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Abstract

Next-generation sequencing technology has facilitated the discovery of millions of variants in 

human genomes. A sizeable fraction of these alleles are thought to be deleterious. We review the 

pattern of deleterious alleles as ascertained in genomic data and ask whether human populations 

differ in their predicted burden of deleterious alleles, a phenomenon known as “mutation load.” 

We discuss three demographic models that are predicted to affect mutation load and relate these 

models to the evidence (or the lack thereof) for variation in the efficacy of purifying selection in 

diverse human genomes. We also discuss why accurate estimation of mutation load depends on 

assumptions regarding the distribution of dominance and selection coefficients, quantities that are 

poorly characterized for current genomic datasets.

 Introduction

The process of mutation constantly creates deleterious variation in a population. These 

mutations can persist for some time, depending on the intensity of drift and purifying 

selection. The burden of deleterious variants carried by a population was the subject of 

classical work in population genetics during the mid-20th century and termed “mutation 

load” [sidebar]. This mathematical theory described the expected mutational load under 

idealized genetic models whereby deleterious mutations reduce the reproductive success of 

carriers compared to a hypothetical genotype with no such deleterious variation. As 

mutations occur over time, populations accumulate a “mutational load” compared to a 

hypothetical population with only the fittest genotypes. A key finding was that very 

deleterious variants, despite their large potential for damage, tend to be quickly eliminated 

and rarely rise to high frequencies. By contrast, variants of weaker effect may reach 

appreciable frequencies due to random drift, and can contribute significantly to mutational 

load because they affect more individuals in the population1–3.
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The role of genetic drift in these models raises the possibility that human populations may 

vary in their mutational burden, given the varied patterns of population growth and decline 

that have characterized different human groups since their initial divergence more than 

100,000 years ago4–7. Although the theory of genetic load generated strong interest in the 

1950s–60s, there has been limited opportunity to test these models in the context of human 

genomics.

The aim of this review is to synthesize recent work on the frequency of deleterious variants 

in the human genome and the behavior of these variants under different demographic 

models. What are the characteristics of deleterious variants that have been discovered in 

large-scale sequencing experiments? Do demographic simulations predict differences in 

mutational load among populations, and how realistic are these models of human 

demographic history? What other important parameters, such as dominance, epistasis, or 

interaction with the environment, should be considered when calculating the burden of 

deleterious alleles in each population? While there have been significant advances in 

quantifying how mutational load may vary among human populations, a complete 

understanding will remain elusive until we can better characterize the relative roles of local 

adaption and purifying selection in the diversification of human populations.

 Models of Mutational Load

Neutral theory [sidebar] emerged in the context of empirical and theoretical work on genetic 

load in the mid-20th century. At that time, genetic polymorphisms were typically considered 

to be functional. However, as new protein polymorphism data were generated, much more 

genetic variation was discovered within and among species than had been previously 

appreciated. The estimated rate of amino acid substitutions across species phylogenies, 

estimated at one substitution per genome every two years in mammals, was deemed too 

rapid for plausible models of selective evolution8: such a rapid rate of adaptation could only 

be accomplished through the selective deaths of an exceedingly high number of less fit 

individuals [cite Haldane’s The cost of Natural selection?]. This substitution load [sidebar] 

would lead to population decline. Motoo Kimura recognized the significance of the 

estimated evolutionary rates for genetic loci and instead proposed that the vast majority of 

polymorphisms were in fact neutral with regard to fitness1–3. This shift in worldview, to one 

where neutrality is the dominant factor driving allele frequency change, recast population 

genetic models in terms of two evolutionary forces: the neutral mutation rate and genetic 

drift. In this setting, genetic polymorphism is simply “a transient phase of molecular 

evolution” [Kimura]. Since purifying selection eliminates highly deleterious mutations 

quickly, rates of heterozygosity, q, simply reflect the product of mutation rate, μ, the fraction 

of mutations that are neutral, f, and the effective population size, Ne: i.e., θ = 4 Ne μ f. This 

result only hold if positive natural selection or weak negative selection is rare. Kimura’s 

focus on genetic drift in a finite population led to an examination of the interaction between 

genetic drift, natural selection and mutation in determining the accumulation of deleterious 

alleles in a population.

Tomoko Ohta and Kimura extended the principles of the neutral theory to argue that 

mutations with very small fitness effects behave effectively as if they were neutral. If a 
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mutation induces a fractional change s in the expected number of offspring of carriers, it is 

effectively neutral if |s|≪1/Ne. The evolution of such loci can be accurately modeled using 

equations involving only drift and mutation. Nearly neutral mutations [sidebar] were defined 

as a related class of loci with selection coefficients s approximately equal to 1/Ne. A given 

mutation with fitness coefficient s that is effectively neutral in a small population can be 

nearly neutral in an intermediate-size population and even considered a large effect variant 

in a large population, where drift is much reduced. Its effect on average fitness therefore 

depends on the population demography. Genetic drift occasionally drives nearly neutral 

mutations to fixation9, leading to a decrease in fitness of the entire population (sometimes 

referred to as “drift load”10).

To compare the overall effect of demography on fitness across human populations, we turn 

to the definition of genetic load, the reduction in fitness in a population or species due to 

presence of alleles that are detrimental, in comparison to the genotype with the maximum 

fitness (Box 1):

where Wmax is the maximum possible fitness, and Wmean is the average fitness of all 

genotypes in the population. Wmax is often assigned a value of 1 for algebraic convenience. 

