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Abstract

Background—The objective of this study is twofold: 1) to propose a simulation model for 

HER2+ metastatic breast cancer (mBC) which could further be used to assess the overall cost-

effectiveness of the treatment sequences that would maximize survival of patients, and 2) to 

estimate transitional probabilities between treatment lines required to parameterize the simulation 

model, in the absence of individual patient data (IPD).

Methods—Individual patient data (IPD) were reconstructed for treatment lines composing four 

treatment sequences. Parametric models were tested to select the model that best fits the IPD. The 

transitional probability equations, used for disease progression modeling, were obtained by 

substituting the parameters of the general equation for transitional probabilities by the parameters 

estimated from fitted distributions.

Results—The log-logistic model best fitted the reconstructed data for progression-free and 

overall survival curves for each line of treatment. The shapes and scales of the log-logistic models 

were used to develop the transitional probability equations for the HER2+ mBC simulation model.

Key limitations: The estimation of the transitional probabilities depends heavily on the accuracy of 

the IPD reconstruction. Nonetheless, analytical and graphical tests can be performed to check the 
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face validity of the reconstructed data. Additionally, sensitivity analyses can be conducted to test 

the impact of uncertainty surrounding the estimated parameters defining equations for transitional 

probabilities.

Conclusion—The results of this study can be used as input in model-based economic 

evaluations of sequential therapy for HER2+ mBC.
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Introduction

Breast cancer is the second leading cause of cancer-related death among women globally1. It 

is a heterogeneous disease comprising distinct molecular subtypes (luminal A and B, human 

epidermal growth factor receptor 2 [HER2] type, and triple negative/basal-like)2. Globally 

1.7 million breast cancer cases and 521,900 women’s deaths from breast cancer were 

estimated in 20121. Breast cancer accounts for approximately 25% of all cancer cases and 

15% of all deaths among women1.

Advances in our understanding of the molecular underpinnings of breast cancer have led to 

the availability of targeted systemic therapies which in turn have improved clinical 

outcomes. The elucidation of the human epithelial growth factor receptor (HER2/neu) 

pathway and its importance in the genesis of breast cancer, followed by the clinical 

development of effective HER2 targeted therapies, is one of the greatest recent successes in 

oncology. Treatment of HER2 positive metastatic breast cancer (mBC), which comprises 

about 20 to 25% of all mBC cases3, has rapidly evolved over the last decade4. There are four 

different HER2 targeted therapies that are FDA approved for use in the metastatic setting, 

which can be combined together or with chemotherapy. Different combinations in turn are 

used sequentially, being changed at the time of tumor progression. Consequently, there are 

different possible treatment sequences, which could be utilized for the treatment of 

metastatic HER2 positive breast cancer. The clinical benefits associated with these 

sequences, usually measured in terms of progression-free and overall survival times, are 

commonly assessed based on clinical trials investigating each line of treatment(s) separately. 

In order to assess the overall impact of sequential treatments on the progression of HER2+ 

mBC, it is important to estimate the likelihood values that a patient will either remain stable 

or progression-free (PF), transition from one treatment line to another or die. However, the 

estimation of such probabilities is usually complicated by the absence of individual patient 

data (IPD) corresponding to Kaplan–Meier curves published in clinical trials5,6.

Therefore, the objective of the present study is twofold: (1) to propose a simulation model 

for HER2+ mBC which could further be used to assess the overall cost-effectiveness of the 

treatment sequences that would maximize survival of patients, and (2) to estimate 

transitional probabilities between treatment lines required to parameterize the simulation 

model, in the absence of individual patient data (IPD).
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Methods

Identification of treatment sequences for HER2 positive metastatic breast cancer

The following criteria were adopted to identify HER2+ mBC treatment sequences that 

reflect current clinical practice: (1) only combinations supported by published phase III data 

and recommended in recent American Society of Clinical Oncology (ASCO) consensus 

guidelines were considered7; (2) earlier use of targeted anti-HER2 monoclonal antibody 

therapy is preferred to later use; (3) continuation of trastuzumab beyond first progression is 

beneficial; (4) combining drugs with non-overlapping toxicities is preferred to combinations 

with overlapping toxicities; and (5) capecitabine as the only commercially available oral 

chemotherapy is preferred to intravenous chemotherapy when data supports it, due to patient 

convenience. For each treatment sequence, data sources were identified through a literature 

review of the US National Library of Medicine’s PubMed. Key words used to develop the 

search strategy were ‘breast cancer’ coupled with ‘treatments’. The search was restricted to 

phase III trials. The identified treatment sequences are summarized in Table 1.

