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Metabolic rate in animals and power consumption in computers are analo-

gous quantities that scale similarly with size. We analyse vascular systems

of mammals and on-chip networks of microprocessors, where natural selec-

tion and human engineering, respectively, have produced systems that

minimize both energy dissipation and delivery times. Using a simple net-

work model that simultaneously minimizes energy and time, our analysis

explains empirically observed trends in the scaling of metabolic rate in mam-

mals and power consumption and performance in microprocessors across

several orders of magnitude in size. Just as the evolutionary transitions

from unicellular to multicellular animals in biology are associated with

shifts in metabolic scaling, our model suggests that the scaling of power

and performance will change as computer designs transition to decentra-

lized multi-core and distributed cyber-physical systems. More generally, a

single energy–time minimization principle may govern the design of

many complex systems that process energy, materials and information.

This article is part of the themed issue ‘The major synthetic evolutionary

transitions’.
1. Introduction
Both organisms and computers have evolved from relatively simple beginnings

into complex systems that vary by orders of magnitude in size and number of

components. Evolution, by natural selection in organisms and by human engin-

eering in computers, required critical features of architecture and function to be

scaled up as size and complexity increased. In biology, Kleiber’s Law describes

empirically how metabolic rate and many other traits, such as lifespan, heart

rate and number of offspring, scale with body size [1]. Similarly, computer

architecture has Moore’s Law to describe scaling of transistor density and

performance [2], Koomey’s Law for the energy cost per computation [3], and

Rent’s rule for the external communication per logic block [4].

We posit that these empirical patterns originate from a common principle:

networks that deliver resources are optimized to reduce energy dissipation

and increase flow rates, expressed here as minimizing the energy–time product.

That is, both living systems and computer chips are designed to maximize the

rate at which resources are delivered to terminal nodes of a network and to

minimize the energy dissipated as it is delivered and processed. For example,

in biology the vascular network of mammals supplies oxygen and nutrients

to every cell, fuelling metabolism for maintenance, growth and reproduction.

Since energy is a limited resource, we assume that mammals are selected to

minimize the time spent and energy dissipated as oxygen is delivered through

the network [5] and processed to produce ATP in the mitochondria. Similarly,

computation in microprocessors relies on a network of microscopic wires that

transmits bits of information between transistors on a chip. This network is

designed to deliver the maximum information flow at the lowest possible

energy cost.
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Figure 1. Idealized branching models in biology (a) and computers (c). (a) A cardiovascular tree with branching factor l ¼ 2, H ¼ 5 hierarchical branchings and
N ¼ 32 terminal branches at level 0 that represent capillaries. (b) The radius and length of successive branches: Dr defines the relative radius and Dl defines the
relative length of pipe or wire between successive hierarchical levels (i and i þ 1) in both biology (a) and computers (c). (c) The semi-hierarchical branching of logic
wires on a computer chip. Each module within a hierarchical level is shaded the same colour. The purple, red, green and blue (thinnest to thickest) wires cross 0, 1, 2
and 3 modules, respectively. The wire lengths and widths increase as they cross more levels according to Dl and Dr. Dw defines the number of wires, determined by
the ratio of internal (intra-module) communication per node to external (inter-module) communication per node. Here Dw ¼ 2 so that a node is connected to all
nodes within a module (in this case only 1) by a purple wire, 1/2 of the nodes in the next hierarchical level by red wires, 1/4 of the nodes in the next level by green
wires, and 1/8 of the nodes in the next level by blue wires.
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Here, we model mammals as composed of nodes (regions

of tissue) that process oxygen delivered via a hierarchical vas-

cular network, and we model microprocessors as composed

of nodes (transistors that perform computation) that commu-

nicate bits over a network of wires. As each system scales up

in size, our model identifies network designs that minimize

(i) the time for resources to be delivered by the network

and processed in the nodes, and (ii) the energy dissipated

during these processes. Despite the obvious differences

between animals and chips, we present a general model and

derive energy and time-scaling relations from physical prin-

ciples applicable to each system. Using these relations, we

express the optimal network design as a trade-off between

energy cost and processing speed. This energy–time minimiz-

ation model is consistent with shifts across the major

evolutionary transitions, such as the transition from protists to

multicellular animals and the transition from single- to multi-

core computer chips. It also points to likely future trajectories

of the evolution of computer architecture and to possible

extensions of metabolic scaling theory to account for sociality.

Previous biological scaling models have sought either to

minimize energy dissipation, e.g. [5], or to maximize resource

delivery rate [6], but they have not formalized the trade-offs

between these goals. By simultaneously considering energy

and time minimization, our analysis helps to explain how

nature and engineering are able to produce designs that

approach pareto-optimality along the energy–time trade-off,

a question investigated extensively in computer architecture

(e.g. [7,8]). Thus, biological evolution has produced mammals

ranging in size from mice to elephants, rather than converging

on a single optimal size, and computer engineers have

designed processors with thousands to billions of transistors,

each of which fills a specific computational niche.

In the rest of the paper, we present the unified energy–

time minimization model (§2) and its assumptions (§2a).

We then use the model to derive a series of predictions

about how time and energy scale with system size, first

for mammals (§3a,b) and then for microprocessors (§3c).

We discuss new insights into previously analysed scaling
relationships in biology that we gain from the time–energy

minimization framework, and we test our scaling predictions

with empirical power and performance data on computer

chips. Finally, in §4, we discuss the implications of these

results for evolutionary transitions in nature and engineering.
2. Unified model of network scaling
Vascular systems are hierarchical branching networks where

blood vessels (pipes) become thicker and longer through the

hierarchy from the capillaries to the aorta. Similarly, micro-

processor chips are organized hierarchically into a nested

structure of modules and submodules, where wires become

longer and thicker as the hierarchical level of a module

increases (figure 1). These wires are organized into metal

layers, where short, thin wires are routed on the lowest

layers, and long, thick wires are placed on the top layers.

