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Sir,

We recently reported in Brain a large multi-centre study

suggesting that truncating SYNE1 mutations are a recur-

rent cause of recessive ataxia also outside Quebec (23/

434 = 5.3% of patients with unexplained early-onset

ataxia) (Synofzik et al., 2016). Moreover, this study indi-

cated that SYNE1 ataxia might commonly present with

complex multisystemic phenotypes rather than pure cere-

bellar ataxia, including in particular motor neuron and

brainstem dysfunction (Synofzik et al., 2016). However,

confirmation of both the frequency estimate and the com-

plex phenotypic spectrum is still lacking, raising the

question whether these findings indeed represent systematic

results rather than just exceptional or coincidental

associations.

Here, we now report the mutational and phenotypic find-

ings on SYNE1 from a second, independent ataxia series of

116 patients. These findings not only confirm the high fre-

quency of SYNE1 ataxia and extend both the mutational

spectrum (seven novel index patients, 12 novel SYNE1 mu-

tations) and the multisystemic phenotypic spectrum, includ-

ing amyotrophic lateral sclerosis (ALS)-like motor neuron

features, they also indicate that muscle immunohistochem-

istry might provide a valuable diagnostic biomarker for
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clarifying the pathogenic contribution of SYNE1 missense

variants. This observation may have consequences for clin-

ical SYNE1 diagnostics, as diagnostic tests are urgently

needed for clarifying the role of the ubiquitous SYNE1

missense variants with unknown clinical significance

(VUS), which are frequently found in neurological and

non-neurological patients and controls (Synofzik et al.,

2016).

Index subjects (n = 116) with unexplained degenerative

ataxia compatible with autosomal recessive inheritance

(no ataxia in the parental generation) and negative for tri-

nucleotide repeat expansions causing Friedreich’s ataxia

(FRDA) were compiled from three sources: the Early

Onset Ataxia Consortium (n = 88), the ataxia centre

Antwerp, Belgium (n = 9), and the ataxia centre Milano,

Italy (n = 19). All subjects originated from European,

Middle East or Mediterranean countries. This series was

sequenced after and independent from the cohort of the

previous SYNE1 study (Synofzik et al., 2016). None of

the subjects had been part of the previous screening

cohort. Subjects were screened for SYNE1 mutations by

one of the following three next-generation sequencing

methods: (i) a high coverage HaloPlex gene panel kit

(Agilent) including 4120 known ataxia genes (n = 88);

(ii) targeted exon-capture sequencing strategy (Illumina

Nextera Rapid Capture Custom kit) including 107 known

ataxia genes (n = 19); or (iii) whole-exome sequencing using

the SureSelect Human All Exon 50 Mb kit (Agilent) (n = 9)

(for technical details, filter settings, and criteria for inclu-

sion of SYNE1 missense variants, see the online

Supplementary material). All index patients carrying two

pathogenic SYNE1 alleles and their affected siblings

received a systematic clinical assessment, as described in de-

tail in the previous study (Synofzik et al., 2016) (Table 1).

We identified six index patients carrying two truncating

SYNE1 alleles and one index patient carrying one truncat-

ing plus one missense SYNE1 allele, thus yielding a total of

seven index patients out of 116 in the total ataxia cohort

(6%). In these seven index patients, we observed a total of

12 different mutations, consisting of seven frameshift, three

nonsense, one splice site, and one missense mutation in the

actin binding domain (Table 2 and Fig. 1A). All 12 muta-

tions, each confirmed by Sanger sequencing, have not yet

been reported in association with human disease. For all

families where DNA of at least one parent was available (5/

7 families), we were able to show that the respective parent

carried only one of the two corresponding SYNE1 variants,

supporting a biallelic localization of the variants in the

index child. In one of the remaining two families, consan-

guinity was also suggestive of a biallelic location of the

observed homozygous mutations.