Disease progression simulation model overview for HER2+ mBC

The proposed disease progression simulation model was built upon: (1) the natural history of 

HER2+ mBC, (2) the impact of the identified HER2+ mBC treatment sequences on the 

likelihood of the occurrence of future outcomes including PFS, OS and serious adverse 

events, and (3) clinical expert opinions to ensure that the model reflects current clinical 

practice.

Figure 1 represents the disease progression simulation model for HER2+ mBC, where 

arrows represent possible transitions through four different health states: PF on first-line 

therapy (PF 1st line), PF on second-line therapy (PF 2nd line), PF on third-line therapy (PF 

3rd line), and death. All HER2+ mBC patients enter the simulation model in the PF 1st line 

state. Upon treatment with a first-line therapy they may either remain in the stable state (see 

self-referential arrows in Figure 1) with or without serious adverse events, progress with or 

without serious adverse events or die, at the end of each simulation cycle. Patients who 

remain stable but experience serious adverse events or those who progress would 

discontinue their current line of therapy and be placed on the next treatment (e.g., a patient 

on second-line therapy who progresses would continue on to the third-line treatment option 

for that sequence); this occurs until all treatment options are exhausted.

The next section explains the approach used to parameterize the probability of transitioning 

through different health states considered in the disease progression simulation model for 

HER2+ mBC.

Estimation of transitional probabilities through different HER2+ mBC health states

The parameterization of the probabilities of transitioning through different health states of 

the HER2+ mBC simulation model builds upon the tutorial by Diaby et al.8. The approach 

consists of three steps: 1) reconstruction of IPD from the progression-free survival (PFS) and 

overall survival (OS) Kaplan–Meier (KM) curves of published clinical trials, 2) parametric 
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distribution fitting to IPD, and 3) formulation of equations for the probability of staying 

progression free, dying, and transitioning from one treatment line to the next.

An initial step in the reconstruction of IPD consisted of the extraction of coordinates 

(censoring times [time variable on the x-axis] and failure events [failure variable on the y-

axis]) from scanned KM curves of published clinical trials9–13 (Table 2). To that end, the 

software WebPlotDigitizer (available at http://arohatgi.info/WebPlotDigitizer) was used to 

transform the pixels in scanned KM curves into x- and y-axis data values based on scaling 

values defined a priori. The resulting coordinates were checked for consistency with the fact 

that survival decreases over time. Then, a dataset containing a series of intervals matching 

the respective follow-up times of the published clinical trials, their upper and lower bounds 

in terms of the number of digitized points, and the number of individuals at risk for each 

interval was created. The final step involved the use of an algorithm to find numerical 

solutions to the inverted KM equations, based on the information available in the dataset 

created above8,14. An approximation of the original censoring times and failure events with 

summary of survival data estimates were obtained. The IPD reconstruction was done using 

the R statistical package.

Standard parametric statistical models (exponential, Weibull, Gompertz, log-logistic, log-

normal, and gamma) were tested for suitability of fit to the reconstructed IPD for each line 

of treatment(s). The first step in the selection of the appropriate distribution(s) to fit to IPD 

consisted in graphically testing the proportional-hazards (PH) assumption to determine 

whether equations for the KM curves of the trials have to be estimated separately or not. The 

graphical assessment of the PH assumption consisted in comparing the log-cumulative 

hazard plots of the KM curves. The PH assumption was considered to hold when plots were 

parallel, or violated otherwise. Full consideration was given to parametric accelerated failure 

time (AFT) models since the PH assumption was violated.

