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1ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
2Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, 08003 Barcelona, Spain
3Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

The evolution of life in our biosphere has been marked by several major inno-

vations. Such major complexity shifts include the origin of cells, genetic codes

or multicellularity to the emergence of non-genetic information, language or

even consciousness. Understanding the nature and conditions for their rise

and success is a major challenge for evolutionary biology. Along with data

analysis, phylogenetic studies and dedicated experimental work, theoretical

and computational studies are an essential part of this exploration. With the

rise of synthetic biology, evolutionary robotics, artificial life and advanced

simulations, novel perspectives to these problems have led to a rather interest-

ing scenario, where not only the major transitions can be studied or even

reproduced, but even new ones might be potentially identified. In both

cases, transitions can be understood in terms of phase transitions, as defined

in physics. Such mapping (if correct) would help in defining a general frame-

work to establish a theory of major transitions, both natural and artificial. Here,

we review some advances made at the crossroads between statistical physics,

artificial life, synthetic biology and evolutionary robotics.

This article is part of the themed issue ‘The major synthetic evolutionary

transitions’.
1. Introduction: synthetic transitions
Looking backward to the unfolding of life on our planet, it is possible to identify

several major qualitative changes that deeply marked evolutionary history. They

have been labelled as the major evolutionary transitions (METs) owing to the fun-

damentally unique nature of the changes involved [1]. The emergence of life, the

genetic code, complex cells, multicellular organisms and language are some of

the best-known examples. They all involve a novel class of organization with

high-order properties not reducible to the properties of the lower-scale units.

The list of METs differs among authors [1–7], and in this paper we address a

revised list of major transitions (MTs) incorporating different proposals. A first

classification of METs would include (i) a loss of replicative potential by the

units once belonging to a higher-order entity, (ii) a specialization of different

units in different tasks, which requires a nonlinear mapping between genotype

and phenotype, and (iii) changes in the ways information is processed and

stored. But more importantly, we want to consider METs under the light of the

theoretical, experimental and engineering perspectives involving the modelling,

synthesis and imitation of living systems. For example, we can create a new multi-

cellular system by engineering new cell–cell signals on single cells. Similarly, a

proto-grammar can emerge in a group of interacting, evolvable robots. These

are synthetic transitions that are not necessarily related to standard evolutionary

paths, but they do involve ways to generate major innovations starting from sim-

pler systems. We will use a general term to label this broad class of non-natural

transitions: major synthetic transitions (MST). The study of MST provides a

whole parallel approach to natural evolution and to the origin of innovations in

complex systems, biological or artificial.

How similar are these two scenarios? Random events are known to play some

role in evolutionary history [7–9] and they offer some clues to the origins (and

likelihood) of some innovations. However, convergence seems also a widespread
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Figure 1. Synthetic prebiotic chemistry. Miller’s experiment (a) provided the first evidence for an abiotic scenario of generation of biologically relevant molecules
(image courtesy of Adam Brown). The mixture is heated (1) receives electrical discharges (2) and is condensed in (3). (b) Many different molecules are generated,
linked through a reaction network (adapted from [28]). The overall reaction network is similar to in silico networks of reactions in organic chemistry that can be
obtained from databases, as shown in (c) where nodes are molecules and connections indicate possible reactions (adapted after [29]).
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feature of evolved systems [10] as illustrated by the observation

that some major innovations have emerged independently

in different groups and often sharing surprisingly similar

design principles. Such universal patterns could be a conse-

quence of fundamental constraints beyond the specific nature

of biological systems [11–13] and thus would be also inevitable

in their synthetic counterparts. By understanding the role of

constraints in both evolved and artificially generated inno-

vations, we might achieve some understanding of the

uniqueness of the known biology that we know [14].

Other important questions that can benefit from the ana-

lysis of MST are understanding why some transitions seem

common, whereas others seem rather unique [7]. Are hard-

to-obtain synthetic transitions connected to hard-to-evolve bio-

logical novelties? On the other hand, we might also ask if there

are other MTs associated with the potentially different MST uni-

verse. What is their nature and why are they absent in the

biological realm? No less important is the fact that MTs occur

when a given set of preconditions is in place. Preconditions

are relevant to our discussion because they imply the presence

of a landscape of possibilities pervading the emergence of a

major qualitative change. Moreover, there are remarkable com-

monalities shared by disparate systems. These universal traits

are to be found in those principles stemming from the physics

of complex systems [15,16], phase transitions [17,18] and the

algorithmic logic of artificial life models [19,20]. In this context,

it has been suggested that phase transitions [21,22] can help in

understanding the patterns exhibited by METs. Because phase

transitions are known to exhibit robust, universal laws [23,24],

they will help understanding of the general nature of natural

and artificial transitions, perhaps opening the construction of

a general theory of what we can label as MTS.
2. Synthetic prebiotic chemistry
We start our list with a special problem: the presence of quali-

tative transitions in a pre-biological biosphere before true

replicators emerged. We are thus closer to the domain of pre-

biotic systems chemistry [25] that defines the landscape of

preconditions required for the rise of molecular replicators

and genetic codes. The first attempts aiming for the creation

and analysis of synthetic prebiotic systems were Stanley

Miller’s electric discharge experiments [26,27] that can be

accurately simulated using molecular dynamics [28]. Miller’s

approach was simple and elegant: take a set of candidate

molecules that were likely to be present in the primitive
atmosphere and make it react under a constant energy

source (figure 1a,b). The experiment generated amino acids

(AAs) and other molecules, thus providing support to Opar-

in’s conjecture that biochemical complexity can arise from

purely chemical processes [30]. Further studies developed

by the Catalan chemist Joan Oró showed that relevant build-

ing blocks of nucleic acids, such as adenine, could also

emerge from using ammonium cyanide [31].

Because biochemical diversity of basic monomers pervades

the development of true living entities, the synthetic soup created

in these experiments provided the source of chemical variation to

be exploited by further innovations. In general terms, a set of

reactions can be described by a general reaction scheme

XNa

k¼1

akAk O
XNb

j¼1

bjBj, ð2:1Þ

where ak, bj indicate stoichiometric coefficients associated

with the Na substrates and Nb products of the reactions,

indicated by Ak and Bj, respectively. However, too much

chemical diversity can also make more difficult reacting mol-

ecules to find each other. The potential network of reactions

rapidly explodes as shown in figure 1c, where only the 0.1%

of organic molecules from a database is included [29]. In this

context, the set of reactions shown in figure 1b is just a minimal

subset of possible reactions, many of them leading to biologic-

ally irrelevant components. Two key questions in this context

are (i) are there multiple molecular alternatives for a living bio-

sphere emerging from the primitive soup, and (ii) what

processes can drive the highly diverse molecular soup towards

a non-random biochemistry?

The first question has been repeatedly addressed using a

broad range of approximations and, strictly speaking, the

answer is affirmative [32]. It is possible to obtain (or theoret-

ically conceive) diverse and different types of organic

molecules using solvents different from water and at extreme

temperatures, with two universal limitations: the presence of

non-equilibrium conditions and temperature intervals, allow-

ing chemical bonds to form and break in reliable ways. In

most of these alternative chemical scenarios, it is suggested

that the candidate alternatives are feasible. However, feasible

does not imply that the synthesis is likely to occur and—

more importantly—what is needed to generate non-random

mixtures of molecules.

To depart from chemical randomness, two classes of dynam-

ical phenomena might have been relevant. One is connected to

the chirality problem [33,34]. A characteristic pattern displayed
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Figure 2. Symmetry breaking and the origin of homochirality. Using Frank’s
model (see text), the potential function Vb(r1) ¼ �

Ð
fb(r1)dr1 ¼

b(r4
1=2� r3

1 þ r2
1=2) associated with the dynamics of a racemic mixture

under the reaction set (1 – 3) is displayed (for different b). The unstable point
(open circle) is associated with the r1 ¼ 1/2¼ r2 racemic mixture, which is
unstable. Deviations from this symmetric state lead to either [D] ¼ 0, [L] ¼ 1
or a [D] ¼ 1, [L] ¼ 0 final state.
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by all biochemical species is a choice of one given configuration

of molecular structures among the two possible (chiral) mirror

forms (L and D): nucleic acids incorporate only D-ribose and

D-deoxyribose, whereas proteins use L enantiomers of AAs.

However, Miller-like experiments typically lead to a racemic
mixture, where both types of handedness are equally rep-

resented. The rise of replicators capable of evolving Darwinian

selection thus requires first solution of the problem of how to

break this chemical symmetry. Evidence from chemical analysis

of meteorites indicates that AAs display a slight asymmetry

towards L forms. Because comets and asteroids might have

been a major source of biomolecular precursors [35], a given

asymmetry could bias handedness.

However, even if that is the case, the ideal scenario with a

dominance of a single type of form requires an explanation.

In this context, several models suggest that homochirality

can spontaneously result from simple chemical reactions.

The simplest model that accounted for this phenomenon

included two types of chemicals, indicated by D and L and

corresponding to the two forms [36,37]. They can react with

an additional molecule A following the set of reactions

AþD�!m 2D, Aþ L�!m 2L and Dþ L�!b 2A: ð2:2Þ

If we indicate by [D] and [L] the concentrations of the two

forms, we can derive the equations describing the dynamics

of this mixture and analyse them using linear stability.1 Let

us indicate as r1 ¼ [D] and r2 ¼ [L] Assuming a constant

population constraint (CPC) i.e. [D] þ [L] ¼ 1, we have

dr1

dt
¼ mr1 � br1r2 � r1Fðr1, r2Þ ð2:3Þ

and

dr2

dt
¼ mr2 � br1r2 � r2Fðr1, r2Þ, ð2:4Þ

where the first two terms in the right-hand side correspond to

the formation of molecules of each type and their conversion

in A. The last terms introduce a dilution associated with an

outflow. From the CPC, we have Fðr1, r2Þ ¼ m� 2br1r2

and it can be shown that

dr1

dt
¼ fbðr1Þ ¼ br1ð1� r1Þð2r1 � 1Þ, ð2:5Þ

(a symmetric solution exists for [L]). The three equilibrium states

are r�1 [ f0, 1, 1=2g: The first two are stable, homochiral states,

whereas the third corresponds to an unstable racemic state.