We model the scaling of length (l ) and thickness (r) of both

pipes and wires as

li ¼ l0li=Dl ð2:1Þ

and

ri ¼ r0l
i=Dr , ð2:2Þ

where i is the hierarchical level of a branch or module, l is the

branching factor and Dl and Dr are the length and thickness

dimensions, respectively. This model resembles the hierarch-

ical pipe model of vascular systems proposed in [5], where

l1=Dr and l1=Dl correspond to b and g, respectively, in [5]

(note that in [5], the aorta or top of the network is labelled

as level 0, while here the smallest branches, the capillaries,

are labelled as level 0).

In vascular networks, r represents the radius of cylindri-

cal pipes, and in computer interconnect, r represents the

width of wires with aspect ratio 1. Dr describes the relative

radius of pipes between successive hierarchical levels. The

smallest edges occur at i ¼ 0, and have constant radius, r0,

but length, l0, that scales with system size [6].
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The length parameter Dl is determined by the spatial

dimension occupied by the nodes of the network [9]. For

chips, Dl ¼ 2, since transistors are placed on a single two-

dimensional layer [10]; for three-dimensional organisms,

Dl ¼ 3. Because the length of a vessel defines the radius of

a three-dimensional volume of tissue supplied by that

vessel, each successive vessel in the hierarchy also scales

according to equation (2.1) with Dl ¼ 3 [5,6]. Similarly, the

length of each successive wire on a two-dimensional chip

defines the area to which that wire delivers signals [11].

Thus, in the simplest networks that efficiently deliver

resources homogeneously throughout a volume or area, Dl

describes both the relative length of pipe between successive

hierarchical levels and the physical dimension of the system.

For example in figure 1c, where l ¼ 2 and Dl ¼ 2, wires are

21/2 ¼ 1.41 times longer when they connect to successively

higher modules in the hierarchy.

Digital circuits scale in a third way beyond length and

radius, which has no direct analogue in mammalian cardio-

vascular networks. Digital circuits are partially decentralized,

with networks that connect multiple sources and desti-

nations, while vascular networks are centralized, with

blood flowing from a single heart. In vascular networks,

each pipe branches at each hierarchical level forming a tree

structure (in the simplest case with l ¼ 2 forming a binary

tree). Chips, however, have many connections within each

level of the network, and the number of these connections

varies systematically with the hierarchical level. To account

for this difference, we introduce a new equation, in which

the communication (or number of wires) per module

increases with the hierarchical level as

wi ¼ w0l
i=Dw , ð2:3Þ

where Dw is the communication dimension and w0 is the

average number of wires per node. This hierarchical scaling

of communication is a well-known pattern in circuit design

called Rent’s rule [4], where p ¼ 1/Dw is Rent’s exponent.1

This pattern is not unique to circuits and has been shown

to occur in many biological networks [12–15]. Vascular

systems correspond to a special case, where wi ¼ 1 for all i.
(a) Assumptions of the unified model
Before presenting the model and deriving scaling predictions,

we state the model’s assumptions and how they relate to

earlier models, both in computation and biology:

(1) Time and energy are equally important constraints. System

designs seek to deliver the maximum quantity of

resource per unit time for the minimum quantity of

energy expended. In computer architecture, this relation-

ship is expressed as the ‘energy-delay product’, which

formalizes the insight that a chip that is 10 times faster

or 10 times more energy efficient is 10 times better [16].

In synchronous systems, clock speed (delay between

clock ticks) determines the maximum rate at which the

system can compute.

(2) Steady state. Resource supply matches processing demand

[6,17]. That is, the network supplies resources continually

to the nodes and is always filled to capacity. This avoids

network delays and the need to store resources in the

system. Specifically,
(a) System designs balance network delivery rates with

node-processing speeds, so that resources are deliv-

ered at exactly the same rate that they are processed.

(b) Pipelining: a concept from computer architecture in

which resources, e.g. computer instructions, leave

the source at the same rate that they are delivered

to the terminal nodes and the network is always

full. Consequently, resources (oxygen molecules or

bits) flow through the network continually without

bottlenecks, and they do not accumulate at the

source, sink or intermediate locations.

(3) Terminal units and service volumes. We follow previous

scaling models of biology, which posit that the service

volume (the volume of tissue that is supplied by a

single terminal unit of the network) increases with

system size and has a fixed metabolic rate [5,6]. In con-

trast to [5], we do not assume that terminal branches of

the vascular network have fixed size. Following [6], we

assume that the length (l0) of the terminal branches of

the network (e.g. capillaries) is proportional to the

radius of the service volume. We also follow the assump-

tions in [6] that the capillaries have fixed radius, and that

the speed of flow (u0) through the service volume is pro-

portional to its length, so that the rate of arrival of oxygen

molecules to mitochondria in the service volume is con-

stant across mammals. In chips, transistor size has

shrunk over many orders of magnitude over the past

50 years. Similar to the length scaling of the service

volume in mammals, the radius of the isochronic region

(the service area) for chips scales proportionally with

decreasing transistor size [11]. Thus, service regions are

smaller in more powerful chips (which have more transis-

tors), but they are larger in larger animals. We refer to the

service volumes in mammals and the service regions on

chips as nodes.

In addition to these general assumptions, we make the

following refinements to accommodate salient differences

between biology and computer architecture.

(a) In biology, the energy processed by a node (Enode) is

invariant with system size. That is, as the size of a service

volume increases with body size, the total amount of

energy it processes remains constant. We do not make

this assumption for chips.

(b) Component packing: in chips, we assume that total chip

area is constant, and the number of transistors (N ) is

the square of the process size, i.e. the length of one side

of a transistor.