The missense variant c.4732C4T; p.P1578S (observed in

Patient 2-1) (i) segregated in trans with the frameshift de-

letion c.23767_23768delCA; p.Q7923Efs*4; (ii) had a very

low minor allele frequency in ExAc (2.26E-04) and

EVS6500 (7.70E-05); (iii) predicted to be damaging by

three out of three in silico algorithms (Mutation Taster)

(Schwarz et al., 2010; Wang et al., 2010); PolyPhen-2

HDIV (Adzhubei et al., 2010), and Likelihood Ratio Test

(LRT) (Chun and Fay, 2009); (iv) highly evolutionary con-

served with scores PhyloP 100way = 6.03 and PhastCons

100way = 1.0 (Pollard et al., 2010); and (v) ranked

among the top 1% of all 8.6 billion single nucleotide vari-

ants in the GRCh37/hg19 (CADD score: 24.2) (Kircher

et al., 2014). However, given that even rare, well-conserved

missense SYNE1 variants have been shown to present a

ubiquitous finding in control subjects (Synofzik et al.,

2016), additional functional evidence is needed to demon-

strate a pathogenic contribution. Immunohistochemistry as-

sessment of muscle tissue in Patient 2-1 showed severely

reduced SYNE1 staining (Fig. 1B; for methodological de-

tails see Supplementary material), in line with the findings

seen in patients with two truncating SYNE1 mutations

(Synofzik et al., 2016). This suggests that the p.P1578S

missense mutation, in combination with another truncating

SYNE1 variant, leads to loss of SYNE1 protein.

Clinical data were available for all eight affected subjects

belonging to the seven index families. Age of disease onset

was variable, ranging from 6 to 42 years (median onset: 14

years). Disease started in 4/8 patients (50%) with non-

ataxia features, namely facial muscle fasciculations,

speech disturbances, spasticity and cognitive deficits, re-

spectively. At last examination (median age: 35 years), all

8/8 patients showed a ‘cerebellar ataxia plus’ phenotype,

i.e. none of them showed the classical SYNE1 phenotype

of pure cerebellar ataxia. Seven of eight subjects (88%)

exhibited ataxia plus motor neuron disease, which involved

both upper motor neuron dysfunction (bilateral positive

extensor plantar reflex and/or spasticity) and lower motor

neuron dysfunction muscle atrophy, including bulbar mus-

cles (Fig. 1C) combined with reduced reflexes; fascicula-

tions clinically or on EMG; acute denervation in EMG]

in 5/8 patients (63%), and only upper motor dysfunction

in 2/8 patients (25%). In 2/8 patients (one also with motor

neuron disease), ataxia was complicated by additional

moderate-to-severe cognitive impairment across manifold

neuropsychological domains, affecting in particular pro-

cessing speed, attention, memory, and executive functions

(for detailed neuropsychological test results of Patient 4-1,

see Supplementary material). One index patient (Patient 2-

1) showed a severe and complex multisystemic phenotype,

comprising of very early onset (6 years of age) ataxia,

upper and lower motor neuron damage, including acute

neurogenic changes with creatine kinase elevation, and uni-

lateral diaphragm paralysis with restrictive lung function.

This finding confirms that the complex early-onset pheno-

types reported in three subjects in the previous report

(Synofzik et al., 2016) are a recurrent manifestation of

SYNE1 disease.

These findings provide evidence from an independent,

second series that SYNE1 deficiency is indeed a relatively

common cause of non-FRDA recessive ataxia also outside

Quebec, with a frequency of 5% (Synofzik et al., 2016) to

6% (this report). Moreover, these findings further extend
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the mutational spectrum of SYNE1 disease by 12 novel

mutations spread throughout the gene (yet sparing the

KASH-domain, Fig. 1A), demonstrating the need to se-

quence not only particular ‘hot spot’ regions, but indeed

the whole giant 146-exon gene.

These findings also help to explicate the multisystemic

spectrum and disease course of SYNE1 disease. They

show that multisystemic ataxia plus syndromes are not

the exception, but the rule, with up to 100% of SYNE1

patients outside Canada presenting with ataxia plus syn-

dromes, in particular complicated by upper and/or lower

motor neuron disease. In up to 50% of patients, SYNE1

disease even starts with non-cerebellar features. The com-

bination of upper plus lower motor neuron disease (seen in

63% of patients), which can include fasciculations, acute

denervation and damage of bulbar motor neurons (see

tongue atrophy, Fig. 1C), resembles ALS-like motor

neuron features. Our findings demonstrate that such com-

plex early-onset syndromes with upper and lower motor

neuron disease and respiratory features are not a coinciden-

tal finding, but a recurrent manifestation of truncating

SYNE1 mutations (Izumi et al., 2013; Synofzik et al.,

2016). This contrasts the view on SYNE1 ataxia as rela-

tively benign, slowly progressive ataxia, which was largely

traced from French-Canadian SYNE1 patients (Dupre

et al., 1993/2012, 2007).