A symmetry breaking phenomenon takes place [17,18,22,23]

where two alternative stable states r1 ¼ 0, 1 are possible, both

accessible from r1 ¼ 1/2 through an amplification phenomenon.

This can be seen using the so-called potential function Vb(r1)

defined from

dr1

dt
¼ � @Vbðr1Þ

@r1

: ð2:6Þ

Here the potential2 is defined in such a way that its maxima and

minima correspond to unstable and stable equilibria. This allows

us to think of the potential as a mechanical system of balls

rolling on a landscape towards the bottom of the valleys. The

specific form of Vb(r1) is shown in figure 2. Here, the (unstable)

racemic mixture (D þ L) and the two alternative (stable) homo-

chiral configurations are displayed as empty and filled circles,

respectively. Once we slightly deviate from the perfect racemic

mixture, the ball rolls down towards one of the alternatives:
the symmetry is broken towards a given chiral configuration

[37–39].

A different approach to the evolution of non-random sets of

molecules is provided by autocatalytic sets (ACS, figure 3c,d )

first proposed by Kauffman [40,41]. Here, in a rich chemical

soup, closed loops of catalytic reactions can occur, leading to

an ACS, defined as a set of molecules in which every

member can be created catalytically by other entities within

the set. An example (the only natural known example) is the

formose reaction [42] (figure 3a,b). As discussed by Peretó ([43]

and references cited therein) one of the fundamental questions

that remains open is how the first autocatalytic cycles became

incorporated into the chemistry of life. As pointed out by

this author, one major goal of both models and synthetic

approaches to prebiotic chemistry should address understand-

ing how small networks involving inefficient reactions became

large and dominated by efficient enzymes.

While waiting for further evidence from synthetic chem-

ical networks, some relevant features of ACS are predicted

by theoretical models, such as their potential for explosive

growth. Consider an s-dimensional model with a set of s
chemical species fx1, . . . , xsg such that

P
i xi ¼ 1 [44]. The

model involves a set of coupled equations

dxi

dt
¼
Xs

k¼1

Cikxk � xi

Xs

k,j¼1

Ckjxj, ð2:7Þ

provided that xi, dxi/dt . 0. Here, Cij [ ½�1, þ 1� indicates the

interaction strength between species i and j which can be coop-

erative (positive) or inhibitory (negative) and such that Ckk ¼ 0.

The model evolves exponentially (and inevitably) to a con-

nected, diverse ACS. This type of phenomenon might have

influenced the early evolution of RNA, as discussed in §3.
3. Synthetic molecular replicators
To address the problem of how self-replicating, information-

carrying molecules emerged in the primitive biosphere

implies considering the true nature of what separates
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Figure 3. Autocatalytic cycles. (a) The formose reaction involves the formation of sugars from formaldehyde. The overall reaction of the pathway above is of the
form 2A þ B! 2B, where A and B indicate formaldehyde and glycolaldehyde, respectively. As B cannot be created from A only, but the existence of B leads to more
than one B, we say that B is an autocatalytic compound. A simplified picture of this cycle is shown in (b) where only the carbons are indicated. In (c), a two-member ACS
is shown and in (d ) a reaction network is shown including an ACS.
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chemistry from life. We know that the molecular logic of self-

replication based on nucleic acids is the universal code of life.

But is this the only possible logical scheme? Could it be based

on different molecular supports? The earliest attempt that

gave tentative answers to the previous questions was von

Neumann’s theory of minimal self-replicating machines

[45]. Years ahead of molecular biology, von Neumann con-

cluded that self-replicating machines should be composed

of (i) a constructor, able to build a new system using the avail-

able raw materials, (ii) the instructions for the constructor,

(iii) a duplicator which takes the instructions and duplicates

them, and (iv) a controller required to guarantee a reliable pro-

cess. This picture is surprisingly close to an algorithmic

description of a biological replication event. More importantly,

in our context, the agreement between this theoretical picture

and reality suggests a universal logic of self-replication.

What kind of synthetic replicating systems can be con-

structed from biological and non-biological substrates? The

first example of an experimental autocatalytic (figure 4a) set

was obtained by von Kiedrowski. Using short nucleotide

sequences that mutually catalyse each other’s formation

[46], other synthetic schemes have been proposed, including

peptide ligation (figure 4b) systems [47] and several non-

biological non-standard mechanisms [49], but also other

mechanisms that even lead to exponential growth [48] despite

lack of template-based replication (figure 4c). The synthetic

alternatives to polymers indicate that other mechanisms can

exist capable of generating large molecular structures. How-

ever, in general, they have also a very limited capacity of

storing information, because the units included in their mol-

ecular assemblies tend to be homogeneous, thus preventing

information growth. If a diverse polymer is a condition for

any evolvable replicating system, potential candidates include
RNA and RNA-based systems [50] because they can act both as

catalysts and as templates, thus including both genetic infor-

mation stored in a sequence and a phenotype derived from

the catalytic properties of the molecule.

Many different experiments involving designed, simulated

and evolved synthetic RNA molecules and ribozymes have

revealed promising avenues as well as limitations. Interest-

ingly, it was also shown that RNA molecules can cooperate

[50] even forming ACS [51], thus supporting the picture of

autocatalytic RNA networks. The presence of cooperative

interactions might be a crucial component in defining the con-

ditions for the success of early replicators in terms of phase

transitions. In this context, artificial models of RNA networks

provide us with evidence for a high probability of developing

ACS under experimental conditions [52].

There is a very important reason to suggest that this class of

RNA networks might have been a crucial condition for the

growth of genetic information. Early theoretical arguments

[53,54] indicated that there is a maximum length Lc associated

with RNA chains that scales as the inverse of mutation rate m

(i.e. Lc � 1/m). Beyond this Lc, the system experiences a

so-called error catastrophe, a phase transition where genetic

information is lost. An elegant solution to this complexity

limit was provided by the hypercycle, defined as a cyclic set

of mutually enhancing catalytic components [55]. The hyper-

cycle is a system in which autocatalytic replicators also

heterocatalytically aid each other’s replication, so that replica-

tion of each member is catalysed by at least one other

member under second-order kinetics.3 A system of coupled

reactions involving an RNA-based ACS (figure 5) was

obtained by Vaidya et al. [51] showing that mixtures of

RNA fragments self-assemble into self-replicating ribozymes

through the emergence of evolvable catalytic cycles. The
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synthetic RNA system thus suggests that ACS could have

been crucial to overcome some thresholds of survival and

information storage.

A potential drawback of cooperative systems is that they

can destabilize owing to the presence of parasites [56]. How-

ever, theoretical arguments indicate that compartments can

strongly constrain their impact [57]. On the other hand, the

appropriate nonlinear replication kinetics can also help a

rapid expansion of replicators. To illustrate this idea, let us

first consider a toy model [58] in which a set of replicators

A cooperate and decay the following

A�!s 2A, 2A�!m 3A and A�!1 0: ð3:1Þ

If we use x ¼ [A] to indicate the concentration of replicators, it

is possible to show that

dx
dt
¼ �xþ sxð1� xÞ þ mx2ð1� xÞ, ð3:2Þ

where a limiting value xmax ¼ 1 has been introduced (this

system exhibits three equilibrium points, namely x* ¼ 0 or
dead state, as well as two additional points)

x�+ ¼
1

2m
m� s +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ sÞ2 � 4m

q� �
: ð3:3Þ

The main result of this model is the existence of a discon-

tinuous (first-order) phase transition separating the two

possible phases. This is shown using the potential function

associated with our system, namely

VmðxÞ ¼ ð1� sÞ x
2

2
þ ðs� mÞ x

3

3
þ m

x4

4
, ð3:4Þ

which is plotted in figure 6a. The minima defining the alive

phase coexist with an alternative minimum where extinction

is also an alternative possibility. When m , mc ¼ 2.25, a

unique minimum is observable, associated with the extinction

scenario (or dead phase), whereas for m . mc, we will observe

two minima, being the alive fixed point placed in a deeper valley.

A robust result leading to a phase transition from non-

living to living was suggested by Wu & Higgs [59] by consid-

ering a spatially extended model of catalytic RNAs. The use of

space is known to play a key role in stabilizing or even allowing

some key replicator dynamics to occur. In the RNA system, two

precursor molecules are available in the environment at con-

centrations F1 and F2. The RNA monomers, denoted by A,

can be synthesized from F1. These monomers can react with

F2 to produce activated monomers, A*. RNA polymers of

length n are denoted An. An activated monomer can react

with a polymer to extend its length. The transitions are now

F1�!
2

AF2 þ A�!a A� ð3:5Þ

and

An þ A� �!r Anþ1: ð3:6Þ

Additionally, we also consider constant degradation rates

for all molecules, which decay (or are removed) at a rate d.
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The associated system of equations thus reads

dA
dt
¼ sF1 � aF2A� rAA� � dA, ð3:7Þ

dA�

dt
¼ aF2A� rA�ðAþ PÞ � dA� ð3:8Þ

and
dAn

dt
¼ rA�ðAn�1 � AnÞ � dAn, ð3:9Þ

where the total polymer concentration at all lengths is

P ¼
P

m�2 Am and the polymerization rate is given by r ¼
r0 þ kPn, with Pn ¼

P
m�n Am: As occurs with the previous

model, there is also a phase transition between a state with

little or no polymerization and a ‘living’ state where the cataly-

tic reactions lead to high polymer concentrations. If this is

simulated using a discrete implementation, including stochas-

tic fluctuations, a threshold of local concentrations must be

crossed in order to switch to the living state. Once this

occurs, the living state propagates through the entire space

(figure 6b). The initial local transition can require a long time

to occur, but the propagation is rather fast [59]. If we extrap-

olate this to the origin of life, this rapid spread might imply

that early life just evolved once in our planet.4 In general, arti-

ficial models of spatially cooperative replicators with and

without parasites reveal significant differences with respect

to the mixed system [60–63].
4. Synthetic genetics and xeno-codes
A crucial step towards a life-dominated planet required the