This definition applies wherever genotypic fitness can be measured or inferred. However, 

most theoretical results are established under simplifying assumptions of time-independent 

fitness across generations11, environmental uniformity, and of additive or multiplicative 

effects across loci. Even though the maximum fitness Wmax is easy to identify in idealized 

models, it is much more challenging to arrive at meaningful empirical estimates in real 

populations.

Mutational load is the component of genetic load attributable to the reduction in fitness 

caused by new and recent deleterious mutations. Other components of genetic load include: 

the segregation load, the inbreeding load, and the transitory load. Segregation load occurs 

when a heterozygous genotype has a higher fitness than either of the homozygotes (i.e. a 

heterozygote advantage or overdominance). Inbreeding load occurs when recessive 

deleterious alleles are found in excess homozygous state relative to Hardy-Weinberg 

equilibrium (HWE) due to inbreeding12. (Ignoring selection, the probability of 

homozygosity is Pr(AA) = Fp + (1-F)pˆ2 under inbreeding vs. Pr(AA) = pˆ2 under HWE, 

where p is allele frequency and F is the rate of autozygosity.). Transitory load occurs while 

populations adapt to a new fitness landscape and the previous optimal genotype is now 

suboptimal. Multiple classes of effects potentially contribute to genetic load in humans, but 

we focus here on the mutational load and the inbreeding load13. In an infinite population, the 

classical mutation-selection balance [sidebar] tells us that the expected mutational load at a 

single site is bounded between μ and 2μ, depending on the level of dominance at that site. 

Importantly, it does not depend on the selection coefficient at that site: the increased cost per 

allele of damaging alleles is cancelled exactly by the reduction in frequency due to selection. 

Most populations, including human populations, however are neither infinite nor in 

mutation-selection balance. The equilibrium results still hold approximately true in finite 
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populations for very deleterious variants, for which mutation and selection are the largest 

effects. For weakly deleterious (i.e., nearly neutral) variants, however, drift becomes more 

significant and can act to increase the average load.

 Dominance

The proportion of deleterious mutations that are recessive, additive or dominant is an open 

question in human genetics. Answering is important to both evolutionary and medical 

genetics. The effect of dominance on fitness is quantified by the parameter h, where the 

fitnesses of genotypes AA, Aa, and aa are 1, 1-hs, 1-s. Across loci, there is a distribution of 

h, with h=0 for recessive alleles, h=0.5 for additive alleles, and all levels of partial 

dominance, including outside this (0,1) range. Dominance is perhaps the most important 

quantity that has not been estimated from genome-wide data. For a large population at 

equilibrium, a classical prediction is that the load per new deleterious mutation is greater 

under an additive than under a recessive model. The load is approximately 2u when h = 0.5 

and u when h = 02. This is because, by definition, additive mutations exhibit some 

penetrance while recessive mutations do not. Dominance can lead to substantial differences 

in load across populations, because of differences in population history can have a strong 

impact on the proportion of homozygotes14,15. By contrast, the effect of drift on load under 

an additive model is much weaker. The effect of dominance on load also depends on the 

frequency of deleterious variants (Figure 1). New variants are almost exclusively found in 

heterozygous form, so rare recessive mutations have little impact on load.

Hints about the distribution of dominance come from a diversity of experimental systems. 

Mutation-accumulation experiments in model organisms indicate that there is an inverse 

relationship between dominance and the severity of mutations16–18: the more severe a 

mutation, the lower its dominance coefficient h (i.e., the more recessive it is). The average 

dominance of mildly deleterious mutations across a variety of studied non-human organisms 

is partially recessive ~0.2519. We also know that there are many recessive mutations of 

strong effect in humans, particularly evident in consanguineous unions or endogamous 

populations20–22, sometimes referred to as inbreeding depression13. A recent population 

genetic approach by Szpiech et al.23 considered long runs of homozygosity (ROH) across 

human populations and looked at the enrichment of deleterious variants in runs of different 

length. Long runs of homozygosity contain more deleterious variants on average than short 

ROH or homozygotes not in ROH, indicating that the deleterious variants are more likely to 

lie on long, recent haplotypes. They suggest that long ROH represent recent inbreeding, 

demonstrating how recent non-random mating can exacerbate deleterious effects for 

recessive loci.

Even mutations of weak effect demonstrate inbreeding depression for human height in 

European populations24, indicative of a recessive or partially recessive model for the 

majority of deleterious mutations. Well-validated recessive disease mutations, such as those 

used in newborn disease screening panels, have been shown to be relatively common in 

standard sequencing data sets; as many as 45% of individuals in a recent exome study 

carried at least one recessive allele of strong effect25,26. The X chromosome carries 

proportionally more rare deleterious variation than the autosomes, potentially because 
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recessive alleles are exposed in the hemizygous male and, thus, reach lower frequency, on 

average, than recessive alleles in the autosome27. In an attempt to quantify recessive versus 

dominant diseases, Erickson and Mitchison28 surveyed 14 well-characterized diseases and 

found that autosomal recessive genes were more common than autosomal dominant ones, 

but they had a smaller relative contribution to human disease.

 Rare Variants, Deleterious Variants

The rise of low-cost, large-scale next-generation sequencing has empowered the study of 

human genetic variation in ever larger samples at a whole genome scale. Newly discovered 

genomic variants are found at low frequency in human populations (i.e. present in less than 

one per thousand people). These rare variants tend to be geographically restricted29,30 or 

even private to an individual or family (Box 2). Rare variants also tend to be younger than 

common variants31. Compared to common variants, these rare variants are more likely to 

affect protein composition, to do so in a more disruptive manner, and to occur at predicted 

functional sites27,32–37. Furthermore, the lower the frequency of a variant in a sample, the 

more likely it is to be annotated as deleterious using a variety of variant effect prediction 

algorithms (Box S1).