Determining the pathogenicity of SYNE1 missense muta-

tions will present a complex challenge in future clinical

diagnostics, given that even rare, well conserved missense

variants can be found in 5.6% of controls with unrelated

disease conditions or phenotypes (Synofzik et al., 2016).

Here we show that SYNE1 muscle staining might help to

show a loss of SYNE1 protein in subjects carrying a

SYNE1 missense variant. Muscle immunohistochemistry

would thus help to corroborate the pathogenicity of at

least some well selected, rare, highly conserved SYNE1 mis-

sense variants, in particular if located in trans with another

truncating variant.
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the Else Kröner-Fresenius-Stiftung (award to M.S.), the

European Union [grant F5-2012-305121 ‘NEUROMICS’

to L.S., P.B., T.K., and grant PIOF-GA-2012-326681

‘HSP/CMT genetics’ and ‘NEUROLIPID’ (01GM1408B)T
a
b

le
2

S
Y

N
E

1
m

u
ta

ti
o

n
s

id
e
n

ti
fi

e
d

in
th

is
st

u
d

y

V
a
ri

a
n

t

ID

F
a
m

il
y

ID

P
h

e
n

o
ty

p
e

G
e
n

o
m

ic

v
a
ri

a
n

t

c
D

N
A

v
a
ri

a
n

t

P
ro

te
in

c
h

a
n

g
e

V
a
ri

a
n

t

ty
p

e

Z
y
g
o

si
ty

P
h
y
lo

P
C

A
D

D

sc
o

re

M
A

F
1
0
0
0

g
e
n

o
m

e
s

M
A

F

E
x
A

C

M
A

F

E
V

S
6
5
0
0

in H
G

M
D

1
#

1
A

ta
x
ia

M
N

D
ch

r6
:1

5
2
5
9
0
4
1
2
G
4

A
c.

1
8
5
8
3
C
4

T
p
.Q

6
1
9
5
*

St
o
p
ga

in
SN

V
H

o
m

o
8
.9

0
5
6

0
0

0
ab

se
n
t

2
#

2
A

ta
x
ia

M
N

D
ch

r6
:1

5
2
4
8
5
3
2
0
_

1
5
2
4
8
5
3
2
1
d
e
lT

G

c.
2
3
7
6
7
_
2
3
7
6
8
d
e
lC

A
p
.Q

7
9
2
3
E
fs

*4
Fr

am
e
sh

ift

d
e
le

ti
o
n

H
e
t

N
A

4
3

0
0

0
ab

se
n
t

3
#

2
A

ta
x
ia

M
N

D
ch

r6
:1

5
2
7
5
1
3
0
3
G
4

A
c.

4
7
3
2
C
4

T
p
.P

1
5
7
8
S

M
is

se
n
se

H
e
t

6
.0

3
2
4
.2

0
2
.2

6
�

1
0

–
4

7
.7

0
�

1
0

–
5

ab
se

n
t

4
#

3
A

ta
x
ia

M
N

D
ch

r6
:1

5
2
4
6
9
3
4
2
G
4

A
c.