establishment of a system able to expand and adapt under

changing conditions. To such a goal, information and codes

might have played a central role as a precondition for

open-ended evolution. This requires the presence of both an

alphabet and polymer strings as well as appropriate physical

properties allowing the molecules to fold into compact

structures. Molecular genetics grew along with information

technology in the early 1950s. Many relevant terms, including

coding and decoding, translation or transcription became

adopted. A first glimpse of the possible nature of the molecular

code of life was suggested by Erwin Schrödinger in 1944: the

idea that an information-carrying molecule should be some

class of aperiodic crystal [64].
An obvious question that has been raised by many different

researchers is the uniqueness of the genetic code. All known

organisms in our current biosphere share a common molecular

synthetic genetic code [65] with very little variation in the map-

ping between codons and AAs summarized in figure 7a. What

can happen if we scramble the letters of this diagram? Could

different arrangements work as well as this one? The early

days of decoding the genetic code soon revealed that the poten-

tial size n of codons should not exceed nor move below n ¼ 3.

Having 20 AAs as the building blocks of proteins and four

nucleotides, small codons with n ¼ 2 could only give 42 ¼ 16

AAs, whereas for n ¼ 3 we have 43 ¼ 64 AAs and the genetic

code would be able to account for the AA repertoire provided

that some amount of degeneracy was present. Such degeneracy

was known—from coding theory—to be a potential source of

robustness, because errors in transmission can be compensated

[66]. The uniqueness of the genetic code, along with some

suboptimal traits, suggested that it might be a ‘frozen accident’

and thus opened the possibility for multiple alternative codes.

Is DNA the only possible molecular option for our biosphere or

just one among many?

Given the single-case scenario provided by all living forms

in our biosphere, we need to consider ‘synthetic’ alternatives

that can be reached either from computational models or

through the experimental synthesis and analysis of new

molecular codes. A systematic exploration of the space of pos-

sible codes based on n ¼ 3 codons and their mapping into

different potential AAs was performed [67,68]. Different

genetic codes were randomly generated by partitioning the

codon space into 21 non-overlapping sets and considering

the impact of mutations on the efficiency of the code. Here,

mutations to all codons were performed for each synthetic

code and the change in AA hydrophobicity was determined.

This property is connected to a very important feature of

AAs (and proteins): how they interact with water. Hydro-

phobic AAs do not interact with water, whereas polar ones

easily make contact with water. Different AAs have different

hydrophobicities, and the analysis measured to what extent

this parameter was changed by mutations. The sampled

space included 106 alternative codes, much smaller than the

potential 1018, but it nevertheless provides a strong argument

in favour of the optimality of the natural code. In fact, when

other biological and chemical constraints are considered, the
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Figure 7. The universal character of the genetic code (a) and evidence for its
optimality was obtained through an in silico analysis of millions of synthetic
alternative codes, where the coding for amino acids (AAs) from the triplets
defining codons has been randomly scrambled. (b) By treating the genetic
code as a problem of information channels (b), we can find additional sup-
port for the optimality of the genetic code. Here, we indicate by Rij the
probability of codon i being misread as codon j, whereas Pim is the prob-
ability of codon i of encoding AAm. The distance between AAs a and b

is indicated as Cab.
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possible repertoire shrinks to around 270 million alternative

codes. When the frequency of codes against their efficiency

(measured in terms of the error level) was obtained, it was

found that the genetic code was the second best or, as the

authors said ‘one in a million’. Here, we have a powerful

case for optimality.

What are the conditions allowing a genetic code to arise?

Are there here too phase transitions associated with the emer-

gence of such codes? A model approach [69,70] developed by

Tsvi Tlusty considers genetic codes as noisy information

channels (figure 7b) with two sets associated with codons

and AAs, respectively. An error-prone molecular reader

(left) can sometimes lead to misreading of symbol i into

symbol j, thus leading to a misread in the meaning space

(right). The distance between the expected and actual outputs

is also considered. Specifically, let us define three key quan-

tities: (i) Pia, the probability that codon i ¼ 1, . . . , Nc
encodes the a ¼ 1, . . . , Ns AA (thus we have
P

a Pia ¼ 1);

(ii) Cab, ða, b ¼ 1, . . . , NsÞ, i.e. the distance matrix separating

two AAs (in terms of their hydrophobic properties); (iii) Rij

the probability of misreading two symbols. We can then

define the following three quantities. The first two provide

a measure of the error load L and the code diversity D

L ¼
X

i;j

X
a;b

RijPiaP jbCab ð4:1Þ

and

D ¼
X

i;j

X
a;b

ð1� dijÞPiaP jbCab, ð4:2Þ

while the third weights the cost of the coding system, defined

by

D ¼
X
i;a

Pia ln
Pia

Pa

� �
: ð4:3Þ

All these quantities can be obtained from the information

channel description and allow a fitness function to be defined

where code diversity is a positive entry whereas error load

and cost introduce negative components. All the three con-

straints are combined by means of an energy function H to

be maximized, namely H ¼ 2L þ wDD 2 wcC with wD and

wC being two parameters to be applied to many synthetic

codes. The optimal code occurs at a phase transition point,

where the mapping between codons and AAs moves from

random (uniform) to non-random. Right at this point, the stat-

istical regularities exhibited by the genetic code are recovered.

Beyond the in silico counterparts, synthetic biology offers

the possibility of expanding the experimental repertoire

defined by RNA and DNA. This can be done while including

the potential for Darwinian evolution [71,72]. Moreover,

orthogonal ribosomes have been synthetically evolved to

decode quadruplet codons, thus allowing the encoding of

unnatural AAs [73]. One particularly interesting path has

been followed by designing, evolving and characterizing so-

called XNAs [73] as well as synthetic catalysts (XNAzymes,

see [74]) that allows one to speak of a synthetic genetics [75].

These studies have revealed XNA polymerase evolution, and

the design allows alternative polymers to be used that can

undergo Darwinian evolution. Examples of alternative back-

bones for a given XNA are shown in figure 8a,b. It is worth

noting that the possibility of using glycerol and other simple

molecules as an alternative backbone provides a valuable

approach to the origin of the genetic code, because (as opposed

to glycerol) ribose is a complicated sugar, less likely to be

formed under prebiotic conditions [76]. The space occupied

by the possible XNAs can be defined [72] where an idealized

space of possible XNAs is constructed using three axes

corresponding to sugar, base and backbone modifications,

respectively. Most XNAs that have been studied so far

(except peptide nucleic acid) lie on these axes. More divergent

phenotypes should become accessible through a fuller explora-

tion of the XNA space, that is, the replication and evolution of

XNAs comprising a combination of modifications to base,

sugar and backbone.
5. Synthetic cells
An old saying of biology is that ‘every cell comes from another

cell’. This statement connects us with our ancestral cellular
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Figure 8. The XNA alternatives for synthetic genetics. Several promising candidates have been designed and tested using a growing list of structurally diverse XNAs.
The right panel shows several examples, each capable of undergoing Darwinian evolution.
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Figure 9. Pathways towards synthetic cells. Two major approaches to create an
artificial cell involve either a top-down or a bottom-up approach. The first starts
from a living, complex cell such as Mycoplasma sp. (top) and proceeds through
genome reduction. The second makes use of a molecular toolkit from which
different forms of assembly produce different types of artificial protocells.
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origins through billions of years old tree-of-life forms. The cell

is the most obvious minimal unit of life and its origin is one of

the crucial steps towards our understanding of METs. Both

synthetic and virtual protocells have been designed and

explored in searching for the requirements needed to move

through a whole cycle of growth, instability and division

[77–80]. Cells might have been a precondition for an expansion

of complex life. In particular, compartments might have been

essential to escape from parasitic replicators and a powerful

way of enclosing together the right reaction components at

reasonable concentrations.

The challenge of creating an artificial cell has been

addressed in both top-down and bottom-up approaches

(figure 9). In the former, we start from existing genomes,

because numerous genes are involved in cell–cell communi-

cation while others have been shown to be non-essential to

cell functioning; it was earlier suggested that it would be pos-

sible to reduce genome complexity to a minimal set of N
genes able to sustain metabolism and reproduction. Compu-

tational and theoretical arguments suggest that N � 200–250

genes could define a minimal genome [81,82]; although the

smallest synthetic cell has been obtained using N ¼ 473

essential genes [83] the function of 149 of them is unknown.

The second, bottom-up approach is closer to chemistry and

deals with the creation of protocells from the assembly of inter-

acting chemical components [77]; it thus involves a major

transition between non-living and living matter. In figure 9,

we depict this as a combination of three potential ingredients,

namely metabolism (M), compartment (C) and genetic infor-

mation (G). They can be combined in different ways,

including a complete protocell capable of self-maintenance

and self-replication (M þ C þ G) but also information-free sys-

tems (M þ C) or even non-replicating systems, where polymer

self-replication might occur but not self-reproduction. The

latter would correspond to a limit case involving liposome-

like systems capable of self-maintenance but not self-reproduc-

tion. The crucial problem is how these three components (none

of them defining life) need to cooperate among each other in

order to lead to a self-replicating macromolecular entity.
Most models and implementations of protocells make use

of either micelles or vesicles (figure 10a) as compartments.