Variant effect prediction algorithms attempt to combine available information to predict the 

effect of a mutation on function (impact on protein structure/function, expression, 

degradation, etc.) or evolutionary fitness (i.e., expected number of offspring that a carrier 

leaves). These effects are distinct but sometimes related: Some mutations are strongly 

evolutionarily deleterious precisely because they impact protein structure or function of 

important genes. For example, loss-of-function mutations32,33,38 disrupt the generation of a 

fully functional protein either by introduction of a stop codon or by truncating the reading 

frame of the protein, and are thus selected against if the gene product is essential. Other 

mutations impact non-essential genes or only slightly alter the protein or impact gene 

expression. These mutations may be evolutionarily weakly deleterious if the expected 

number of offspring left by carriers is only slightly lower than wildtype. Rare, deleterious 

variants may lead to early onset diseases, and may also inflate an individual’s susceptibility 

to common, complex diseases36,39–42. For example, approximately 70% of nonsynonymous 

variants in two hundred drug target genes were estimated to have sufficiently large negative 

selection coefficients such that these variants would be unlikely to reach even 5% frequency 

within the current European population2,35,43. [This may reflect partial ascertainment bias, 

because drug target genes appear to be under stronger purifying selection than the average 

gene]. However, even in full exome data, it is predicted that 47% of single nucleotide 

variants detected are deleterious in a sample of size […]36,44,45. The concordance of 

predictions of deleterious effects across leading effect prediction algorithms is modest (Box 

S1), and thus there is still substantial uncertainty in the true number of functional or 

deleterious variants2,32,36. Despite this uncertainty, variants of large effect are enriched 

among rare variants in several populations from the 1000 Genomes dataset, a conclusion that 

is independent of the prediction algorithm (Figure 2).
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 Empirical Estimates of Load In Humans

The distribution and evolution of deleterious mutations is fundamental to understanding the 

genetic architecture of human disease. Are more diseases caused by common variants shared 

across populations, or rare variants specific to a population or family (Box 2)35,41? The 

relative proportion of rare vs. common disease variants may in fact differ by population 

given unique historical modes of population growth or bottlenecks36,46. Mutation load 

provides a framework for quantifying and summarizing the overall effect of population-

specific history on deleterious variation. Perhaps more importantly, the models of mutation 

load illuminate the complexity of factors involved in understanding genetic disease risk from 

genomic data alone.

Every human individual carries many deleterious mutations (Figure 1). New mutations that 

enter the gene pool have widely varying impacts on fitness, and we can think of them as 

being drawn from an underlying distribution of fitness effects (DFE)45 [sidebar]. A very 

early paper by Morton and colleagues20 attempted to measure the total mutational damage in 

humans by considering consanguineous marriages [sidebar], where inbreeding load would 

be revealed by the expression of recessive homozygotes. Total mutational damage was 

defined as the average number of lethal mutations that would result when occurring in a 

homozygous state. They estimated that there are between 3–5 lethal equivalent mutations per 

zygote, and that this number was likely an underestimate given that inference relied only on 

stillbirths and other major pre-reproductive abnormalities and not, for example, on infertility.

Recently, with access to full human genomes to assay the number of deleterious mutations, 

interest in mutational load has been revived. However, empirical work has been limited and 

has primarily considered populations of European and African-American ancestry25,26,47–49. 

In one of the first studies to revisit this topic, Lohmueller et al.47 aimed to address whether 

human populations carried different numbers of deleterious mutations. Using a set of 

~10,000 genes, Lohmueller et al.47 quantified the total number of damaging SNPs in two 

population samples (n=15 African-Americans, n=20 European-Americans) and also the per-

genome rate in heterozygous vs. homozygous state. They found a significantly higher 

proportion of putatively deleterious alleles in the European-American sample as compared 

to the African-American sample. Among SNPs that were private to each population (i.e. 

only segregating in Europeans or only in African-Americans), the proportion of predicted 

damaging mutations was significantly higher in Europeans (16%) vs. African-Americans 

(12%). However, the total number of deleterious variants was greater in African-Americans. 

African-Americans carried vastly more neutral variants as well. Under a strong Out-of-

Africa bottleneck (discussed in the Models section below), Lohmueller and colleagues 

showed via forward simulations that a severe bottleneck coupled with subsequent population 

growth could result in the dramatic differences in the proportion of deleterious mutations.

Whereas Lohmueller et al.47 hypothesized that the result might be due to reduced efficacy of 

selection (Box 3) after the Out-of-Africa bottleneck, this view has been recently contested50. 

Simons et al.48 revisited the question using a larger dataset of recently generated European 

and African-American exomes51. They contrasted the number of deleterious alleles per 

individual in each population (regardless of zygosity), annotated either as nonsynonymous 
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or predicted to be damaging by Polyphen (Box S1). Under this summary of the data, 

European and African-American individuals carried, on average, similar numbers of 

deleterious mutations, and there was no significant difference in the average frequency of 

deleterious mutations. Simons et al. concluded that the differences observed by Lohmueller 

et al.47 did not indicate differences in mutation load. Rather, they suggested it can be 

explained by assuming that each population has the same amount of deleterious variation, 

but that populations differ in how many of these deleterious variants are common, and how 

many are rare. These results were replicated in a smaller sample from the 1000 Genomes 

Phase 1 data, Yoruba (Nigeria) and European-Americans (CEU from Utah)33 demonstrating 

that the lack of difference was not due to recent European admixture in African-Americans. 