The second step consisted in fitting individual parametric AFT models to reconstructed IPD 

using different regression models, for each treatment line(s). The selection of the best 

distribution fit was achieved using analytical (Akaike and Bayesian Information Criteria) 

and graphical (Cox–Snell residuals analysis) tools15–17. The parameters defining each 

selected distribution (e.g. scale and shape of a Weibull distribution) were recorded for 

further use.

The equations for the probabilities of staying progression-free (Equation 1) and dying 

(Equation 2) for the simulation model were obtained by substituting the parameters of the 

general equation for transitional probabilities with the parameters estimated from 

distributions fitted to IPD, reconstructed respectively from the progression-free and overall 

survival KM curves. Finally, the sum of the probability of disease progression (Equation 3) 

and the probability of experiencing a serious adverse event while being in the progression-

free state (Equation 4) was considered equivalent to the probability of moving from one 

treatment line to another (Equation 5). The probability of disease progression was derived by 

subtracting the sum of the probabilities of staying progression-free (Equation 1) and dying 

(Equation 2) from 1. Additionally, the probability of experiencing a serious adverse event 

while being in the progression-free state was the product of the probability of staying 
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progression-free (Equation 1) and the probability of experiencing a serious adverse event 

(directly obtained from the published clinical trials used in this study).

Results

Individual patient data reconstruction

Four sequences of treatment were identified. Tables 1 and 2 show the identified treatment 

sequences and lines of treatment with their respective sources. IPD were reconstructed for 

each line of treatment using R statistical software. Table 3 summarizes median PFS and OS 

measures collected from the original clinical trials and corresponding estimates from 

reconstructed IPD. An internal validation of the IPD reconstruction process shows 

agreement with target data across PFS and OS, i.e. the reconstructed median PFS and OS 

compare very well to the original median PFS and OS published in clinical trials. In 

addition, a graphical test was done by plotting original and reconstructed KM curves for 

each treatment. The graphical tests showed that original and reconstructed KM curves 

superimpose very well (figures not shown). This confirms the face validity and accuracy of 

the IPD reconstruction process.

Parametric distribution fitting

Parametric distributions (exponential, Weibull, Gompertz, log--normal, log-logistic, and 

gamma) were fitted to the reconstructed data for each line of treatment. Based on the 

information criteria (Akaike Information Criterion [AIC] and Bayesian Information 

Criterion [BIC]) and a graphical analysis of the Cox–Snell residuals, the log-logistic model 

was found to be the best fit for the data. The shape and scale parameters of the log-logistic 

distribution that describe the PFS and OS KM curves are shown Table 4 for each treatment. 

The scale (λ) of the log-logistic distribution is parameterized as λ = exp(−xjβ), with β being 

the vector of regression coefficients estimated from the regression analysis. The shape of the 

distribution (γ) was estimated from the regression conducted when fitting the log-logistic 

distribution to the data. The uncertainty surrounding the estimation of the PFS and OS 

shapes and scales are reflected in the confidence intervals presented in Table 4. Sensitivity 

analyses (deterministic and probabilistic) can therefore be conducted using these confidence 

intervals.

Equation for transitional probabilities

The general equation for transitional probabilities using a log-logistic distribution is 

presented in Equation 08:

(0)

where tp is the transition probability, tu the cycle for which the transition probability is 

estimated (t − u representing previous cycle), t representing the current cycle, λ and γ 
representing the scale and shape of the log-logistic model respectively.
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Equations 1–5 can be generated for all therapy lines except that Equation 5 represents the 

probability of moving to the death state for the third line therapy.

(1)

where PFS stands for progression-free survival.

(2)

where OS stands for overall survival.

(3)

(4)

where P(tu)PFS/SAE represents the probability of experiencing a serious adverse event 

conditional upon being progression free.

(5)

For each line of treatment, the final transitional probabilities are obtained after replacing the 

parameters λ and γ by their respective PFS and OS values reported in Table 4.

Discussion

The concept of value in cancer care has become increasingly important in the move away 

from a fee for service model in the US. With respect to HER2+ breast cancer, there is a clear 

preferred treatment sequence, which is based on the definitive results of several well 

designed randomized trials. Our goal in this study was to: 1) propose a simulation model for 

HER2+ breast cancer which could accurately estimate the overall cost-effectiveness of the 

optimal or preferred treatment sequence, which is the sequence of HER2 targeted drugs that 

would maximize survival of patients, and 2) to estimate transitional probabilities between 

treatment lines that are used to parameterize the simulation model.