In biology, it is known that blood flow slows by several

orders of magnitude as it travels from the aorta to the

capillaries [5]. Earlier scaling models have generally not

characterized this slowing [5,6], but our equations include

velocity as an explicit term to highlight where it affects

time and energy scaling. Here, we model Dr as constant

within an organism so that blood slows continuously from

the heart to the capillaries. We also model Dw and Dl as

constant. Because rates of blood flow, oxygen delivery and

ATP synthesis can be converted one to another by a simple

conversion constant, we treat them interchangeably in our

scaling model.
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3. Model predictions for mammals and
microprocessors

We define Enet and Tnet, respectively, to be the energy dissi-

pated and the time taken by the network to deliver a

fundamental unit of resource to each node. For mammals,

the resource is oxygen (in mammals, carried by a unit

volume of blood), and for computers, the resource is a bit

of information. Similarly, we define Enode and Tnode as the

energy dissipated and the time taken by the nodes to process

that resource. For mammals, the node is the service volume

corresponding to a region of tissue supplied by a single capil-

lary [6], which corresponds to a volume of tissue containing a

constant number of mitochondria [18], the organelles that

process oxygen molecules to generate biologically useful

energy in the form of ATP. A node is defined as having a con-

stant rate of delivery of oxygen and processing of oxygen, but

the volume of a node varies with organism size.

Enet is the energy required to deliver oxygen to the cells

(as analysed in [5]), and Enode is the energy dissipated by

cells processing incoming oxygen. Tnet is the time delay

between delivering each oxygen molecule to the cell, and

Tnode is the time taken for the cell to process each oxygen

molecule. From the steady-state assumption, Tnet ¼ Tnode,

i.e. supply matches demand as in [6].

In microprocessors, the nodes are transistors, and Enet

and Enode represent the energy dissipated as bits are deliv-

ered to transistors and the energy required to process the

bits at the node. Tnet and Tnode are the times required to

deliver and process a bit at the node (i.e. network and tran-

sistor switching delay). In computers, the time taken to

deliver and process bits is bounded by max(Tnet, Tnode),

i.e. a node cannot process another bit until the bit is deliv-

ered, and a node cannot process a new bit until the node

has finished processing the previous bit. For both mammals

and microprocessors, we define the total energy as the

sum of energy dissipated in the network plus the energy

dissipated in the nodes: Esys ¼ Enet þ Enode.
2

In the following, we derive general scaling relationships

between Enet, Tnet, Enode and Tnode, and the number of

nodes N, under the assumption that the energy–time product

is minimized. N is our measure of system size (number of

capillaries or number of transistors). In mammals, larger N
implies larger organism volume and mass. For computer

chips, N increases by shrinking components, and so increas-

ing N does not imply increasing chip area, which we

assume to be constant.

The hypothesis that mammals and computers minimize

the energy–time product predicts that optimized system

designs will achieve the highest performance per cost, where

performance is given by flow and cost by energy expended.

To show this mathematically, we express the optimal network

design as a constraint optimization problem in which the

whole system’s energy–time product is minimized as

min
Dr,Dw,Dl

ðEsys � TsysÞ: ð3:1Þ
We derive expressions for Esys and Tsys for mammals (§3a)

and microprocessors (§3c) in terms of the dimensions Dr,

Dw and Dl, where Dl is fixed by the external dimensions

of the system.
(a) Mammallian cardiovascular network
In this section, we derive general-energy and time-scaling

relations for the cardiovascular network and nodes, and

then use them to minimize equation (3.1). We first define

scaling relationships for the four key quantities: (i) Enet,

(ii) Enode, (iii) Tnet, and (iv) Tnode, and then show how

they scale with N when equation (3.1) is minimized. In con-

trast to computer scaling, several theoretical scaling models

have been proposed for animals over the last century (e.g.

[5,6,19–21]). The influential West et al. [5] model predicted

scaling relationships by minimizing energy dissipation,

whereas an alternative model [6] maximized metabolic

rate by minimizing the time to deliver oxygen. Not surpris-

ingly, scaling models that assume different optimization

principles make different predictions [22]. Our model com-

bines both energy and time constraints into a single

framework.

(i) Enet. From basic principles of hydraulics, the energy

dissipated to transport a constant volume of blood through

the network is given by the loss in pressure from the

aorta to the capillaries multiplied by the volume being

transported. The loss in pressure is the product between

hydraulic resistance (R) and flow (Q), so DP ¼ RQ. Thus,

Enet / DP ¼ RQ:
(ii) Enode. Following [5,11], we assume that the quantity of

energy dissipated to metabolize a fixed quantity of oxygen in

each node is constant. Therefore, the energy summed over all

nodes is Enode /N:
(iii) Tnet. The time to deliver a fixed number of oxygen

molecules to the nodes is given by the volume of blood

being transported divided by the flow (Q). Since a constant

volume is delivered to each node in parallel, we consider

the volume being distributed per unit time to all nodes,

giving Tnet /N=Q:
There is no distance term in the Tnet equation. This is

because Tnet is defined as the time to deliver the ‘next’

oxygen molecule from a capillary, consistent with the

steady-state assumption. It is not the time it takes a single

molecule to traverse the network (i.e. it is not t in [6]), but

rather the inverse of the rate at which oxygen molecules are

delivered to the nodes, analogous to the inverse of clock

speed in computer chips.

(iv) Tnode. From the steady-state assumption,

Tnode / Tnet /N=Q:
Substituting these relationships into equation (3.1) (where

Esys ¼ RQ þ N, and Tsys /N=Q) gives

minðEsys � TsysÞ ¼ min
Dr,Dw,Dl

RN þN2

Q

� �
: ð3:2Þ

We now show how R and Q scale with N. The resistance

of a pipe is given by the well-known Hagen–Poiseuille’s

equation, where R at hierarchical level i is Ri ¼ 8mli=pr4
i

and m is the viscosity constant. The total network resistance

R is given by [5]

R ¼
XH

i¼0

8mli
pr4

i

1

ni
¼ 8ml0

pr4
0

l�H
XH

i¼0

li(1=Dl�4=Drþ1), ð3:3Þ

where there are H þ 1 hierarchical levels, and ni ¼ lH 2 i is the

total number of pipes at hierarchical level i.
Next, we consider upper and lower bounds for Dr given

the objective of minimizing the energy–time product

(equation (3.2)). Recalling that l2H ¼ N21, in the case



Table 1. Predicted scaling relationships for mammals and computer chips.
The first column shows the general scaling equation for dimensional
parameters in plausible ranges, Dr � 4Dl/(1 þ Dl) for mammals and Dw �
Dl/(Dl 2 1) for chips. The second column shows how each quantity scales
with N given the values of the dimensional parameters that minimize
the energy – time product, Dr ¼ 24/11 and Dl ¼ 3 for mammals and
Dr ¼ Dl ¼ Dw ¼ 2 for chips.