The difference between Lohmueller at al.’s original paper and Simons et al.48 is largely one 

of interpretation, as the datasets in broad agreement52; the disagreement is about whether 

these are informative about the efficacy of selection [doi: http://dx.doi.org/

10.1101/010934?]. However, another recent paper, by Fu and colleagues52, re-analyzed the 

same exome data as Simons et al., but annotating deleterious variants with a PhyloP, a 

conservation based algorithm (Box S1). They found significantly more deleterious alleles in 

Europeans than in African-Americans; these mutations were typically mildly deleterious and 

many of them were fixed in the European population. Thus, the choice of an effect 

prediction algorithm can have a large impact on the final interpreatation. Upcoming 

functional characterization of variants through high-throughput mutagenesis, and the 

resulting improvement of functional algorithms, will be a huge asset in resolving these long-

standing questions about human evolution.

Recent population history also demonstrates how some deleterious alleles can reach high 

frequency following a severe bottleneck. In an empirical study, Casals et al.49 examined the 

effect of a strong bottleneck in a French-Canadian population descended from French 

migrants who settled in the Quebec region beginning in 17th century. Using over 100 exome 

sequences, Casals et al.49 show a strong decrease in heterozygosity in French-Canadians 

compared to the source French population, 19% relative to 12.5%, as expected under a 

founder effect. French-Canadians also carry proportionally more missense alleles at both 

low frequencies and fixed, while the French carry proportionally more missense alleles at 

intermediate frequencies. Missense and nonsense mutations in the French-Canadians are 

more damaging than their counterparts in the French population, as measured by having 

larger GERP scores (Box 1); or, in other words, the deleterious variants observed in the 

French-Canadians have, on average, more negative selection coefficients. Similarly, the 

Finnish population also carries a higher proportion of low frequency loss-of-function 

variants (expected to be highly damaging) than their counterparts in other European 

countries due to a recent population bottleneck53,54. However, there is no evidence so far 

that these populations carry a larger genetic load.

 Demographic Simulations of Mutation Load

Empirical data from human genomes appears to support discordant theories of genetic load. 

Do human populations differ in their levels of mutation load? Has purifying selection acted 

more efficiently in some human populations compared to others? Some of this confusion is 

due to different reported summary statistics (Box 1), but the debate also centers on simulated 
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results obtained under several idealized demographic models. Multiple simulation efforts 

have considered three major demographic effects: an Out-of-Africa bottleneck dramatically 

reducing variation in non-African populations, serial founder effects across a geographic 

range whereby drift is increased during the founding of new populations, and rapid 

population growth due to recent agricultural and technological changes (Figure 4). These 

models are by no means mutually exclusive, and many simulations include bottleneck and 

growth periods. However, these idealized models can help us build intuition about the effect 

of different events on patterns of diversity and examine their effect over time. As we are 

dealing with a dynamic system rather than a population at equilibrium, some effects are 

short-lived and others take many generations to evolve before a strong difference is 

detectable.

 Bottleneck

A scenario that is commonly simulated is a classical bottleneck, in which a population 

experiences a drastic reduction in size before recovering. The most readily observed effect of 

a bottleneck is an increase in genetic drift, which in turn reduces heterozygosity. The amount 

of drift depends on the bottleneck intensity, I=T/(2NB), where T is the duration of the 

bottleneck and NB the effective population size during the bottleneck. A single Out-of-

Africa bottleneck model captures the reduction in genomic diversity in populations currently 

residing outside of Africa15, and is arguably the most noticeable genomic consequence of 

varying demographic histories in human populations15,55. Many studies support a severe 

bottleneck during the initial colonization of the Eurasian continents, reducing the effective 

population size of the founders to only <1,000–2,500 individuals4,5,35,46. Recent coalescent 

analysis56,57 based on whole genome sequences also supports an Out-of-Africa bottleneck 

with a nearly fifteen-fold reduction in Ne to only about 1,000 individuals, leading to a higher 

proportion of recent common ancestry among non-African individuals4,58. Interestingly, the 

coalescent method also suggests a bottleneck of varying magnitudes in African populations 

at approximately the same time as the Out-of-Africa dispersal. Whether this is due to 

reduction in sub-structure across African populations, parallel bottlenecks due to the MIS 4 

and 5 glacial periods, founder effects during the expansion throughout Africa59 or other 

demographic possibilities has not yet been determined.

Here we consider in detail published simulations of the Out-of-Africa (OOA) bottleneck on 

load. The single bottleneck models simulated by Lohmueller47,60 and Simons et al.48 vary in 

the length of bottleneck they consider (T), from instantaneous to 7,700 generations. The 

OOA bottleneck length inferred from genetic data varies from a few hundred generations to 

50,000 years55,58. [[Immediately following a deep bottleneck, the number of deleterious 

polymorphisms decreases –that’s not true as written, I tried to guess what was meant see 
comment]], reflecting the fixation of low frequency variants. But as the population recovers, 

the now larger population accumulates rare deleterious variants whose distribution of fitness 

effects is more similar to that of new mutations. Compared to the variants in the pre-

bottleneck population, these new variants will tend to have more deleterious effects. 