A canonical protocell model is provided by a so-called auto-

poietic system (figure 10b) where P and S stand for the
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Figure 10. Synthetic protocells. (a) A common component of most protocells is a spherical vesicle involving a lipid bilayer. In (b), we show a minimal model of an
autopoietic cell, where an external precursor P gets transformed into surfactant molecules S and can also degrade under the presence of a given Y, into a waste
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synthetic protocell cycles are shown in (d – f ): (d ) an RNA-based heterotrophic protocell [84]; (e) Kurihara et al.’s model [85] and ( f ) after [86].
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membrane precursor and the surfactant molecules, respectively

[79]. Here, P is transformed into S which is incorporated in the

vesicle. If a vesicle Sk is made of k monomers, and assuming

that monomers can degrade, we have

Pþ Si�!
ikg

Siþ1 Si þ Y�!ikd Siþ1 þW: ð5:1Þ

The balance between growth and division determines

the outcome of the protocell dynamics. If we indicate by

vg and vd the rates of single events (figure 10b), then the ves-

icle would follow d[S]/dt ¼ (vg 2 vd)[S] and its solution is

thus

½S� ¼ ½S�0e(vg�vd)t: ð5:2Þ

Three potential regimes are allowed by this kind of kinetics:

(i) growth, when vg . vd, (ii) homeostasis, for vg ¼ vd and

(iii) collapse, when vg , vd [79]. Under this rather crude

approximation, the system would be stable at criticality and

capable of undergoing growth and division cycles provided

that vg . vd.

Ganty’s Chemoton model (figure 10c) provides an example

of an explicit proposal for a protocell where several coupled

cycles involving M þ C þ G are considered [80]. The model is

spatially implicit and thus does not take into account the

requirement for membrane instabilities: once a critical amount

of material components have been accumulated, the model arti-

ficially splits the cell into two equal parts. The chemoton allows

the study of different relevant problems related to the role

played by template competition and error thresholds [87].
A major problem arises when dealing with an explicit

implementation of the physics of compartments, particularly

in relation to the instabilities required for replication to occur.

While the process of vesicle or micelle formation has to do

with a minimization of energy leading to a more or less sym-

metric structure, the growth-instability process involves an

out-of-equilibrium procedure.5 To destabilize the system,

the symmetry of the spherical configuration needs to be

broken. In this context, the container and its coupling with

metabolism and information define genotype–phenotype

mapping [88,89].

The efforts aimed at creating an artificial cell must deal

with different ways of triggering membrane instabilities lead-

ing to cell division. All these systems share a given

environment where available membrane precursors are

required to achieve a critical size. Current living systems

share genetic control of cell division, but early stages in the

evolution of protocells must have been dependent on the

physical properties of membrane curvature. Theoretical

models address this in two main ways. The first class uses

a parameter fc (the so-called reduced surface6) defining the

critical value associated with vesicle division. Here too, a

phase transition scenario is present. A general condition for

achieving a cell division cycle has been derived [90,91].

A simple example close to the autopoietic cell would be a

self-reproducing enzymatic vesicle where the key reaction is

given by

Pþ E�!m Lþ nW þ E, ð5:3Þ
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with E being, for example, an enzyme located inside the

vesicle and n waste molecules being released. This model is a

good approximation to some experimental set-ups using

giant vesicles (GVs) that produce inside them, with the help

of a catalyst, the main membrane component [92]. For this

system, it can be shown that the critical balance obtained when

S
V
jp(½P�e � ½P�)þ nrL ¼

CTaL

2

� �
NAVrL

S

� �
, ð5:4Þ

where rL ¼ k[P]/NAV and j is the membrane permeability.

Equation (5.3) provides a critical condition required to achieve

cell division. Moreover, it introduces constraints between

different components of the system and their couplings.

The second class of models gets closer to the physics of

membrane instability by explicitly considering this factor as

part of the process. Here, the use of the membrane energy

is required.7

Mathematical and experimental investigations of vesicles

show that phase transitions separate spherical from asym-

metric vesicles associated with symmetry breaking [93].

The explicit energy associated with synthetic protocell

growth has been introduced in different ways. These include

pattern formation through Turing instabilities [94] or micelle-

metabolism coupling in nanocells [95–97]. These artificial cell

models suggests that instabilities can be easily generated pro-

vided that a given molecule gets asymmetrically distributed

within the vesicle, thus creating spatial inhomogeneities.

Alternatively, the packing of lipid molecules into a given

spherical aggregate is strongly constrained by the shape of

the surfactants. When a critical number of these molecules is

reached, the aggregate is no longer stable.

Synthetic protocell reproduction has been experimentally

investigated, using a diverse range of settings. None of them

has been successful so far in showing a full, simple cell cycle

following the growth-deformation-instability-division process.

One candidate is a container (made of simple amphiphiles) that

encloses oligonucleotides and uses a template copying mech-

anism that operates within the cell [84]. The interest of this

system (figure 10d ) is how prebiotically reasonable membrane

compositions can be enough to provide a system capable of

division driven by both internal and external forces. Other suc-

cessful strategies have used different alternative ways of

departing from the spherical symmetric compartment. An

example of these synthetic systems (figure 10e) involved a

GV-based model enclosing DNA molecules that are amplified

through PCR [85]. In this system, membrane precursors are

provided and the amplified DNA moves within the two lipid

layers, triggering a local growth and budding process that

ends in vesicle division. In another setting [86], the artificial

cells contain RNA encoding a self-encoded RNA replicase

that can be evolved over time. The artificial evolution experi-

ments show that self-replication occurs (figure 10f ) with the

use of PCR and the input of a fresh translation system under

vigorous mixing.

All these examples require the help of some extrinsic factors

to trigger or facilitate instability. In that respect, synthetic ver-

sions of protocells suggest that the path towards spontaneous

instability and division might be more difficult than expected.

However, there is also another possibility: that the origin of

protocells might have required such extrinsic factors to occur.

In this context, very active research has also been done explor-

ing the emergent properties associated with membranes [98].

One particularly important finding is the potential role
played by vesicles as functional promoters and regulators of

chemical reactions [99]. Moreover, synthetic vesicles can com-

pete and interact in nonlinear ways providing further layers

of complexity beyond simple compartments [100–102].
6. Synthetic multicellularity and organismality
Multicellularity has evolved multiple times through the his-

tory of our planet [103–105]. This transition has taken place

in either increased aggregation and adhesion of cells (as

occurs with myxobacteria and some slime moulds) or loss

of cell separation after cell division (this includes bacteria

and ciliates). Most classical models of the transition to multi-

cellularity ignored physical interactions between cells within

cell aggregates. In this context, these models [106] have been

formulated in terms of a two-loci dynamical system where

the transition implies an increase of cooperation among

cells together with the regulation of conflict within the emer-

ging organism. However, spatial structures create novel

conditions that necessarily affect the fitness of the multicellu-

lar assemblies. Considering the embodied nature of these

aggregates is not only required as an additional feature but

also it can actually be crucial to understanding the transition

itself. It is worth noting that the use of physical models of

multicellularity reveals that even under very simplistic

assumptions, complex forms easily emerge [107–112].

The transition to multicellularity required the presence of

alternative cellular states along with stable, physical inter-

actions among previously isolated cells [113–115]. Extant

multicellular systems develop under tight controls of genetic

networks [116,117]. Synthetic multicellular systems can be

obtained in several ways, from non-clonal adhesion–differen-

tiation processes to engineered consortia. In this context,

developmental properties necessarily need to overcome

thresholds of organization intimately connected to transition

phenomena. It has been suggested that a small set of dynami-

cal patterning modules (DPM) might have played a major

role in the evolution of complex organisms. These DPM

affect adhesion, diffusion, cross-inhibition or synchronization

of cellular and tissue-level interactions through a set of key

molecular actors [118]. In this context, artificially evolved

multicellular aggregates [119], synthetic multicellular ana-

logues [120] and their model counterparts [121–123] have

shown potential for novel explorations of an old issue.

A successful strategy to create synthetic multicellular sys-

tems was put forward in a recent set of experiments [119] in

which the authors sequentially subcultured Saccharomyces
cerevisiae cells with the fastest sedimentation in order to

force the selection of cooperating aggregates (figure 11).

Remarkably, after just 60 selection rounds, the so-called

snowflake phenotype appeared consistently in all cultures

(figure 11b). These are roughly spherical clusters of cells

formed not by aggregation but by defective separation of

cells after division. It was found that clusters did not repro-

duce through events associated with single cells but instead

involved a group-level set of events. This was achieved

through a division of labour in the form of the active control

of apoptosis, which caused the asymmetrical splitting of the

cluster once it reached a threshold size [119].

To understand the origins of these multicellular structures,

a simple model was developed [122] that was also used to test

other potential scenarios for the rise of multicellular ensembles
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Figure 11. Synthetic evolved multicellularity. Using yeast strains (a) involving
single-living cells (image from https://en.wikipedia.org/wiki/Yeast), it has been
shown that selection favouring the formation of aggregates (b) leads to the
emergence of multicellular systems (image courtesy of W. Ratcliff ). This type
of experiment can be easily modelled using embodied simulations (c) where
wells are represented as physical objects that can adhere to each other.
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(figure 11c). Here, yeast cells and their interactions are simu-

lated using a physical embodiment, with evolving adhesion

rates. The model was able to reproduce the reported patterns

in cluster size distributions and localized mortality. Moreover,

the model suggests an alternative pathway to cell clusters and

their fission based on a passive apoptotic effect of nutrient

deprivation in cells at the centre of the aggregate.

An interesting observation in this area is the presence of a

blurred zone at the boundaries separating some single-celled

species from fully-fledged multicellular entities. Bacteria in

particular exhibit multicellular traits [124], especially in the

face of high-stress events [125,126]. Simple multicellular sys-

tems, such as Anabaena or myxobacteria are such examples of

minimal multicellular organization [127,128] that can involve

primitive developmental programmes. A minimal form of

multicellularity comprises persister cells associated with cell

subpopulations that can spontaneously switch back and

forth among multiple resistant phenotypes, as a bet-hedging

strategy [129,130]. Can this mechanism pre-date the transition

to the first complex multicellular life forms? This is connected

to the origins of what Queller and Strassman named organ-
ismality [131]. Specifically, it would be important to know

whether primitive forms of cell adhesion and diffusion

under selective conditions can lead to proto-organisms

where division of labour is tied to spatial organization.