general
energy – time
minimization

mammals

Enet l0u0N2=Dr�1 N1/12

Enode N N

Tnet u�1
0 N1�2=Dr N0

Tnode u�1
0 N1�2=Dr N0

Esys � Tsys l0 þ u�1
0 N2�2=Dr N1/12 þ N

computers

Enet N1�1=Dl N1/2

Enode N1�1=Dl N1/2

Tnet N0 N0

Tnode N�1=Dl N21/2

Esys � Tsys N1�1=Dl þ N1�1=Dl N1/2 þ N1/2

105

104

103

102

10

1

1 10 102 103

mass (g)
104 105 106 107

10–1

10–2

energy–time minimization theory: Dr = 24/11

metabolic scaling theory: B µ M3/4

best fit: Dr = 2.50

B
M

R
(k

J
h–1

)

Figure 2. The energy – time minimization model predicts metabolic scaling
in mammals. Data from [23] show slight, but theoretically important, curva-
ture in the scaling of metabolic rate versus mass of mammals. The theoretical
optimum predicted by equation (3.8) with Dr ¼ 24/11 is shown as a solid
line. The West et al. 3/4 scaling prediction [5] is shown as a dotted line,
and the best empirical fit of equation (3.8) to the data is shown as a
dashed line (Dr ¼ 2.50).
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where Dr � 4Dl/(1 þ Dl), the summation in equation (3.3)

converges to a constant (log(N ) in the case of equality), and

R/ l0N�1: ð3:4Þ

As Dr increases above 4Dl/(1 þ Dl), R increases from/ l0N�1

to / l0N1=Dl�4=Dr (see Appendix A in the electronic

supplementary material for details of the calculation).

Flow through a pipe is defined as Q ¼ upr2, where u is the

fluid velocity. Therefore, flow through the aorta equals

Q ¼ uHpr2
H , and substituting from equation (2.2), Q ¼

u0pr2
0l

2H=Dr ¼ u0pr2
0N2=Dr: Since we do not assume that uH is

independent of N, u0 appears in the equations. If Q is equal

at all levels of the network (steady-state assumption) then:

Q/ u0N2=Dr : ð3:5Þ

With R and Q in hand, we now substitute these relationships into

the equations for Enet, Enode, Tnet and Tnode, obtaining the scaling

predictions shown in the first column of table 1. It is evident that

the scaling behaviour of Enet depends on the value of Dr:

Case 1: Dr � 4Dl=ð1þDlÞ: Enet / l0u0N2=Dr�1

Case 2: Dr . 4Dl=ð1þDlÞ: Enet / l0u0N1=Dl�2=Dr:

Given that Dl ¼ 3 for three-dimensional animals, and that

Dr must be greater than 2 to accommodate the necessary

slowing of blood as it flows towards the capillaries (5), then

Case 1 applies for 2 � Dr � 3, and Case 2 applies for Dr . 3.

Appendix A (in the electronic supplementary material)

gives the derivations for Enet for all values of Dr. Here we

show the case (Dr � 3) that minimizes the scaling of the

energy–time product (equation (3.2)):

min
Dr

RN þN2

Q

� �
/ l0 þ u�1

0 N2�2=Dr : ð3:6Þ

The energy–time product is dominated by the second

term in equation (3.6), which is minimized by setting Dr to
its minimum possible value. Thus, minimizing the energy–

time product requires Dr ¼ 2 (Case 1), and

Enet / l0u0N2=Dr�1 / l0u0: ð3:7Þ
(b) Biological scaling predictions from the energy –
time minimization model

Earlier scaling models showed that area-preserving branch-

ing (Dr ¼ 2) leads to the 3/4 power scaling of metabolic

rate with body size known as Kleiber’s Law (e.g. [5,6]). How-

ever, in animal circulatory networks blood must slow before

reaching capillaries in order to reduce pressure on the walls

of small vessels and to allow oxygen to be dissociated from

haemoglobin in the capillaries. Under this circumstance,

perfect area-preserving branching is not feasible, and Dr

must be greater than 2.

We make a specific prediction for the value of Dr that

minimizes the energy–time product while both slowing the

flow of blood to the capillaries and matching the supply

and demand for oxygen in the nodes. By our definition of

a node as the volume of tissue that processes oxygen at a

fixed rate, Tnode must be invariant. Table 1 shows the

model prediction Tnode / u�1
0 N1�2=Dr:

Following [6], in the optimal case u0 increases with organ-

ism mass, and therefore with N. See electronic supplementary

material, §6.1 for the derivation that u0 / l0 /N2=3Dr�2=9:

Substituting this equation for u0 into the equation for Tnode

in table 1, we find that Tnode is invariant with respect to N
when Dr ¼ 24/11 ¼ 2.18. The last column of table 1 lists the

scaling predictions given this value of Dr.

We test the prediction that Dr ¼ 24/11 using data from

[23]. This influential Kolokotrones et al. paper showed that

metabolic rate is elevated in both small and very large

mammals, indicating systematic deviations from a simple

power-law relationship between metabolism and mass.

Although the deviation appears only as a slight curvature

in the canonical log–log plots, as shown in figure 2, it is

important because it calls into question prior scaling

models that purport to explain a universal scaling exponent.
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We derive the equation relating metabolism (B) to mass

(M ), following the approach used in [6], but we relax the

assumption that Dr ¼ 2 giving3 M/N2=Drþ1=3 and

B/Mð18�8DrÞ=ð6þDrÞ þMð24�2DrÞ=ð18�3DrÞ: ð3:8Þ

See electronic supplementary material, §6.1 for details of the

calculations.

Although this prediction for B is not as simple as the 3/4

scaling predicted by West et al. [5] or the alternative models

proposed by Kolokotrones et al. [23], the exponents in

equation (3.8) arise naturally by combining two scaling

relationships: that of the metabolic rate of the nodes and

the metabolic power required to drive the network.