Importantly, during the bottleneck, the reduced population size inflates the role of random 

genetic drift and allows some deleterious mutations to drift to intermediate and high 

frequencies. This ultimately leads to more high frequency and fixed deleterious variants in a 
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population that has undergone a bottleneck (Figure 2), however this can be a slow process. 

The Simons et al.48 simulations under a single-step bottleneck model illustrate how these 

two opposing factors can interact; the decrease in the number of deleterious variants is 

balanced by the increased frequency of the remaining variants. This balance is exact right 

after the bottleneck, and is maintained over time for very deleterious variants (as simulated 

in Simons et al.), or very weakly deleterious ones, but more moderately deleterious alleles 

can be more influenced by differential purifying selection (see below, [doi: http://dx.doi.org/

10.1101/010934?]). Assuming weaker overall variant effects, Fu et al.52 found that a tenfold 

bottleneck increased mutation load by 4.5% relative to a constant size population, primarily 

due to common and fixed variants of weak effect.

 Serial Founder Effects/Range Expansion

The second strong signature in genetic data from non-African populations is the continuous 

trend of decreasing genetic diversity (e.g. heterozygosity) with distance from eastern 

Africa61,62. This observation can be modeled by serial founder effects in which a small 

founder population buds off from the ancestral group and contains only a subset of the 

original diversity as it colonizes a new uninhabited geographic area32,34. When described 

using geographically explicit simulation models, the effect of genetic drift is further 

exacerbated by the sampling of demes from the wave front of the population as it expands in 

space (see Moreau et al.63 for a historically documented example). For populations toward 

the end of the range expansion (e.g. Native Americans), demographic history is 

characterized by many, perhaps hundreds, of bottlenecks followed by population recoveries. 

While computationally intensive to simulate, the serial founder effect model probably best 

describes the long period of human population history after the dramatic Out-of-Africa 

event32.

Simulations using the serial founder effect show that varying demographic details can result 

in large differences in genetic load. Peischl et al.64 used spatially explicit forward 

simulations to examine the effect of extreme drift at the expansion wave front on the pattern 

of deleterious alleles. These wave front expansions will affect both new mutations and 

standing variation where drift is especially extreme and alleles can ‘surf’ to high frequencies 

rapidly43. A range expansion can thus increase the mutational load of a population at the 

edge of an expansion relative to one in the geographic center, assuming similar environments 

and selection coefficients. This effect is particularly pronounced for small selection 

coefficients and mutations that newly occur either during or after the Out-of-Africa 

bottleneck. Expansion load in these simulations was particularly sensitive to the carrying 

capacity (K, the population size reached before founding a new deme and allowing for 

migration), with large carrying capacities reducing the probability of fixation44. Simulations 

of the Out-of-Africa serial founder effect identify K≈1,000 and moderate rates of migration 

as a good fit to current human heterozygosity32. These results would involve a high 

probability of local fixation for new deleterious mutations, even with selection coefficients 

as strong as −0.01.
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 Population growth

We know that the global human population has grown at a prodigious rate – this has been 

well documented from historical and archeological records from the past few thousand years 

(Figure 3). What has been appreciated only recently is the magnitude of the impact of this 

recent growth on the pattern of genetic variation in humans. It is only with large samples 

sizes that surveys of population variation reveal this impact. The studies of Coventry et al.65, 

Nelson et al.35, Tennessen et al.36 and Fu et al.51 examined samples of fully-sequenced 

genes or exomes in samples of thousands, and give a consistent picture – larger sample sizes 

reveal many more rare variants than expected under a constant population model. This 

excess of rare variation reflected by the nearly five-fold excess of singletons in the 10,000+ 

sample of Coventry and colleagues, is consistent with realistic models of recent population 

growth. Demographers report global human growth rates on the order of 1%–2% per year 

for the last century or more, and although a somewhat lower rate is obtained from genetic 

data, this is likely because genetic growth rates reflect the effective population size.

Population growth stretches back more than just a couple thousand years in many regions of 

the world. Analysis of mtDNA lineages shows a strong increase in female effective 

populations size (Nef) during the Holocene in Africa and Eurasia66,67, compared to Upper 

Paleolithic lineages. Zheng et al. analyzed over 300 East Asian mitochondrial genomes and 

find that major mtDNA lineages underwent expansions starting around 13 kya and lasting 

until 4 kya, with changes in Ne from a few hundreds of thousands to millions. Western 

African populations, far from being the constant population size often portrayed in 

simulations, have experienced tremendous growth, particularly over the past 5,000 years as 

Bantu-speaking populations and other groups adopted agriculture4,36,66. Europeans also 

likely experienced a notable bottleneck during the Last Glacial Period beginning 21 kya as 

northern and central Europe became glaciated68, but populations recovered after 15 kya just 

before the widespread adoption of agriculture resulted in sustained growth.

Population expansion has a complex effect on the fate of deleterious variation. For example, 

growth increases the mean survival time of all new mutations in the population, including 

deleterious ones. However, a longer survival time does not necessarily mean a larger effect 

on genetic load—variants survive longer largely because they are allowed to exist at lower 

frequency after the population has grown. Similarly, population expansions increase the 

proportion of recent (and rare) mutations in a population, and these rare variants tend to be 

more deleterious than common variants because of differences in the efficacy of purifying 

selection between rare and common variants. However, this may not have a large effect on 

the genetic load, because rare variants make up a small fraction of an individual’s overall 

mutational load48,69 (Figure 1).