A minimal model has been proposed for the origins of

proto-organisms [132] and is summarized in figure 12a–c. It

includes (i) multistability, using a stochastic bistable phenotype,

(ii) differential adhesion, and (iii) a selective environment

involving both nutrients (N) and harmful (W ) diffusible mol-

ecules. Cells are distributed over a two-dimensional lattice V.

The two cell types need N to grow, whereas W causes increased

cell death (figure 12a). Only cells of type 2 can degrade waste in

the medium, at the expense of reducing their growth rates.

Under appropriate metabolic trade-offs, it was shown [134]

that evolution of undifferentiated multicellularity might per-

vade the coexistence of cell clusters. By adding adhesion, it
can trigger the formation of proto-organisms (figure 12b,c).

The result is the emergence of nested substructures and the cre-

ation of an internal environment. These results suggest very

simple sets of pattern-forming rules can produce a rich, largely

unknown landscape of structures predating the evolution of

multicellular organisms [132,134]. Other types of similar

proto-organisms have also been obtained by models involving

dynamic differentiation under isologous diversification [133].

In this type of model, cell types are dynamical attractors in a

high-dimensional landscape of expression (figure 12d).

Synthetic biology offers a unique opportunity for testing

theories concerning the origin of multicellularity as well as

the emergence of developmental programmes. Engineered cel-

lular communication has already been achieved in different

contexts, allowing the creation of novel cellular consortia

[78,135,136]. By engineering unicellular systems, it is also pos-

sible to obtain novel forms of multicellular assemblies, able to

carry out complex computations [137–139]. Finally, cell repro-

gramming and tissue niche engineering have shown the way

to design synthetic tissues and organs [140,141] and explore

synthetic development and its limits [142].
7. Synthetic symbiosis
Symbiosis refers to a scenario where once independent repli-

cators come to live together in close association [143]. This

association is typically tied to a physical interaction that

often involves one partner embedded or in close contact

within the other and the system experiences vertical trans-

mission [144]. This close relationship can be parasitic or

mutualistic. In the first case, one partner (the parasite)

exploits the second, with no return from the former. Mutual-

ism describes a mutually cooperative loop where both

partners help each other.

What is the basis for the emergence and persistence of sym-

biosis? As with most of our previous examples, definitive

answers might be difficult to obtain by studying natural sys-

tems. Instead, synthetic counterparts provide a powerful

approach to the problem and several examples illustrate how

to create de novo mutualisms. Synthetic biology has been suc-

cessful in showing that different types of symbiotic

relationships can be engineered in novel ways [145–149].

Different strategies have been followed, including: (i) design

of auxotrophic interactions (figure 13a) creating a synthetic

cooperative loop (a hypercycle) where each partner needs a

molecular factor produced by the second [150] and (ii) trans-

formation of plant pathogens into legume symbionts

[154,155]. The experiment started from a designed chimeric

strain of a plant pathogen carrying a symbiotic rhizobial plas-

mid from a plant endosymbiont (figure 13b). The initial strain

evolved to a full endosymbiont after two key mutations allow-

ing nodulation and plant cell infection. Here, niche engineering

provides an additional approach to the problem, where two

chosen non-cooperative species are made to coevolve under a

forced exchange of carbon and nitrogen. The outcome of this

experiment was a synthetic transition from free living life

forms to obligate mutualists [151].

A last example is given by synthetic designed chimeric

organisms (figure 13c). Here, photosynthetic microorganisms

were injected into zebra fish embryos [152,153] as well as

mammalian cells [152]. Such types of symbionts exist in

nature and have been found in different phyla [156]. Here,

https://en.wikipedia.org/wiki/Yeast
https://en.wikipedia.org/wiki/Yeast
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Figure 12. Emergence of in silico proto-organisms. A simple spatial model can lead to complex multicellular assemblies involving organismality. Using (a) a two-
state model of cells with division of labour, a complex spatially organized system emerges (b) as a result of artificial evolution under a selective medium where both
nutrients and waste are present (see [132]). The spatial dynamics is driven by a model of differential adhesion (c). A different class of model involves considering
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Figure 13. Synthetic symbiosis. (a) A cooperative synthetic system involving designed auxotrophic interactions [150]. (b) Synthetic mutualism resulting from niche
engineering. Here, two species interact through a metabolic circuit based on carbon and nitrogen exchange. S. cerevisiae (left) metabolizes glucose (C6H12O6) releas-
ing carbon dioxide (CO2), which is then assimilated photosynthetically by C. reinhardtii (right) to release oxygen (O2). On the other hand, C. reinhardtii metabolizes
nitrite (NO2) and releases ammonia (NH3) as a nitrogen source for S. cerevisiae [151]. In (c), we display a microscope image of a chimaera zebra fish embryo
containing living photosynthetic cells [152,153].
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the photobiont uses solar energy to provide reduced carbon

as a source of energy to the metazoan host, which can pro-

vide nutrients in return. Successful invasion of mammalian

cells (macrophages) by algae was improved by engineering

the photosynthetic cells with invasins [152]. Interestingly,

the algae remain alive and even reproduce while embryonic

development takes place. This opens the possibility of

future plant–vertebrate chimaeras where an additional

engineering level would allow the production of useful

metabolites other than oxygen [153,156].

The in silico approach to the emergence of symbiosis has

also been successful and insightful, specially from computer

models of evolving digital genomes [157]. The best-known

example was given by Tom Ray’s experiments with the

Tierra model, based on a set of replicating and mutating com-

puter programs competing for computer memory (the

resource) [158]. After a first selection for shorter, faster repli-

cating programs, shorter programs emerged, but were

unable to replicate by themselves: parasites came to (digital)

life. Similarly, in the long run, groups of slow-replicating pro-

grams were able to replicate faster by cooperating among

themselves. Digital evolution supports the idea that the emer-

gence of parasites might be an inevitable outcome of

evolutionary dynamics [159,160]. One particular instance of

man-made synthetic parasites is provided by the evolution

of computer viruses (CVs). After their early appearance,

CVs became more and more complex and diverse [161]. A

crucial step in the historical development of CVs involved

in the creation of internal sources of variability that mimicked

natural mutations. Variability was thus an invention, and a

rather intentional one, as opposed to the intrinsic, inevitable

errors that constantly take place in living systems. Moreover,
in contrast to the typically harmful effect of mutations on

viral genomes, random changes in CVs have no impact on

their viability: here no interactions are allowed to occur affect-

ing functional traits. CVs eventually evolved towards more

silent, apparently harmless designs based on their potential

to ‘integrate’ themselves within the host machines, where

they remain undetected [162,163].
8. Synthetic cognitive agents and swarms
The emergence of a special class of biological agents, the

neural individuals [164] introduces a new layer of complexity:

the rise of behavioural systems [165]. In this case, information

transmission and processing is done within individuals. Here,

behaviour can be defined in terms of patterns of interactions

between individuals and their environment where the actions

of the organism and its perceptions interact, eventually affect-

ing future actions and perceptions. Here, we will consider

two broad classes of synthetic cognitive systems and the

key conditions for their emergence or synthesis: (i) individual

cognitive agents and (ii) societies, i.e. large sets of interacting

agents displaying colony-level behaviour. The latter are tied to

the problem of how cooperative societies came about and how

such swarm intelligence can be engineered. Walter’s work in

particular was the first systematic cybernetics approach aimed

at creating robotic agents (figure 14a) [166–169], and using

the term synthetic animals to refer to this class of automata

capable of autonomous behaviour [170]. These simple autono-

mous robots were capable of some complex behavioural

responses, including unexpected ones, as occurred when

facing mirrors [168]. These and later [171] synthetic animals



(a)

(b)

(c)

Figure 14. One of the first ‘synthetic animals’ (a) was built by Grey Walter. It
involved a simple wheeled robot with sensors and actuators and reacting to
light in different ways. Mixed synthetic swarms have been created by com-
municating cockroaches and their robotic counterparts (b) in order to solve
problems collectively. Robotic swarms (c) made of many small robots follow-
ing simple rules of interaction, can self-organize using self-assembly rules.
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revealed an interesting (and largely unappreciated) feature,

namely that the complexity of embodied agents was not just

the result of their cognitive complexity, but of their interaction

with the environment [172].

One of the most active areas within robotics is grounded

in a combination of designed and evolved agents [173–175].

Evolutionary robotics takes advantage of the search over
parameter spaces by means of artificial Darwinian selection,

which allows the synthesis of autonomous agents [174].

This field has clearly confirmed that behaviour is the emer-

gent outcome of the interactions between the agent and its

environment. The subsequent development of behaviour-

based robotics has also been very useful as a pathway by

which to approach relevant evolutionary questions [173].

An example is the transition from swimming to walking,

which was required in the transition from sea to land.

Inspired by the anatomy and behaviour of salamanders, a

model of the central pattern generator of synchronized neur-

ons controlling locomotion was used as a starting point for

evolving its architecture and parameters to allow a switch

to the walking gait of a tetrapod consistent with available

information [176,177]. This is a powerful illustration of this

field as an alternative path to uncover evolutionary

innovations.