By considering blood slowing through the network due to

Dr . 2 and by including energy dissipated in both the network

and the nodes, each with different scaling exponents, the model

naturally generates the curvature observed in the data. Intui-

tively, in smaller animals a greater fraction of energy is

consumed by Enode, a term that is linear in the number of nodes.

We tested the predicted value of Dr ¼ 24/11, which mini-

mizes the energy–time product, and find a marginally better

fit (solid line in figure 2), than alternative models in [23]. The

m.s.e. for our model is 0.0271 versus 0.0287 for the extended

West et al. model (red dotted line in figure 2). The alternative

models in [23] that were specifically designed to account for

curvature have m.s.e. 0.274 and 0.0277. We also calculated a

value of Dr that is the best statistical fit to the data. Following

[23], we use least-squares regression, eliminate the orca that is

an outlier, and choose scaling constants to best fit the data.

We find that Dr ¼ 2.50 gives the best statistical fit (dashed

line in figure 2). Alternative fitting methods and inclusion

of the outlier have negligible effect on the best-fit value of Dr.

The energy–time minimization model is the only model

proposed thus far that naturally generates curvature account-

ing for the elevated metabolic rate of the largest mammals as

well as the smallest. The predicted value of Dr between 2 and

3 is also consistent with the idea that the upper region of the

network is area preserving with Dr ¼ 2, while Dr ¼ 3 in the

lower region as proposed by West et al. [5], and it is consistent

with the empirical radius scaling reported in [22].
(c) Microprocessor model
We now apply the same reasoning to computer chips. In com-

puters, unlike biology, nodes (transistors) are not constant

size but have shrunk by many orders of magnitude over

40 years of microarchitecture evolution. During this time, total

chip area has grown much more slowly, and we assume it to

be constant for our calculations. In addition, the total area of

all transistors on the chip is a fixed fraction of the area of the

chip [11]. Putting these two constraints together, the linear

dimensions of transistors decrease with transistor count as

N21/2 (more generally, N�1=Dl ). The width of the smallest

wires is r0 /N�1=Dl because minimum transistor size and

wire width are both determined by the process size. Similarly,

l0 /N�1=Dl because transistor linear density increases as N1/2.

Intuitively, this means that the number of nodes increases as

smaller transistors are placed closer together and connected

with smaller and shorter wires. In the following, we assume

that all wires carry the same flow and that information is trans-

ferred synchronously. We now calculate how Enet, Tnet, Tnode
and Tnode scale with the number of transistors, N, and the

three scaling dimensions, Dl, Dr and Dw.

Enet can be calculated from basic principles of electronics as

the energy dissipated to transmit a bit over a wire: CV2/2,

where C is capacitance and V is voltage. Because V has

remained approximately constant over the last four decades

(decreasing only by a factor of five while transistor count

increased by six orders of magnitude [24]), we estimate that

the total energy to transmit all bits over the network scales

as C [25]. Ignoring fringe effects and for an aspect ratio of 1,

wire capacitance is proportional to wire length, C ¼ el [26],

where e is the dielectric constant. Thus, the network capaci-

tance is the sum of the capacitances of all wires, which is

proportional to the total wire length of the network [27]:

Enet / C/
XH

i¼0

liwini / l0w0l
H
XH

i¼0

li(1=Dlþ1=Dw�1), ð3:9Þ

where at all levels i, li is the length of wire, wi is the number of

wires per module, and ni is the number of modules. Recalling

that l0 /N�1=Dl and lH /N gives

Enet /N1�1=Dl

XH

i¼0

li(1=DlþDw�1): ð3:10Þ

Note that the scaling of Enet with N depends on Dl and Dw, but

not on Dr. Similar to energy scaling in mammals, how Enet

scales depends on whether the exponent 1/Dl þ 1/Dw21 in

equation (3.10) is positive or negative. If Dw � Dl/(Dl2 1) the

exponent is negative and the summand converges to a

constant (log(N) in the case of exact equality), leaving

Enet /N1�1=Dl : When Dw , Dl/(Dl2 1), C/N1=Dw: Given

Dl ¼ 2 for two-dimensional chips, Enet is minimized when

Dw � 2. See Appendix B (in the electronic supplementary

material) for details.

We now calculate the scaling of Enode ignoring leakage

power.4 For a single node, computation energy is given by

the transistor’s (dynamic) energy dissipation as CV2/2.

Again assuming constant V and the capacitance of a transis-

tor proportional to its length (l0), Enode is obtained by

summing the capacitance across all N nodes giving

Enode /Nl0 /N1�1=Dl :

We calculate Tnet as the time to transmit a bit over the last

wire in the network that connects to each transistor. This

assumes perfect pipelining so there is no delay in signal arriv-

ing at the last wire (electronic supplementary material,

Appendix B shows that perfect pipelining requires Dr ¼ 2).

Thus, Tnet is equivalent to the wire latency that equals resist-

ance multiplied by the capacitance of the wire (RC). For wires

with aspect ratio 1, Ri ¼ rli=r2
i , where r is the resistivity of

the material, and Ci / li as above. Thus,

Tnet / R0C0 /
l20
r2

0

/N0, ð3:11Þ

where l20=r2
0 is constant, because in chips l0 / r0 and both are

determined by process size.

Computation time for each node, Tnode, is calculated as

the transistor delay, CV/I [28], where again V is constant

and C is proportional to transistor length: Tnode/

C0ðV=IÞ/ l0 /N�1=Dl :

Before calculating the energy–time product, we observe

that Tnet is the only term that depends on Dr, so we set

Dr ¼ 2 to minimize Tnet. Similarly, Enet is the only term that

depends on Dw, and we set Dw to minimize Enet. In
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summary, given Dl ¼ 2, the terms of the energy–time pro-

duct are minimized when Dr ¼ 2 and Dw � 2. Although the

energy–time product is minimized for values of Dw greater

than 2, this would entail greater communication locality,

which is challenging to engineer and doesn’t improve the

energy–time product. Thus, the model predicts that Dw ¼

2, which is consistent with observed Rent’s exponents that

approach 1/2 [15,29]. The scaling relations for various

quantities are summarized in table 1.