 Other Considerations And Future Directions

With a few exceptions, genetic load differences across human populations are expected to 

have little bearing on the health and reproduction of present-day populations—the current 

fitness/cultural landscape is very different from what it was over the last hundred thousand 

years. Exceptions include populations that have undergone particularly strong bottlenecks 

and experience a temporary increase in recessive deleterious variants. Models of mutation 
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load that attempt to accurately quantify differences across populations or to test the 

predictions of specific theoretical models should consider several other inter-connected 

issues: variant prediction accuracy, spatial variation in selection coefficients and local 

adaptation.

As noted in Box S1, almost all the variants considered in these studies are predicted to be 

deleterious, and most estimates rely on bioinformatic heuristics that are informative but far 

from perfect. Substantial discrepancy exists among methods. More generally, methods that 

attempt to estimate mutational load share many assumptions11 that are debatable. One 

potential issue is the radical mis-assignment of selection coefficients for adaptive variants. 

For example, the EDARV370A missense mutation is computationally predicted to have a 

strong effect on a downstream signal transducer and yet this mutation may be locally 

adaptive in East Asia for an increased number of eccrine sweat glands70. Even if local 

adaptation is not considered to be a pervasive force in recent human evolution71, small 

numbers of adaptive alleles, under a selective sweep model, will reach high frequency in the 

population and contribute significantly to the mutational load if erroneously annotated as 

deleterious. One potential way to overcome local adaptation would be to disregard alleles 

found at high frequencies, though that would not be appropriate for all non-African 

populations, as severe genetic drift will lead to bona fide high-frequency deleterious 

variants49 (Figure 2). Even for alleles that have a more global distribution, the notion that 

alleles can be assigned an absolute fitness coefficient shared among all human groups is 

untenable. Alleles that are deleterious in some human groups have been shown in some 

cases to be beneficial in others. As an example, it has been shown that children with anemia 

have a fourfold increase in risk for pneumonia at high altitudes compared to lower 

altitudes72. G6PD deficiency alleles may have a negative consequence of hemolytic anemia 

but nevertheless carry a fitness advantage in areas where malaria is endemic. The genome-

wide dependence of fitness coefficients on time and place is largely unknown.

Finally, the above models assume that fitness effects are additive over all loci in the genome, 

which means they ignore the possibility of epistatic interactions, despite the fact that 

experimental mutation-accumulation experiments with model organisms often see 

diminishing returns (negative) epistasis73,74 Direct tests of the importance of epistasis in 

humans have been badly underpowered by the explosion in the number of tests (there are 

n(n-1)/2 pairwise epistasis tests across n SNPs), and by the fact that these tests require 

contrasts of phenotypes across multiple genotypic classes, requiring very large sample sizes 

to recover rare double homozygous genotypes. In short, the absence of large numbers of 

reports of epistasis in humans is not evidence for a lack of epistasis.

There may not be enough information in the genomes of all human individuals to accurately 

infer all the unknown parameters governing human evolution. To answer these questions, we 

will need to complement genomic data with direct high-throughput experiments measuring 

the cellular impact of mutations through saturation mutagenesis [], and experimental 

evolution in model organisms[].
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 Conclusions

Current human genomic datasets and genomic simulations provide conflicting evidence for 

differences in mutation load among human populations. A variety of statistics have been 

used to summarize the distribution of deleterious polymorphisms within populations, and 

this has contributed to the confusion. While recent work has emphasized an abundance of 

deleterious rare variants, rare variants have only a small effect on differences in mutation 

load between populations.

Rather than a focus on rare variants, we believe that more realistic assessment and 

simulation of different dominance models are key to understanding the distribution of 

genetic load across populations. If only a fraction of deleterious alleles are recessive, as 

predicted from disease and model organism studies, then Out-of-Africa bottlenecked 

populations are expected to see an increase in load due to intermediate-effect variants 

compared to an additive model (Figure 5). Moreover a large number of deleterious mutations 

may also exist in the non-coding portion of the genome75, meaning that studies focusing on 

exomes have only studied a small portion of the mutational load that may exist in the human 

genome37.

In addition to the question of dominance, there are three areas that require extensive research 

before geneticists understand the phenomenon of load. First, epistasis plays a key role in 

determining complex trait phenotypes in model organisms, and likely does the same in 

humans. At the same time, we know little of the underlying mechanisms driving epistatic 

interactions, especially for rare variants, or the degree to which epistasis in fitness effects 

impacts allele frequency dynamics. Second, the role of local adaptation in human 

populations from different environments and cultures must be described in order to 

discriminate between frequent deleterious alleles and frequent beneficial ones. Third, 

research should focus on integrating bioinformatic and experimental approaches to validate 

predicted variant effects on the phenotype. An improved partitioning of variants into a 

distribution of fitness effects would increase the utility of evolutionary and disease models, 

and is key to improving our understanding of the differences in the architecture of complex 

diseases across human populations.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Online Summary

• Millions of new variants have been discovered in human genomic 

datasets. Many of these, especially rare variants, have been annotated 

as deleterious.

• A series of recent articles considered whether different human 

populations vary in their burden of deleterious alleles, a concept 

referred to as “mutation load”.

• Several studies suggest that there is little difference in the average 

number of deleterious alleles per individual. These studies primarily 

compared genomic datasets from populations of western African and 

western European ancestry. However, prior studies are sensitive to 

annotation prediction algorithms and summary statistics leading to 

different, sometimes contradictory results.

• These calculations also involved a number of simplifying assumptions, 

including: additive allelic effects, no epistasis, and simple distributions 

of selection coefficients across deleterious variants and across 

populations.

