defined and 

implemented, no limitation on Nyquist grid dimensionality exists. The tool has been soft-

limited to three-dimensional grids for the sake of computational efficiency, but this limit 

may be easily relaxed by trivial modifications to its source code.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Practical uses of subrandom number sequences in nD NUS NMR

• Complete removal of random seed dependence from NUS schedules

• Comparisons between exponential, Gaussian, sinusoidal and Poisson-

gap sampling
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Figure 1. 
Comparison of point-spread functions from (A) the lowest-PSR jittered pseudorandom 

schedule, (B) the highest-PSR jittered pseudorandom schedule, and (C) the jittered 

subrandom schedule produced from an exponentially weighted 1024-point Nyquist grid at 

10% sampling density. Inset plots indicate the shaded central regions of each point-spread 

function in order to highlight artifacts near the fundamental. As expected for jittered 

sampling, the variation between each PSF is minimal.
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Figure 2. 
Comparison of two-dimensional sinusoidally weighted pseudorandom, subrandom and 

jittered subrandom sampling schedules and their resultant point spread functions (PSFs) at 

various sampling densities. As sampling density decreases, the μPSF metric also increases, 

indicated by the appearance of more blue-shaded regions in the PSF. At all densities, and 

especially at 30%, the shape of the PSF fundamental (central region) matches exceedingly 

well between all three schedules. While subrandom rejection sampling produces substantial 

sidelobes as sampling density increases, jittered subrandom sampling does not, resulting in 

PSFs that closely resemble pseudorandom sampling.
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Figure 3. 
Radar charts indicating performance metrics for one-dimensional sampling schedules on 

1024-point grids. Metrics from pseudorandom, jittered pseudorandom, subrandom and 

jittered subrandom schedules are indicated by points, crosses, solid lines and dashed lines, 

respectively. Displayed ranges for each metric are as follows: SPR: 0.08 – 1, μPSF: 0.01 – 

0.13, σPSF: 0.01 – 0.11, R′: 1.1 – 2.2, λ: 0.3 – 1.6, ℓ2: 0 – 1. Lower values of each range are 

placed centrally on the charts, and higher values are placed towards the outer radius.
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Figure 4. 
Expanded view of ℓ2 reconstruction errors from one-dimensional rejection-based sampling 

methods. Errors from pseudorandom, jittered pseudorandom, subrandom, and jittered 

subrandom schedules are indicated by circles, crosses, solid lines, and dashed lines, 

respectively. The deleterious effects of highly coherent non-jittered sampling are manifest at 

10% and 5% sampling densities as high ℓ2 errors. In all but one case, jittered subrandom 

sampling performs nearly identically to jittered pseudorandom sampling.
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Figure 5. 
Expanded view of ℓ2 reconstruction errors from two-dimensional rejection-based sampling 

methods. Errors from pseudorandom, jittered pseudorandom, subrandom, and jittered 

subrandom schedules are indicated by circles, crosses, solid lines, and dashed lines, 

respectively. The deleterious effects of highly coherent non-jittered sampling are manifest at 

10% and 5% sampling densities as high ℓ2 errors. Jittered subrandom sampling is practically 

indistinguishable in performance from jittered pseudorandom sampling in all cases.
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Figure 6. 
(A) Uniform reference spectrum from the 1H-15N HSQC dataset used for scoring all one-

dimensional schedules according to ℓ2 error. The same data is shown after being subsampled 

by (B) a pseudorandom schedule, (C) a non-jittered subrandom schedule, and (D) a jittered 

subrandom schedule, and subsequently reconstructed by CAMERA. All schedules were 

constructed using an exponential weighting function at 5% sampling density. The high 

coherence of non-jittered subrandom sampling appears in the form of strong, regular aliasing 

artifacts in the corresponding reconstruction (C).
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