(d) Predictions for microprocessors
Summarizing the results from the previous section, the

energy–time product for chips is minimized when Dl ¼

Dr ¼ 2 ¼ Dw. This result corresponds to ideal scaling, as

suggested by Dennard [30], where the linear dimensions of

transistors and wires scale at the same rate, wire delay is

constant, and Rent’s exponent is 1/2.

The final energy–time product scales as N1/2 (table 1),

showing that, unlike mammals, as size increases, the

energy-delay product per node decreases systematically.

Thus, chips have become faster and they consume less

energy per transistor as more transistors are packed onto a

chip. Of course, this trend arises from the remarkable minia-

turization of transistors and wires described by Moore’s Law.

It is not surprising that transistors are faster (Tnode) and

require less energy (Enode) as they become smaller. It also

makes sense that Enet grows sublinearly with the number of

transistors, because as N increases the distance between

nodes is reduced. Additionally, Dw ¼ 2, means that most

bits move locally, so the distance between nearest nodes

affects the average distance that bits are transmitted. The

only term in the energy–time product that does not decrease

with increased N and decreased process size is Tnet, which

remains constant under Dennard scaling where wire radius

and length scale proportionally to each other.

These scaling models make two testable predictions. First,

power consumption (P) in chips (total energy dissipated per

unit of time) scales as

P ¼
Esys

Tsys
/N1=2: ð3:12Þ

Second, performance, measured as computations executed

per unit of time, or throughput (Tp), is predicted to scale

linearly with N, i.e.

Tp/
N

Tsys
/N: ð3:13Þ

We compared our theoretical predictions for active power

consumption (ignoring leakage power) with data obtained for

523 different microprocessors over a range of approximately 6

orders of magnitude in transistor count (see the electronic sup-

plementary material, §7.3 for details of the data collection).

The data are shown in figure 3, where the measured exponent

was 0.495 (95% confidence interval¼ 0.46–0.53), which agrees

closely with our prediction of 0.5. Consistent data on perform-

ance across many technology generations is difficult to obtain

because reporting standards have changed over the years and

their adoption by different vendors is not uniform. We obtained

normalized performance data for 100 different Intel chips,

measured with Dhrystone Millions of Instructions per Second

(DMIPS), from a variety of sources (see the electronic sup-

plementary material, §7.3). These sources included a variety of
published third-party performance comparisons from different

generations over a range of 6 orders of magnitude in transistor

count. The best-fit exponent for these data is 1.11 (95% confi-

dence interval ¼ 1.07–1.15), as shown in figure 4. This is close

to our predicted exponent of 1, suggesting that engineered

designs slightly outperform the theoretical optimum defined

by the model. Performance and throughput were fitted using

least-squares regression, assuming that there are no significant

errors in the reported count of the number of transistors [31].

It is somewhat counterintuitive that performance increases

only linearly with the number of transistors. Given that transis-

tor switching times have decreased dramatically as size has

decreased, one might expect performance to increase as the

product of clock speed and transistor number (N). However,

this is not the case, and we show the expected performance

if time were actually the inverse of clock speed in the dotted

line in figure 4. Some performance increases are achieved by

increasing clock speed for a given manufacturing process,

which may account for the higher-than-predicted scaling expo-

nent.5 This analysis confirms that the network is indeed the
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bottleneck. The network delivers bits to transistors at a

constant rate per transistor (equation (3.11)), so performance

has increased only linearly with transistor number even

though, in principle, smaller transistors could process infor-

mation more quickly. As in biology, performance cannot

be understood without considering the constraints of the

network.

Our model provides a simple theoretical explanation for the

scaling of power and performance in computers over 40 years

of microprocessor technology improvements. The excellent

agreement between the theoretical optimum and experimental

data suggests that through successive generations of trial and

error, innovation and optimization, engineered designs are

highly successful, approaching and sometimes exceeding the

theoretical optimum predicted by the model.
Soc.B
371:20150446
4. Discussion
(a) Summary of scaling predictions
Scaling analyses provide a framework for understanding

critical parameters and constraints on the design of both

biological and computational systems spanning an enor-

mous range of sizes. We have presented a unified model

which predicts scaling relationships for both mammals and

microprocessors by simultaneously minimizing energy dissi-

pation and delivery time. The energy–time minimization

model highlights the similarities and differences between bio-

logical networks that deliver oxygen and computational

networks that deliver information. Earlier scaling models

focus either on minimizing energy dissipation or on minimiz-

ing delivery time (e.g. [5,6]). Here we extend that work by

considering minimization of energy and time simultaneously,

and investigating the trade-offs between them.

This theoretical model makes testable scaling predictions

for biological metabolism and for the power and performance

of computers. In biology, the energy–time model explains the

observed curvature in metabolic scaling of mammals

(figure 2). Other studies have interpreted the deviation

from linear scaling as indicating that there is no single unified

metabolic scaling theory, for example, as imperfect matching

of supply and demand [17]. The framework presented here

accounts for curvature in the optimization model by includ-

ing time and energy minimization in both the network and

the nodes. In computation, the unified model accurately pre-

dicts Rent’s exponents, active power consumption and chip

performance in over 40 years of chip design. Thus, the

model provides evidence of strong convergence between

natural and engineered designs due to physical constraints

despite the obvious differences between them.

The model presented here is, of course, a simplification of

the more complex reality. For example, our analysis assumes

that Dl, Dr and Dw are fixed constants throughout the net-

work both within and across systems. In reality, each of

these may vary. For example, Newberry et al. [22] did not

find evidence for a constant Dl ¼ 3 in mouse vasculature,

suggesting that the network does not deliver resources uni-

formly throughout the body volume. This is not surprising

given that different tissues and organs have different meta-

bolic requirements. Dr may vary within the vascular

network with area-preserving branching closer to the heart

and area-increasing branching slowing blood velocity in

smaller vessels, but Newberry et al. [22] find values for Dr
consistent with our predictions. Similarly, there is evidence

that Dw varies across hierarchical levels in computer chips

[32]. Including these factors in the model would allow more

accurate predictions, but they are unlikely to substantively

change the order-of-magnitude predictions of our simple

unified model.