• Following classical models of mutation load, we study genotype 

frequencies to highlight how load can change under different models of 

dominance.

• Additionally, genetic drift has shifted the allele frequency spectrum of 

deleterious variants such that Out-of-Africa populations carry more 

common deleterious variants.

• Differences in the frequency spectra across affect the genetic 

architecture of disease and our ability to interpret it.
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Box 1

Summary Statistics for Mutational Load

A variety of summary statistics have been used to quantify differences in mutational load 

between human populations. Some studies estimate mutational load by comparing the 

estimated load per individual in a population. The total number of derived deleterious 

alleles present in a single individual’s genome is a straightforward statistic if an unbiased 

genome is available. In this metric, derived homozygotes are counted twice and 

heterozygotes are counted once. Under neutrality, each individual is expected to carry the 

same number of mutations, with some stochasticity due to the finite genome. There is 

little evidence of substantive differences between populations in the mean number of 

deleterious alleles per individual48,50.

There are a number of alternative approaches that consider more general statistics of the 

allele frequency distribution, such as the average frequency among all deleterious alleles, 

or the proportion of nonsynonymous to synonymous varitions. By contrast with the 

genetic load, it is rather straightforward to identify differences across populations in these 

more general statistics. For example, Figure 2a shows the SFS for variants predicted to 

have a large deleterious effect in 4 populations: the western African Yoruba (YRI) have a 

notable excess of low frequency variants, whereas populations with Out-of-Africa 

ancestry like the Japanese (JPT), Tuscans (TSI) and Mexicans (MXL) have an excess of 

fixed variants. These statistics measure the interaction between selective forces and drift, 

and show that the frequency distributions of deleterious variants are different across 

populations. This has important consequences for the achitecture of disease across 

populations, but does not imply that selection was more efficient, in an absolute sense 

[cite?], in some populations compared to others.

Strikingly, we find no published estimates of the mutational load LT as it is classically 

defined2 using human genomic data (see above); we do so here for four populations 

(Figure 5). Only slight differences are detected across human populations when we 

consider an additive model (h=0.5). As reflected in the SFS, there are more deleterious 

variants in the YRI population compared to the JPT (20,672 vs. 13,392, respectively), but 

the contribution of large effect variants to mutational load is slightly higher in the Out-of-

Africa population (2.40 in JPT vs. 2.37 in YRI) because more of these variants are at 

higher frequencies in the Japanese. [We assume all of the large effect mutations (GERP 

4:6) to be equally damaging.] However, strong differences emerge under a recessive 

model (h=0) (Figure 5). In summary, if the mutation load is calculated according to 

classical models and a DFE, then differences depend largely on dominance mode. These 

calculations are laden with many assumptions (see Other Considerations in text), and 

may have little bearing on the public health of the populations.
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Box 2

Properties of Private versus Shared Variants

In general, rare variants tend to be private to a population, and common variants tend to 

be shared across populations (inset). For example, Gravel et al.55 show that variants 

below 5% allele frequency show little sharing across continental human population. The 

great number of shared common variants is expected from the relatively low degree of 

genetic differentiation seen among human populations. The large number of private and 
rare variants can be largely explained by neutral forces: Rare variants are likely to have 

occurred during or after population divergence. These variants will be population specific 

and found at very low frequencies. This can be compounded by the effect of natural 

selection, which tends to keep deleterious variants at low frequency and may act 

differentially across populations. Lohmueller et al.47 and Peischl et al.64 show that the 

proportion of deleterious alleles is higher among rare variants than among common 

variants, and that rare variants that are also population-specific are even more likely to be 

deleterious. [Cite Marth, Gabor T., et al. “The functional spectrum of low-frequency 

coding variation.” Genome biology 12.9 (2011): R84., who shows reduced sharing 

among more deleterious variants]

Shared variants are typically older, and therefore are more likely to be found at higher 

frequencies at a global scale. Again, this pattern can be largely explained by neutral 

forces: If these mutations are benign or neutral, they can be maintained over long periods 

of time and in multiple populations. If these mutations are slightly or even moderately 

deleterious but have been driven to higher frequencies and spread across populations due 

to the increased effect of genetic drift during range expansions in very early human 

dispersals. Peischl et al.64 have performed simulations that show an increase in frequency 

of deleterious mutations under a range expansion model, and have observed that 10% of 

common variants shared between Africans and non-Africans are predicted to be 

deleterious. A similar proportion (14%) of large effect variants is found to be shared 

between the eastern African Luhya population and the Finns from northern Europe in the 

1000 Genomes Phase 1 data. More interestingly, though, these variants are generally 

found at very high frequencies, and actually represent 86% of the total number of large 

effect variants in the dataset. This scenario is in agreement with most of the large effect 

variants being private and found at low frequencies, and a smaller proportion of variants 

being shared but common, compatible with the range expansion model. However, large 

effect variants that are also shared can also be driven to high frequencies in cases where 

they have a beneficial effect to the fitness of the population.