Collective intelligence and its potential synthetic counter-

parts need to be considered separately. The emergence of the

superorganism requires crossing the so-called eusociality

threshold, which involves overlapped generations, division

of labour into reproductive and non-reproductive subsets

and the maintenance of genetic relatedness [178,179]. Interest-

ingly, Oster & Wilson [179] explicitly mention the potential

relevance of phase transitions in understanding the organiz-

ation of castes in social insects. What about the synthetic

counterparts? Is it possible to evolve or engineer synthetic

swarms? It has been pointed out that one precondition for

the origin of societies of insects was a ‘get together’ rule that

should operate after individuals are born. This is a key require-

ment in order to achieve a cohesive group. However, less

importance has been given to the fact that, when such a step

has been achieved, group responses resulting from phase tran-

sitions emerge too [18,180–182]. Here also, interactions among

individuals can trigger system-level responses provided that

critical thresholds are reached [18,181,183].

These transitions provide the group-level dynamics

required to perform different types of tasks. A specially rele-

vant example in our context is provided by an experiment

that combined mixed societies of artificial and natural

agents [184,185] including both real and robotic cockroaches

(figure 14b) that have to perform a two-choice decision between

two shelters. The robots were shown to modulate the collective

decision process leading to a pattern that cannot occur in their

absence. In other words, the artificial component of the mixture

forces proper swarm behaviour to occur and test the hypothesis

concerning the origins of swarm intelligence. Moreover, the use

of robot swarms or simulated agents working on a given spatial

domain provided insights into eusociality [186–189]. Novel

ways of implementing large numbers of robotic swarms

[190,191] capable of using self-assembly rules (figure 14c)

have also been engineered.

Microbes are also capable of integrating sensory infor-

mation, storing memories and displaying different levels of

behavioural control [192–194]. They thus incorporate several

relevant components required to build or design complex

decision-making systems. In some cases, the ways microbial

colonies respond to environmental challenges can be easily

classified as a swarm intelligence problem [192]. Alterna-

tively, many well-known examples of collective decision-

making could be engineered using modified microorganisms

[195] capable of implementing computational tasks with no

known counterpart from the microbial world.
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Figure 15. Phase transitions from individual to collective response through a
QS mechanism, as described by Vp(w). Here, the state of the system is
described by a global field w that is proportional to the system’s activity.
Here, we have fixed m ¼ 1, u ¼ 0.25 and d ¼ 1 (thus rc ¼ 0.5) and
different values of r are used: r ¼ 0.25, 0.5, 0.75.
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An interesting outcome of the study of natural, synthetic

and robotic systems is the presence of seemingly universal

decision-making rules of organization. Group responses dis-

played by ant colonies are based on so-called quorum
sensing (QS) mechanisms [196] also displayed by microbial

populations [197]. The QS rule, as well as other amplification

mechanisms, pervades phase transitions between individual,

disorganized behaviour (ants search individually) and colony

order (collective search towards a given nutrient source).

Here, a signal (a pheromone, for example) w triggers its

own production with constant rate m and is proportional to

the population density r. The signal is produced following

a function f (w) by individuals (present at a given density r)

and decays at a rate d [195]. The minimal model that captures

this is: dw/dt ¼ fr(w) 2 dw. A common form of f(w) is a

so-called Hill-like function8 namely

frðwÞ ¼
mrw2

u2 þ w2
, ð8:1Þ

which gives small values for w , u and large values other-

wise. Close to the threshold u, it rapidly increases. The

potential function now reads

VrðwÞ ¼
d

2
w2 � mr w� u arctan

w

u

� �h i
, ð8:2Þ

and in figure 15, we show three examples for subcritical, crit-

ical (rc ¼ 0.5) and supercritical densities. For r , rc we can

see that the only stable state is the w* ¼ 0 point, as expected,

but the shape of Vr(w) is clearly deforming as we approach rc.

Ant colonies have often been compared with brains and

neural networks [198,199]. The analogy is approximate but

useful, because it allows finding universal laws too. Both ant

colonies and brains process, store and use information about

their environments while monitoring internal colony states.

However, ant colonies are made of agents in movement, thus

defining a different state of matter compared with grey

matter: insect colonies are fluid neural networks [200–202]

and thus some of the crucial features of a standard neural net-

work are not present in the swarm. Is the fluid state a constraint

for developing more complex cognitive capacities? Are ‘solid’

and ‘fluid’ neural systems the only two solutions available?

Future work might shed some light on the invention of eusoci-

ality [203] and the implications for defining universality classes

of cognitive complexity.
9. Synthetic languages
The transition towards a complex language is a recent one

and had an enormous relevance to human evolution. It is

also a hard problem [204]. One of the obvious facts is the gap

between the complexity of human language and any other

known biological communication system. The gap is due to

the presence of a grammar that allows the generation of recur-

sive structures of potentially infinite complexity [1,205].

Another crucial observation concerns language acquisition

in children. Around 2 years of age, the sequence of utterances

babbling–one word–words is replaced by full sentences [206]

and children develop grammatical competence, suggesting

that this is an indication of an innate capacity of language

[207,208]. Grammar effectively defines the mapping between

linguistic forms and meanings. In its original formulation,

Chomsky introduced the concept of universal grammar (UG)
to describe the hardwired ‘linguistic theory’ that is shared by

all human brains and allows children to search the (large)

space of possible human grammars [209].

Two main avenues have been followed to study the tran-

sition to language using artificial systems. One involves

theoretical and computational models including: (i) standard

replicator equations [122,210]; (ii) information theoretic

approaches [211,212]; (iii) statistical physics [213,214]; or

(iv) the simulation of discrete agents [215,216]. The second

class deals with physically embodied, robotic agents capable

of sensing and tracking their environments while naming and

sharing objects and actions [217–219]. In most of these artifi-

cial models, qualitative (phase) transitions are also at work.

Several transitions are involved in language complexity

[220]. First, consider the evolutionary dynamics associated

with the emergence of language coherence [221]. Let us

assume that a set of possible rules G ¼ fGkg (with k ¼ 1, . . . ,n).

Each Gk can generate ‘valid’ messages. These have been iden-

tified as ‘grammars’ in previous studies [221], but the general

approach can be applied to other features of language, including

the inventory of shared words. Different Gs can have similar

rules, and thus are capable of generating some common sen-

tences. How can a search over a very large space G end in a

common, shared grammar? We will define A¼ (aij), where aij

indicates the similarity between Gi and Gj. If two individuals

are communicating by means of two different grammars, the

pay-off associated with this exchange will be F(Gi, Gj) ¼ (aij þ
aji)/2 and the frequency of agents using the ith grammar follows

a replicator–mutator equation

dxi

dt
¼
Xn

j¼1

xjfjðxÞQij � xiFðxÞ, ð9:1Þ

where
Pn

j¼1 xj ¼ 1: Moreover, we have F ¼
P

k fkxk and the

matrix Qij is the probability that an agent learning Gi from an

individual ends using Gj instead. This introduces a noise

in the model. If we assume the simplest, super-symmetric

model where aij¼ a, and such that Qij ¼ dijðq=n� 1Þþ
ð1� dijÞð1� qÞ with dij¼ 1 if i ¼ j and zero otherwise, here, q
is a learning parameter and one solution is xi ¼ x and
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Figure 16. Phase transitions in grammar evolution. Here, the potential func-
tion Vq(x) is represented for three different q values of the leraning
parameter, namely q ¼ 0.5, 0.8, 0.9 which are below, close and beyond
the critical value qc, respectively, separating multiple grammars (with a ¼
0.3 and f0 ¼ 0) (here because n� 1 it corresponds to x ¼ 0).
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Figure 17. Emergent synthetic languages. Using embodied robotic agents (a)
a proto-grammar can emerge (image from the Neurocybernetics group at
Osnabruck) that can be traced through the analysis of the underlying syn-
thetic language network developed by the agents. A formal model of
language (c) is described as an evolvable bipartite signal-object graph
(b – d ) whose topology depends on the specific trade-offs associated with
the efforts of communicating agents, as described by equation (9.5) as
weighted by a control parameter l.
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x j=i ¼ ð1� xÞ=ðn� 1Þ: Assuming that n� 1 (a crude approxi-

mation, because x � O(1/n) solutions are replaced by a zero)

then the mean field equation follows

dx
dt
¼ ð1� aÞx2ðq� xÞ � hð1� qÞðx� 1Þ ð9:2Þ

where h ¼ (a þ f0)(1 2 q). This model involves a phase tran-

sition between a state associated with multiple coexisting

grammars and one single, universally adopted one. The shape

of the potential function is given by

VqðxÞ ¼ hð1� qÞ x
2

2
� ð1� aÞx3 q

3
� x

4

� �
, ð9:3Þ

and is shown in figure 16 for different values of the learning par-

ameter q. As we can appreciate, there is a regime where many

different grammars coexist (x* ¼ 0), whereas after a threshold

qc is reached, a stable state is given by a single dominant gram-

mar for q . qc. In general terms, we can use this model to

represent the emergence of language coherence within popu-

lations of communicating agents. As soon as the critical

threshold is reached, a sudden jump to the single-language

solution occurs.

The previous strategy neither takes into account most struc-

tural and computational complexity of syntax nor the relevance

of meaning [222]. An alternative approach to the problem

incorporates a system capable of perception, programmed to

label objects and actions. The use of embodied robotic agents

(figure 17a,b) revealed several remarkable things. One is that

embodiment is a key requirement to evolve complex communi-

cation [223]. Second, evolutionary experiments showed that,

along with a lexicon, rudimentary forms of grammar also

emerge [224] thus indicating that a grammatical network

organization (figure 17b) should be expected also in artificially

evolved languages. The complexity of the evolved networks of

word interactions has been analysed by means of fluid

construction grammars [225].

Finally, another avenue to synthetic languages is grounded

in a statistical physics approach that seeks to explain some key

universal traits such as Zipf’s law, which establishes that the

frequency of any word is inversely proportional to its rank
[226]. Specifically, if we rank all the occurrences of words in

a text from the most common word to the least common one,

the probability p(si) that in a random trial we find the ith
most common word Si (with i ¼ 1, . . . , n) falls off as

pðsiÞ ¼
1

Z
i�g, ð9:4Þ

with g � 1 and where Z is the normalization constant. This law

indicates that most words are rare, whereas a few are very

common, and this abundance is also connected with the fre-

quency of connections between words within sentences [227].