2
4
8
1
4
C
4

T
p
.R

8
2
7
2
*

St
o
p
ga

in
SN

V
H

e
t

1
.9

3
5
3

0
8
.2

5
�

1
0

–
6

0
ab

se
n
t

5
#

3
A

ta
x
ia

M
N

D
ch

r6
:1

5
2
6
5
2
2
5
0
_

1
5
2
6
5
2
2
5
3
d
e
lC

T
T

C

c.
1
3
5
6
7
_
1
3
5
7
0
d
e
lG

A
A

G
p
.E

4
5
2
3
Sf

s*
3
4

Fr
am

e
sh

ift
H

e
t

N
A

3
5

0
0

0
ab

se
n
t

6
#

4
A

ta
x
ia

co
gn

it
io

n
ch

r6
:1

5
2
6
4
7
6
9
2
_

1
5
2
6
4
7
6
9
5
d
e
lT

C
C

T

c.
1
5
0
2
9
_
1
5
0
3
2
d
e
lA

G
G

A
p
.E

5
0
1
0
V

fs
*1

3
Fr

am
e
sh

ift
H

e
t

N
A

3
7

0
0

0
ab

se
n
t

7
#

4
A

ta
x
ia

co
gn

it
io

n
ch

r6
:1

5
2
6
4
7
0
9
1
A
4

T
c.

1
5
4
3
8

+
2
T
4

A
?

Sp
lic

e
d
o
n
o
r

H
e
t

5
.7

9
2
4
.1

0
0

0
ab

se
n
t

8
#

5
A

ta
x
ia

M
N

D
ch

r6
:1

5
2
6
8
0
5
1
3
_

1
5
2
6
8
0
5
1
4
d
e
lA

T

c.
1
0
3
7
9
_
1
0
3
8
0
d
e
lA

T
p
.Y

3
4
6
0
C

fs
*2

8
Fr

am
e
sh

ift
H

e
t

N
A

3
6

0
0

0
ab

se
n
t

9
#

5
A

ta
x
ia

M
N

D
ch

r6
:1

5
2
6
7
4
8
0
3
_

1
5
2
6
7
4
8
1
0
d
e
l

T
C

G
T

C
C

A
G

c.
1
0
9
9
6
_
1
1
0
0
3
d
e
lC

T

G
G

A
C

G
A

p
.L

3
6
6
6
E
fs

*5
1

Fr
am

e
sh

ift
H

e
t

N
A

3
7

0
0

0
ab

se
n
t

1
0

#
6

A
ta

x
ia

M
N

D
ch

r6
:1

5
2
7
8
6
4
2
2
d
u
p

c.
1
9
0
3
d
u
p
A

p
.M

6
3
5
N

fs
*3

5
Fr

am
e
sh

ift
H

o
m

o
N

A
3
3

0
0

0
ab

se
n
t

1
1

#
7

A
ta

x
ia

M
N

D
ch

r6
:1

5
2
4
5
7
7
5
7
d
e
lC

c.
2
5
6
5
5
d
e
lG

p
.C

8
5
5
2
Sf

s*
7

Fr
am

e
sh

ift
H

e
t

N
A

4
6

0
0

0
ab

se
n
t

1
2

#
7

A
ta

x
ia

M
N

D
ch

r6
:1

5
2
5
4
0
2
1
1
G
4

T
c.

2
1
9
7
1
C
4

A
p
.S

7
3
2
4
*

St
o
p
ga

in
SN

V
H

e
t

7
.4

4
5
9

0
8
.2

4
�

1
0

–
6

0
ab

se
n
t

G
e
n
o
m

ic
p
o
si

ti
o
n
s

o
f

th
e

va
ri

an
ts

ac
co

rd
in

g
to

ge
n
o
m

e
b
u
ild

h
g1

9
.

D
N

A
ch

an
ge

s
ac

co
rd

in
g

to
N

M
_
1
8
2
9
6
1
.3

.V
ar

ia
n
t

ty
p
e

an
d

p
ro

te
in

ch
an

ge
s

ac
co

rd
in

g
to

G
V

S
fu

n
ct

io
n

b
as

e
d

o
n

N
P
_
1
4
9
0
6
2
.
M

N
D

=
m

o
to

r
n
e
u
ro

n
d
is

e
as

e
;
zy

go
si

ty
=

h
o
m

o
zy

go
u
s

(h
o
m

o
)

o
r

h
e
te

ro
zy

go
u
s

(h
e
t)

;
P
hy

lo
P

=
P
hy

lo
P

co
n
se

rv
at

io
n

sc
o
re

b
as

e
d

o
n

b
as

e
-w

is
e

co
n
se

rv
at

io
n

ac
ro

ss
1
0
0

ve
rt

e
b
ra

te
s;