Henn et al. Page 19

Nat Rev Genet. Author manuscript; available in PMC 2016 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Allele sharing versus allele frequency among European populations: the sharing ratio is 

the probability that two minor alleles drawn randomly in a pooled sample come from 

different populations, relative to the panmictic expectation55. A panmictic population has 

a ratio of 1, and completely diverged populations have a ratio of 0. GBR: Great Britain; 

CEU: Central European from Utah; TSI: Tuscan; FIN:Finnish.
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Box 3

Efficacy of Purifying Selection

Lohmueller et al.47 proposed that differing patterns of deleterious variation across 

populations might be due to differences in the efficacy of selection (specifically, the 

higher proportion of nonsynonymous to synonymous variants among Europeans). But 

how can selection be more efficient if the mean number of deleterious mutations per 

individual, such as between Europeans and African-Americans, is not different (see also 

Lohmueller76)? Lohmueller et al.47 estimate the efficacy of selection by comparing it to 

the effect of drift at a given locus. Given s, negative selection is more efficient in larger 

populations because drift is reduced. This definition is inspired by nearly neutral theory 

[sidebar], wherein the fixation of deleterious alleles depends crucially on the ability of 

drift to overcome negative selection at individual sites. However, for rare variation and 

over short periods of time, this efficacy may have little to do with mean fitness decrease 

in a population: copies of a recent deleterious allele evolve almost independently from 

each other and of the population size. If we define the efficiency of selection as its ability 

to purge deleterious alleles globally, we may not see any appreciable difference between 

human populations: for short time scales, we can have an equal number of deleterious 

alleles across populations, but differences in drift (i.e., in the changes in frequency of 

these variants). Measuring the efficacy of selection by its effect on load, and by its 

relative strength vs drift, can lead to dramatically different conclusions [cite? doi: http://

dx.doi.org/10.1101/010934?]].
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Figure 1. Proportion of deleterious variants found in an individual’s genome classified by their 
frequency in the population (common vs. rare)
We wanted to ascertain whether the burden of the deleterious portion of an individual’s 

genome is mostly represented by rare or by common variants. For the 1000 Genomes 

Yoruba (YRI) population, variants were assigned to three selection regimes (moderate, large, 

extreme), according to GERP score categories in increasing order of phylogenetic 

conservation 2:4, 4:6, >6. The more conserved a site is, the more likely a new allele is to be 

deleterious (Box 2). Deleterious variants with a derived allele frequency lower than 5% 

within the population (purple) are classified as “rare”, and the rest as “common” (blue). 

Almost 70% of the deleterious variants found in an individual genome are common, and 

most of them have small predicted effect (“moderate”). Half of the rare variants also have a 

moderate effect, and half of them have a large effect, demonstrating how low frequency, 

large effect variants have not yet been purged by purifying selection.
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Figure 2. Differences in the site frequency spectrum across populations for neutral and 
deleterious variants
The site frequency spectrum (SFS) can be a powerful method of summarizing genomic data. 

We show the SFS for four populations focusing on both low frequency variants (<15%, left 

panel) and nearly fixed variants (>90%, right panel). Using 1000 Genomes Phase 1 exome 

data33, we sampled 42 individuals from the Yoruba (YRI, Nigeria), Mexicans (MXL, 

Mexico), Tuscans (TSI, Italy) and Japanese (JPT, Japan) populations. [Only individuals on 

the same Agilent exome platform were compared here to avoid biases in target capture 

between platforms.] Derived variants were annotated with GERP (Box S1) and we plot 

variants predicted to have a “large” deleterious effect (GERP>4) (top panels) and “neutral” 

effect (GERP<2) (bottom panels). Demography generates different SFS for each population. 

Neutral variants provide a null demographic model. The African Yoruba have the greatest 

number of rare deleterious variants, though the Japanese and Tuscans have many more 

deleterious fixed variants, likely due to ancient founder effects resulting in the fixation by 

strong drift (also noted in47). By comparing the difference between the neutral and 

deleterious SFS (Figure S1), one can infer the impact of purifying selection. For example, 

non-African populations have a larger proportion of deleterious variants that are fixed, 

compared to what is seen neutrally.
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Figure 3. Demographic history based on the site frequency spectrum and sharing of rare alleles
a) Updated three-population demographic model based on synonymous sites from 1000 

Genomes Phase 1 data33, assuming a mutation rate of 2.36×10−8/bp/g and a generation time 

of 25 years (for ease of comparison with Gravel et al.55 and Tennessen et al.36). Estimated 

times and population sizes are inversely proportional to the assumed mutation rate.
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Figure 4. Schematic of different demographic models for the Out-of-Africa dispersal
Three demographic models have been discussed in the context of changes in genetic load 

due to extreme genetic drift across different human populations. All three models allow for a 

severe Out-of-Africa bottleneck and recovery but with varying degrees of subsequent 

population size changes. Colored dots indicate allelic diversity; width of the column is 

proportional the effective population size, Ne. The bottom tube represents the ancestral 

African population size, with later events occurring in temporal sequence towards the top of 

the figure.
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Figure 5. Mutational load under an additive and a recessive model
Using the same dataset as in Figure 2, we computed the total mutation load2 for each 

population. GERP scores were annotated in whole-exome data. Variants were grouped in 

three categories according their GERP score (2:4, 4:6, >6), corresponding to different 

biological functional effects. The more phylogenetically conserved a site is, the more likely 

a new allele is to be deleterious and have a high GERP score (Box S1). Within each 

category, three selection coefficients were assigned: (s= −4.5 × 10−4), (s= −4.5 × 10−3) and 

(s= −1 × 10−2), using the inferred s coefficients in Boyko et al.45. Total mutational load is 

the sum of load for each locus2. Mutational load under an additive model is higher than 

mutational load under a recessive model because the phenotypic effect of a variant is masked 

in the recessive homozygous state. While only slight differences exist between populations 

for an additive model of dominance (~1.5%), strong differences occur under a recessive 

model because of the differential number of derived homozygotes among populations.
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