Does Zipf’s law define a universal feature of complex

languages, natural and synthetic?

A toy model can be defined by considering a set of symbols

S ¼ fskg and a set of objects of reference R ¼ frjg that are

shared by a hearer and a speaker. A given toy language can

be described by the graph that connects the two sets, as the

one shown in figure 17b–d. Here, two efforts are defined,

namely the one for the speaker, Vs and one for the hearer,

Vh. Here, Vs will be minimal using one or a few words to

refer to all objects (figure 17b), whereas Vh would be mini-

mized if the speaker uses one signal (word) for each object

(meaning), i.e. a one-to-one mapping (figure 17d). Clearly,

minimal effort for one implies maximal effort for the second.

A conjecture [228] suggested that language complexity might

be a consequence of the simultaneous minimization of both

efforts. This least effort principle was formalized using
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information theory [229]. One way of defining the global effort

is to consider a linear (energy) function V(l) to be minimized

VðlÞ ¼ lVh þ ð1� lÞVs, ð9:5Þ

with l [ ½0, 1�: This parameter tunes the relative contribution

of each effort. If p(si) is the probability of using si, the hearer’s

effort is defined by the entropy

Vh ¼ HðSÞ ¼ �
Xn

i¼1

pðsiÞ logðpðsiÞÞ, ð9:6Þ

measuring symbol diversity. Similarly, the uncertainty of prop-

erly retrieving the right objects associated with each signal,

gives

Vs ¼ HðRjSÞ ¼ �
X

i

pðsiÞ
X

j

pðrjjsiÞ log pðrjjsiÞ ð9:7Þ

where p(rjjsi) is the probability of associating the signal si to the

reference object rj. It can be shown that minimal effort is

achieved at H(S) ¼ H(RjS) (when lc ¼ 1/2) and that a phase

transition occurs at this critical value (figure 17c). Zipf’s law

could be the outcome of criticality [229,230]. Indeed, the hetero-

geneous distribution of word use defined by Zipf’s law seems

to occur close to lc, where ambiguity is a key trait. The presence

of ambiguity is a specially relevant property here, largely

absent in embodied communicating agents, in order to avoid

combinatorial explosions [231]. Because a heterogeneous distri-

bution of words might automatically lead to an efficient

navigation [227], the least effort scenario suggests a unified

framework to account for some crucial features, including the

roots of a proto-syntax [232].
10. Synthetic minds
The human brain experienced an accelerated expansion and

differentiation through a series of events associated with suc-

cessive additions of neural microcircuits [231]. Part of these

processes deal with simple but key mechanisms that are

common to humans and our ancestors. However, some cir-

cuits seem to incorporate distinctive traits that are related to

our human condition [232]. The evolutionary dynamic of

neural networks within complex brains has unfolded over

millions of years, eventually allowing the rise of the human

mind capable of symbolic thinking and self-awareness.

Here, consciousness defines a special and specially puzzling

property. It has been the focus of scholar efforts [233–235]

and Darwin himself asked ‘How does consciousness com-

mence?’ [236]. Despite its importance and implications

for understanding general anaesthesia, coma or minimal con-

sciousness, it remains an unsolved problem [237]. Different

paths have been followed in search for the evolutionary

origin of consciousness or even potential definitions or

classes [238]. These include finding evolutionary homologies

[239] and developing quantitative measures of neural correl-

ates of consciousness [240]. In this context, it has been

suggested that a parameter F can be defined that measures

the capacity of a system to integrate information. Using a

set of postulates under an information theory framework,

F ¼ 0 for non-conscious agents, whereas F . 0 otherwise,

thus aiming at measuring consciousness levels [241], a rele-

vant question is when and how did consciousness evolve?

This necessarily requires the assumption that some kind of

consciousness is present in some metazoans. As pointed
out by Edelman [242], a scientific approach to this problem

might ‘necessarily require the synthesis of artefacts’.

Can a machine be conscious? A crucial precursor to

this question has to be found in Turing’s classic paper

‘Computing machinery and intelligence’ [243]. Although not

explicitly addressing the problem of consciousness, Turing

was the first to explore the problem of how to detect (using

natural language) intelligence in a machine. The pursuit of cog-

nitively complex machines has pervaded many scientific and

philosophical debates since the 1950s [244,245]. The field of

artificial intelligence soon started to develop some systematic

approaches based on the construction of ever more complex

programmed machines, sometimes emulating cognitive tasks

using neural networks but most of the time following an algo-

rithmic approach. The field experienced a major shift because

of the rise of new approaches to machine learning known as

deep learning which are based on convolutional neural net-

works [246]. Beyond the impressive success of their practical

implementation [247], these approaches have also raised

relevant questions concerning the workings of natural and

synthetic minds [248,249].

In previous sections, we have mentioned the importance

of defining the preconditions for different major synthetic

transitions. What would be the key conditions predating the

emergence of consciousness [203,250,251]? Some advances

within robotic agents suggest that key features of the problem

might be achievable using the proper architectures. One

especially interesting example is provided by robots capable

of mirror recognition [252,253]. Because a self-aware robot

would be more capable of dealing with novel situations, sev-

eral studies have been focused towards developing robots

involving internal self-models [254]. Here, the embodied

nature of robotic agents and their capacity for visual recog-

nition of their environment (figure 18a) has been the key to

develop robots capable of passing the mirror test with high

accuracy. By incorporating an internal model, artificial agents

internally simulate their own actions and their sensory effects.

In this way, they can achieve behavioural advantages, particu-

larly if these can be generated by the robot itself [256]. These

features provide the basis for the emergence of emotional

states and what some authors name functional imagination,

i.e. the manipulation of information that is not directly avail-

able to an agent’s sensors [257]. Related work involves

modelling the neural basis of mirror neuron systems [258]

within artificial agents [255,259,260] and include explicit

embodied modelling of interactions and the emergence of

ritualized gestures (figure 18b). Such connections open novel

avenues towards a synthetic ethology.

Is the emergence of consciousness a phase transition

phenomenon? Explicit suggestions of a tipping point [261]

propose that once some brain complexity thresholds are over-

come (but not below), consciousness might be inevitable. On

the other hand, consciousness requires a neural substrate that

provides a compromise between integration and segregation

[240,262] and the right trade-off might need a brain poised at

a critical (transition) point [263]. The transition might need

specific architectural changes, as suggested by the re-entry

hypothesis [264] incorporated within artificial systems as

multiple positive loops [234,242]. It is interesting that research

in this area also considers the potential repertoire of levels of

consciousness in the anaesthetized brain [262,265] which

reveal the presence of sharp transitions between aware and

unconscious states.



(a) (b)

(c)

Figure 18. Transitions to self-awareness. Robotic agents can be used (a) to explore the problem of mirror recognition (image provided by Luc Steels). When
equipped with an internal representation of their internal states, they can pass the so-called mirror test. Modelling agent interactions (b,c) incorporating a
mirror system in their architecture (d ) allows developing behavioural patterns (adapted from [255]). (Online version in colour.)
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As a final point, we also need to consider potential depart-

ures of synthetic minds (either evolved or designed) from real

brains. This includes the fluid neural networks (virtual or

natural) associated with collective intelligence systems

[199,201]: would an ant colony or a termite nest have a F . 0

consciousness level? On the other hand, some artificial life

models have shown how artificial agents evolve highly inte-

grated ‘brains’ while evolving their complex environments

[266]. But a major difference between artificial and biological

candidates to a ‘mind’ is the potential of the former for gather-

ing massive data from non-local sources [267]. Given the

relevance played by embodiment in shaping minds [268,269],

we should also expect major differences associated with the

distributed nature of synthetic minds grounded in the use of

non-local sources of information. Similarly, we should expect

new classes of minds emerging in the future as a result of inter-

actions between human and embodied communication robots

equipped with learning and memory [270].
11. Synthetic ecosystems
As a final example in our hierarchy, let us consider the problem

of designing and/or evolving synthetic ecosystems. Ecosystems

are complex adaptive systems, and in many ways they can be

described, under a systems approach, as far from equilibrium

structures. Synthetic ecosystems include [271]: (i) those ecosys-

tems that result from the evolution of communities under

laboratory-constrained conditions; (ii) special species assem-

blies evolved in human-created environments that often

display overabundance of extremophiles; and (iii) engineered

communities of multiple interacting microbial organisms

resulting from partial or total designed strains from synthetic

biology techniques [272]. All these systems represent depart-

ures from their natural counterparts in several ways.

Moreover, we can include in this list those synthetic ecosystems

resulting from artificial life experiments [157,158,273,274]
where a more or less sophisticated set of physical constraints

are introduced along with evolvable genomes [275].

The canonical example of long-term evolution experi-

ments using microorganisms is provided by Lenski’s work

with Escherichia coli, involving thousands of generations of

population transfers [276]. Many other selection experiments

have been shown to create novel adaptations not present in

our current biosphere, such as the low-pressure conditions

found in Mars [277]. A somewhat similar class of uninten-

tional evolution experiments occurs in special contexts

related to specific artificial environments, such as solar

panels [278] or coffee machines [279]. Ecosystems adapted

to these ‘alien’ conditions are dominated by extremophiles

evolved under strong selection towards specific adaptations

to—for example—high temperatures or caffeine abundance.

These artificial ecosystems can be helpful not only to gain

insights into the evolution of extreme communities, but also

for ecosystems designed in future (see below).

The rise of synthetic biology allows us to create novel ecosys-

tems where interacting species or their niches are engineered,

with or without further artificial evolution. Understanding the

patterns of organization of these communities is a much

needed task, because no species within a given community

live in isolation [272,280]. Examples of synthetic ecosystems

include different microbial consortia in liquid or spatial environ-

ments involving different forms of communication [281–284].