Our model makes novel predictions both for mammals

and microprocessors. For mammals, we give the first quanti-

tative prediction for Dr that accounts both for blood slowing

through the network and for the empirically observed curva-

ture in scaling relations that cause small and very large

mammals to deviate from 3/4 scaling predictions. Addition-

ally, this prediction (Dr ¼ 24/11) gives an energy–time

product that is approximately linear with N (Esys/

N1=12 þN1, table 1). Highlighting the inherent trade-off

between energy dissipation and delivery times has important

implications for understanding the energetic basis of fitness.

Some have proposed that biological fitness maximizes meta-

bolic power (energy/time) [33,34], whereas others have

proposed that it minimizes biological times (e.g. generation

times, which is equivalent to maximizing vital rates)

[35,36]. The invariance of the energy–time product on a

per-node basis is consistent with the idea that organism fit-

ness is largely independent of body mass. Mammals of all

sizes, from small, fast mice to large, slow elephants, coexist

and, therefore, are probably nearly equally fit. This implies

a direct trade-off between maximizing metabolic power and

minimizing generation times, which holds over the many

orders-of-magnitude variation in body mass. The energy–

time product reflects powerful geometric, physical and

biological constraints on the evolution of organism designs.

In computation, the model accurately predicts power con-

sumption and performance of computer chips as simple

functions of the number of transistors. These order-of-

magnitude performance predictions highlight that delivery

of bits through the network, rather than processing bits at

the transistors, is the rate-limiting step that constrains per-

formance. More precise predictions may be obtained by

incorporating additional factors, for example, leakage

power, which comprises an increasing fraction of the power

budget of computer chips [7].
(b) Implications for evolutionary transitions
The similarities between biological and computational scal-

ing suggest future trajectories in computing based on how

the fundamental structural and functional properties of

organisms from bacteria to mammals have changed over

evolutionary time. Work by Delong et al. [37] demonstrated

that the slopes and intercepts of metabolic scaling relations

change at the evolutionary transitions: prokaryote (bacteria)

metabolic rate varies superlinearly with size, unicellular

protist rate varies linearly, and whole-organism metabolic

rate of multicellular animals scales sublinearly, converging

to the canonical 3/4 exponent that approximates the mam-

malian scaling described above. The authors hypothesize

that these discontinuous scaling shifts arise from body

plans overcoming pre-existing constraints, and then accom-

modating to new constraints, as body size and complexity

increase.

Delong et al. hypothesize the following: larger bacteria

have higher metabolic rates because their larger genomes

allow increased use of metabolic substrates, but eventually
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cell surface area limits metabolic processing. Unicellular pro-

tists overcome this constraint by internalizing the metabolic

machinery into respiratory organelles (i.e. mitochondria that

convert oxygen into ATP). The number of mitochondria

increases linearly with cell size until intracellular transport

constraints begin to limit the rate of metabolic processing.

Next, multicellular animals have effectively invariant cell

size and intracellular transport, but as body size and

number of cells increased, vascular networks evolved to

rapidly and efficiently deliver metabolites. However, vascu-

lar networks introduce the sublinear network scaling

constraints characterized above.

Delong et al. highlight the importance of both time and

energy constraints, and these change at each evolutionary

transition, with the consequence that the absolute time and

quantity of energy required to deliver each molecule of

oxygen increase across the major evolutionary transitions.

This suggests that the energy–time minimization framework

that we have used to predict the curvature in metabolic scal-

ing in mammals may apply across the range of living

organisms, with different constraints on time and energy

emerging at each evolutionary transition. The explanations

that the authors hypothesize are also directly relevant to

understanding of how energy–time minimization affects

the ongoing evolution of computer hardware.

(i) Innovations in chip design mimic innovation in the evolution
of bacteria

The chip scaling described above shows how time and energy

dissipation have decreased while performance increased as

larger numbers of smaller transistors have been packed onto

each chip. During this era, technological innovations in chips

have emerged that optimize against physical constraints. Just

as bacteria have evolved larger genomes and used the new

genes to exploit new metabolic niches, new materials, switch-

ing methods, etching processes and cooling technologies

have pushed physical boundaries, allowing transistors to

shrink and more of them to be packed onto each chip. Like

bacteria, however, there are limits to this process. There are

no elephant-sized bacteria, and there will be no silicon-based

single-core chips with quadrillions of transistors.

(ii) Single-core chip scaling mimics unicellular protists
Historical chip scaling mimics the linear relationship between

performance and size (figure 4) seen in protists. Unicellular

protists show linear increases in metabolic rate with size

(fig. 1 of [37]) as more energy-processing nodes (mitochon-

dria) are packed into larger cells. As size continues to

increase, however, this design strategy also reaches physical

limits. Our analysis suggests that the internal transport net-

work already constrains processing speeds (Tnet constrains

Tsys). Further, the requirement to dissipate heat over a fixed

surface area constrains both cells and chips.

(iii) Multi-core chips echo the transition to multicellularity
Computer chips are currently undergoing the evolutionary

transition to multi-core, resembling the biological transition

to multicellularity. Our unified scaling framework suggests

some future scenarios. As the era of transistor minimization

wanes, additional transistors will require increased physical

area and, therefore, networks that span greater distances.

Similar to multicellular organisms, we expect that as the
number of cores grows, an increasing fraction of chip

power will be devoted to these ever-larger ‘networks on

chip’ (NoC) connecting more cores. Larger networks will con-

sume more power and take more time to traverse, and

ultimately the energy–time minimization will be increasingly

difficult to sustain as chips increase in size. Clock speeds have

already levelled off as power, footprint and cooling require-

ments dominate chip-design considerations [38]. If chips

follow biology, we can expect that the most important

future advances in chip design will increase network effi-

ciency, for example, by using optical networks.