C
A

D
D

sc
o
re

=
sc

al
e
d

C
o
m

b
in

e
d

A
n
n
o
ta

ti
o
n

D
e
p
e
n
d
e
n
t

D
e
p
le

ti
o
n

sc
o
re

,
in

te
gr

at
in

g
m

an
y

d
iv

e
rs

e
an

n
o
ta

ti
o
n
s

in
to

a
si

n
gl

e
m

e
as

u
re

(C
sc

o
re

)
fo

r
e
ac

h
va

ri
an

t.
T

h
e

p
re

d
ic

te
d

p
at

h
o
ge

n
ic

it
y

o
f
e
ac

h
va

ri
an

t
is

sc
o
re

d
an

d
ra

n
ke

d
re

la
ti
ve

to
al

l�
8
.6

b
ill

io
n

si
n
gl

e
n
u
cl

e
o
ti
d
e

va
ri

an
ts

o
f
th

e
G

R
C

h
3
7
/h

g1
9

re
fe

re
n
ce

.A
sc

al
e
d

C
A

D
D

sc
o
re

o
f
2
0

in
d
ic

at
e
s

va
ri

an
ts

at
th

e
to

p
1
%

,a
C

A
D

D
sc

o
re

o
f
3
0

in
d
ic

at
e
s

va
ri

an
ts

at
th

e
to

p

0
.1

%
,e

tc
.(

K
ir

ch
e
r

et
al

.,
2
0
1
4
).

M
A

F
=

m
in

o
r

al
le

le
fr

eq
u
e
n
cy

;E
x
A

C
=

E
x
o
m

e
A

gg
re

ga
ti
o
n

C
o
n
so

rt
iu

m
;E

V
S

=
E
x
o
m

e
V
ar

ia
n
t

Se
rv

e
r

6
5
0
0

e
x
o
m

e
s

al
lf

ro
m

th
e

N
H

L
B

I
G

O
E
x
o
m

e
Se

q
u
e
n
ci

n
g

P
ro

je
ct

;H
G

M
D

=
H

u
m

an
G

e
n
e

M
u
ta

ti
o
n

D
at

ab
as

e
;

N
A

=
n
o
t

av
ai

la
b
le

.

e46 | BRAIN 2016: 139; 1–6 Letter to the Editor

Deleted Text: ; Dupre etal., 2007


Figure 1 Mutational spectrum, muscle immunolabelling, and atrophy findings in SYNE1 patients. (A) Graphical overview of the

mutations found in this study in relation to the SYNE1 domains. The mutations identified in this study are indicated at their respective position in

the SYNE1 gene. The N-terminal actin-binding domain (in blue) contains two calponin homology domains (CH1 and CH2); spectrin repeats

(orange) contain all the mutations detected in this study; the C-terminal KASH domain (Klarsicht/ANC-1/Syne homology domain) is coloured in

green. The missense variant investigated in this study is marked in purple. (B) Absent SYNE1 staining in muscle tissue in a patient carrying a

missense plus a truncating SYNE1 mutation. After immunolabelling of nesprin-1, staining of the nuclear envelope was absent in Patient 2-1 carrying

a missense (c.4732C4T; p.P1578S) plus a truncating SYNE1 mutation (i), but present in quadriceps muscle of a healthy control (iv) (peroxidase-

antiperoxidase technique). Immunolabelling of emerin and lamin A/C at the inner nuclear membrane were normal in patient and control (ii/iii and

v/vi, respectively) (avidin-biotin complex technique), thus ruling out an unspecific lack of staining in this subject. Scale bar = 50 mm. (C) Tongue and

interosseous muscle atrophy illustrating lower motor neuron degeneration in SYNE1 disease. Photographs of the tongue of Patient 1-1 (left) and of

the hand of Patient 1-2 (right) illustrating atrophy of the right lateral and medial tongue and of the first dorsal interosseous muscle, respectively,

illustrating affection of bulbar and cervical motor neurons in SYNE1 disease. The tongue also showed generalized fasciculations (not seen on the

static photographic image).
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