These ecosystems will offer valuable information about the stab-

ility of artificial communities of interacting species, and this

might be relevant for the engineering of the human microbiome

and its alternative states [285,286] as well as in potential

approaches to ecosystem bioengineering [287,288].

Because the microbiome seems to follow universal ecologi-

cal patterns [289], these manipulations can shed some light on

the resilience of future synthetic ecosystems resulting from the

release of modified organisms. In this context, transitions

between alternative states have been also recognized as a fun-

damental part of their robustness and fragility [290,291]. Here,

some species, known as ecosystem engineers, play a crucial role
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in shaping the ecology and evolution of communities and their

potential modification [292,293]. Finally, the possibility that

learning can be incorporated as part of our understanding of

evolution, particularly within the context of ecosystems

[294,295], opens novel forms of thinking in evolutionary tran-

sitions and further levels of informational complexity to be

designed or artificially evolved.
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12. Discussion
What drives the emergence of major novelties in evolution?

In this paper, we have explored the parallel path followed

by artificial versions of those transitions that have been

identified in the historical record of life. In some cases, the

main difference involves the presence of developmental pro-

cesses that are an inevitable part of biological complexity, but

are absent in most artificial systems. An exception here are

those based on synthetic biology and thus using cells and

their interactions as part of the engineering toolkit. Develop-

ment and constraints associated with genetic similarity and

other features of real biology are largely absent in most artificial

designs grounded in hardware but also in simulated scenarios,

with some exceptions. Because development defines the map-

ping between genotype and phenotype in biological systems, it

also incorporates a great deal of complexity that results from

the contrived nature of evolution.

Some of the transitions that have repeatedly occurred in

evolution have also been achieved in the artificial context,

including multicellularity, symbiosis or different forms of cog-

nitive complexity. In most cases, the basic logic is shared by

the living and the designed systems, thus reflecting seemingly

universal rules of organization. The universality has to be

understood in terms of fundamental principles and minimal

requirements, and in this context we suggest that phase tran-

sitions might be a specially relevant framework here. We have

illustrated this in different case studies where simple models

capture the nature of the transition, and where the qualitative

nature of the change can be seen as an instance of a phase

change not very different from those described by statistical

physics models. This view has been defended within the con-

text of origins of life studies [296], and future theoretical work

will be needed to substantiate this conjecture, but it might

also require rethinking of the framework of physical theories

by incorporating the emergence of generative rules. This is

especially important when we think of the nature of the rules

allowing the open-ended nature of evolutionary change. In

other words, novel ‘phases’ come with new properties but

also with internal grammars that describe their computational

complexity. Such a generalized theory is still missing.

Among the above-described examples, novel forms of com-

munication or hybrid systems also illustrate the idea that

synthetic transitions might incorporate qualitative features

not present in biology. In most cases, the differences also

arise owing to the lack of a natural selection process, where

cost constraints and competition for resources should play a

leading role. Molecular systems can display growth and repli-

cation processes not grounded in the standard template-based

mechanism. Genetic codes with lower and higher combinator-

ial repertoires have been constructed and replicating protocells

created by means of a mixture of growth-instability cycles and

external triggers with no genetic control. Similarly, the non-

local nature of information processing exhibited by robotic
agents clearly departs from the limits imposed by the

embedded neural system carried by every individual in the

natural world. Similarly, the goal of creating self-aware

machines typically ignores the social context and developmen-

tal path where natural minds arise. These examples not only

stress the differences, but also suggest that in some cases

(such as protocells or machine intelligence and consciousness)

the path towards the transition might be more difficult to

achieve—both the biological and the artificial contexts.

A final point to be made is that evolution, as pointed out by

the French biologist Jacob [297] does not operate as an engineer.

Evolution does not foresee the future and requires existing

materials and rules to build new structures. Novelties thus

necessarily arise through re-use and rewiring.9 The engineer is

not (in principle) limited by such constraints, and can over-

come the messy and often non-modular nature of biological

circuits. However, it is not less true that, because of the

contrived nature of evolution, biological structures often

incorporate levels of robustness and integration that clearly

depart from their artificial counterparts. The underlying

landscape of evolved designs might contain properties that

are not captured by the engineering-driven version where

some simplifying assumptions are made. If that is the case,

achieving some of the METs using synthetic paths might

need to incorporate evolutionary dynamics as an essential

part of the process.
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Endnotes
1For a one-dimensional system described by a single differential
equation dx/dt ¼ fm(x), where x indicates the state of the given vari-
able (a population, for example) and m is a parameter or set of
parameters. The potential equilibria are defined by those x* such
that (dx/dt) at x* is zero (i.e. no changes occur) or, in other words,
fm(x*) ¼ 0. For each fixed point, we determine the sign of the par-
ameter lðx�Þ ¼ ð@fmðxÞ=@xÞ: It can be shown that a stable (unstable)
point x is such that l , 0 (l . 0).
2As defined, since we have dx/dt ¼ f(x), the potential function is
simply VðxÞ ¼ �fðxÞdx and it is easy to show that its maxima and
minima correspond to the unstable and stable fixed points, i.e. those
x* such that f (x*) ¼ 0, following linear stability analysis.
3Although this definition poses some strong constraints on the potential
candidates to a hypercyclic dynamics, the exact implementation might
not be so relevant while looking for the generic (universal) properties of
systems that include in their effective kinetics second-order terms.
4The minimal model consistent with this set of reactions, as pointed
out in [60] is dx=dt ¼ ðsþ rxþ kx2Þð1� xÞ � ux which again exhibits
a potential function similar to the Fontanari–Ferreira model [58].
5Micelle formation, for example, can be described as a cooperative
reaction nA1 �!

K
An, where a closed system An composed of n mono-

mers A1 is formed provided that a critical concentration x ¼ [A1] is
present. This cooperative behaviour is an important part of the self-
organisation of micellar structures and indicates that, when a given
concentration of monomers is exceeded, the system experiences a
spontaneous transition towards macromolecular assemblies. These
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self-assembly properties are shared by a vast range of molecular
candidates, both natural and artificial.
6This parameter is defined asf ¼ S=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36pV23
p

where S and V are the sur-
face and volume of the vesicle, respectively. When f ¼ 1, we have a
spherical, stable vesicle, whereas lower values lead to inflated vesicles
(which can burst) and higher values favour deformed vesicles. A critical
value is given atfc ¼

ffiffiffi
23
p

. A stable vesicle can be shown to exist within a
domain 1� e , f ,

ffiffiffi
23
p
ð1þ hÞwhere e, h are measurable coefficients.

7The energy associated with the bending of the vesicle is defined
through the integral of the free energy on the surface. In its simplest
form and considering low temperatures (i.e. thermal fluctuations are
ignored) we have Hb ¼
Þ

S k½S�=2ðCðSÞ � C0ðSÞÞ2dS where k½S� is the
bending modulus and CðSÞ � C0ðSÞ is the mean curvature of the ves-
icle surface at S. The result of the minimization of such energy
function, i.e. the solutions of dHb ¼ 0:
8The quadratic terms that appear in this Hill function are character-
istic of some well-known regulatory controls associated with the
presence of dimers as gene regulators. In other cases, saturation func-
tions with similar shape are related to well-known threshold-like
phenomena exhibited by physiological and neural systems.
9Charles Darwin himself stated the presence of tinkering was part of
the evolutionary process, see [298, p. 348].
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template replicators coexisting in the same
protocell: stochastic simulation of an extended
chemoton model. PLoS ONE 6, e21380. (doi:10.
1371/journal.pone.0021380)

88. Caschera F, Noireaux V. 2014 Integration of
biological parts toward the synthesis of a minimal
cell. Curr. Opin. Chem. Biol. 22, 85 – 91. (doi:10.
1016/j.cbpa.2014.09.028)

89. Loakes D, Holliger P. 2009 Darwinian chemistry:
towards the synthesis of a simple cell. Mol. Biosyst.
5, 686 – 694. (doi:10.1039/b904024b)

90. Mavelli F, Ruiz-Mirazo K. 2013 Theoretical
conditions for the stationary reproduction of model
protocells. Integr. Biol. 5, 324 – 341. (doi:10.1039/
C2IB20222K)

91. Villani M, Filisetti A, Graudenzi A, Damiani C,
Carletti T, Serra R. 2014 Growth and division in a
dynamic protocell model. Life 4, 837 – 864. (doi:10.
3390/life4040837)

92. Takakura K, Toyota T, Sugawara T. 2003 A novel
system of self-reproducing giant vesicles. J. Am.
Chem. Soc. 125, 8134 – 8140. (doi:10.1021/
ja029379a)

93. Svetina S. 2009 Vesicle budding and the origin of
cellular life. Chem. Phys. Chem. 10, 2769 – 2776.
(doi:10.1002/cphc.200900577)
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199. Solé RV, Miramontes O, Goodwin BC. 1993
Oscillations and chaos in ant societies. J. Theor. Biol.
161, 343 – 357. (doi:10.1006/jtbi.1993.1060)

200. Boi S, Couzin ID, Del Buono N, Franks NR, Britton
NF. 1999 Coupled oscillators and activity waves in
ant colonies. Proc. R. Soc. Lond. B 266, 371 – 378.
(doi:10.1098/rspb.1999.0647)
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Travisano M. 2015 Ecological perspectives on
synthetic biology: insights from microbial
population biology. Front. Microbiol. 6, a143.
(doi:10.3389/fmicb.2015.00143)

272. Mee MT, Wang HH. 2012 Engineering ecosystems
and synthetic ecologies. Mol. Biosyst. 8,
2470 – 2483. (doi:10.1039/c2mb25133g)

273. Lenski RE, Ofria C, Pennock RT, Adami C. 2003 The
evolutionary origin of complex features. Nature 423,
139 – 144. (doi:10.1038/nature01568)
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