(iv) Computer scaling deviates from biological scaling in
important ways

There are also important differences between scaling of

oxygen delivery in biology and information delivery in com-

putation, which play an important role in evolutionary

transitions. In particular, on-chip computer networks have

two advantages not available to cardiovascular networks.

First, the shrinking of ‘process’ size (smaller transistors and

wires) reduces both energy and delay in the nodes as the

number of nodes increases. This reduction in process size

will ultimately end as physical limits are reached [38].

Second, the locality of network traffic, characterized by

Rent’s exponent and Dw, reduces long-distance communi-

cation over computer networks. As shown above, this effect

reduces Enet and leads to a smaller wire footprint as N
increases on single-core chips. This advantage will probably

continue for multi-core chips, where communication and,

therefore, network bandwidth, footprint and energy con-

sumption of NOCs can be reduced by keeping

communication primarily local [39,40]. Communication

locality has the potential to produce more favourable scaling

in multi-core computation than is achievable in multicellular

biology.

(v) Decentralized designs in the transition to sociality
We now consider how the lessons learned from computer

architecture may lend insights into an important biological

evolutionary transition, the transition to social-animal

societies. Understanding and improving the flow of energy,

materials and information through human societies is one of

the greatest challenges facing science and engineering, and

scaling analyses lend an important perspective on this pro-

blem [41]. Sociality is an important evolutionary transition,

reflected in the ecological dominance of humans and ants,

whose networked systems transport both energy and infor-

mation. These social species have experienced great success,

dispersing over vast territories across the globe and capturing

a large fraction of available energy [42,43]. Recent evidence

suggests that ant colonies and human societies follow similar

scaling relationships as individual organisms [44–48].

In social-animal systems and networked computer sys-

tems, networks are at least partially decentralized, e.g.

traffic flow within cities [49] and among ant nests [50].

Tainter et al. [51] argue that complex human and ant societies

are able to exploit ‘low-gain’ energy systems—those that pro-

vide low concentrations of dispersed energy, but that are

ubiquitous and therefore can be exploited by complex sys-

tems capable of processing and storing vast quantities of

energy. Understanding the forces that have driven the tre-

mendous power and performance scaling in computing
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may lend insights into how other technologies exploit similar

scaling relationships [52]. In particular, communication

locality in computation suggests an important strategy in

the transition to sociality: animal societies can escape the con-

straints of the centralized distribution network by evolving

systems for decentralized transportation and modular com-

munication. Indeed, the transition to solar energy is

capitalizing on the same kind of dramatic technological per-

formance improvements that computer technology

experienced as Moore’s Law [53]. The history of computing

suggests large gains in the efficiency of energy delivery if

increasingly powerful solar cells use dispersed solar energy

locally to escape the centralized distribution overhead of

the fossil fuel-based economy.

Moreover, power laws as a function of size are not unique

to organisms and computers but are observed across a wide

variety of complex systems in nature, society and technology.

The scaling of white and grey matter [54] and communication

modularity [14] in the brain, of flow through river networks

that minimize transportation costs [55], of energy use and

GDP in countries [56], and the pace of life and population

in cities [45] are all additional examples that a unifying

scaling theory might explain. Because cost and performance,

i.e. energy and time, impose universal constraints, we suggest

that a common design principle may govern the scaling of

many evolved and engineered complex systems that process

energy, materials and information.
5. Conclusion
Our analysis provides a unifying explanation for the origin of

scaling laws in biology and computing. Despite obvious differ-

ences in form and function, the scaling of organisms and

computers is governed by the same simple principle: minimiz-

ing the energy and time to deliver and process resources. Both

natural selection and human engineering have evolved

designs that manage the trade-off between cost and perform-

ance to minimize energy dissipation and time to deliver

resources, resulting in general scaling laws that predict meta-

bolic rate, and microprocessor power and performance over

several orders-of-magnitude variation in system size.

Engineering ingenuity and economic pressures have cre-

ated increasingly fast and powerful computers through a

series of innovations, including integrated circuits, inno-

vations in materials and other technological tricks,

synchronizing clock trees, multi-core chips and networked

and distributed computation. Today, technology is under-

going another major evolutionary transition as distributed
computing changes the metabolic landscape of technology

that is becoming more tightly coupled with the environment.

As computers are embedded in more physical devices, phys-

ical proximity and energy concerns for low-power devices

may drive computational scaling to more closely resemble

biological scaling. In computation, dramatic changes have

emerged over the last 35 years, but to a surprising extent,

their trajectories mimic the biological transitions that took bil-

lions of years to evolve simple unicellular bacteria into the

largest and most powerful animals and societies on the Earth.
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Endnotes
1Rent’s rule is typically expressed as C(n) ¼ knp, where Cn is the exter-
nal communication of a module, n is the size of the module (number
of nodes), k is the average external communication of a module with
size 1, and p is Rent’s exponent. For a hierarchy with branching factor
of l, the size of a module is given as n ¼ li, where i is the hierarchi-
cal level. Therefore, we can rewrite Rent’s rule as ci ¼ c0 � lip, where
c0 ¼ w0 and p ¼ 1/Dw.
2For computers, it is intuitive that these quantities can be treated
independently. In biology, this is less obvious because the heart
that powers the vascular network is itself composed of cells (nodes)
that require oxygen delivery, an apparent circularity. However, the
metabolic power of the heart (Enet) is supplied by oxygen delivered
directly to the heart by the coronary artery, bypassing the rest of
the vascular network. Thus, we treat Enet independently from Enode.
3These expressions are consistent with those in [6], specifically when
Dr ¼ 2, N /M3=4 and l0 /M1=12 /N1=9 and when Dr ¼ 3, N /M
and l0 /M0 /N0:
4Transistors and other devices conduct a small amount of current
even when they are not being used. This energy loss is referred to
as ‘leakage power’ and is a significant issue in modern microproces-
sor design not explicitly addressed by our model.
5Additionally, higher-end chips are more likely to be benchmarked,
potentially leading to a bias in the data towards higher-performing
chips.
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