To our knowledge, this paper constitutes the first attempt to estimate the probability of 

transitioning through different health states of a disease progression simulation model for 

HER2+ mBC patients treated with sequential therapy, when only summary KM plots are 

available. The method used to attain this aim builds upon a previously published tutorial8. 

After the identification of four treatment sequences that reflect current clinical practice, IPD 
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corresponding to KM plots of PFS and OS were reconstructed for each line of treatment. 

Afterwards, parametric distributions were fitted to the reconstructed IPD. For each line of 

treatment composing a sequence, the equations for transitional probabilities through HER2+ 

mBC states were parameterized using the shape and scale of the log-logistic distributions 

fitted to IPD. Note that the disease progression model underpinning the estimation of the 

transitional probabilities takes explicit account of serious adverse events.

The approach used in this study compares favorably with the one used by Walzer et al.18. 

These authors aimed at simulating and comparing progression-free survival among patients 

with non-squamous non-small-cell lung cancer treated with various sequential therapies. The 

parameterization of their simulation model was based on a Weibull distribution, which was 

done deterministically and probabilistically.

The application of the method presented in this paper is not without pitfalls. The accuracy in 

the reconstruction of IPD depends on the picture quality of the KM curves as presented in 

the original publications. The accuracy of the extraction of the coordinates of the KM curves 

also relies on the level of sophistication of the digitizing software used. Furthermore, 

missing information (such as the number of patients at risk, number of events) from 

published trials may impede the ability to reconstruct IPD.

It is uncommon to obtain IPD for transitional probabilities from a single clinical trial. These 

data are generally obtained from different trials, and therefore synthesizing existing evidence 

through meta-analyses is important. As such, IPD meta-analyses have become popular due 

to their ability to generate more comprehensive and accurate results when compared to 

meta-analyses that rely upon individual trials19,20. Some of these advantages include the fact 

that IPD meta-analyses provide access to and analysis of original data, take into account 

patient characteristics, and allow standardization of the analyses across studies20–22. 

Moreover, this type of analysis can be used to facilitate time-to-event analysis and ensure the 

quality of randomization and follow-up. Meta-analyses based on IPD also offer a practical 

way to conduct subgroup analyses and to better comply with the reporting of missing 

data20,21. Even though meta-analyses based on IPD present several advantages, they are 

challenging to undertake. Some of these challenges include the time effort associated with 

data acquisition, data extraction and merging, the acquisition of appropriate tools and 

software to estimate and combine IPD as well as aggregating data20,23,24. Similarly, indirect 

treatment comparison (ITC)/network meta-analysis, which provides strong evidence for 

differences in treatment effects between treatments that have not been directly compared in 

trials (head-to-head), have often been biased by cross-trial differences in patient 

characteristics25,26. Therefore, indirect treatment comparisons can greatly benefit from using 

IPD instead of only aggregate data27,28. That being said, appropriate statistical techniques 

need to be developed to ensure the successful conduct of ITC using IPD, a crucial step in 

estimating transitional probabilities when modeling disease progression for sequential 

therapies.

In this paper, the authors provided insights into the parameterization of a proposed HER2+ 

breast cancer simulation model, which can be used to compare sequential therapies. With no 

resource constraints sequence 1 is preferred, and there would be no reason to select the other 
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sequences. However, it is worth noting that health care resources are constrained. As a 

result, the evaluation of the other sequences, using the proposed disease progression 

simulation model and the estimated equations for transitional probabilities, may offer some 

insight as to which sequence would be most cost-effective if sequence 1 were not feasible. 

We believe that the results of this study would appeal to third party payers, oncologists, and 

cancer centers/researchers and can be used to estimate the value for money associated with 

HER2 targeted treatment sequences.
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Figure 1. 
Disease progression in the simulation model (Markov). PF: progress-free; SAEs: serious 

adverse events; +: beyond.
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Table 1

Treatment sequences for HER2-positive metastatic breast cancer.

Sequences First line Second line Third line

1 Pertuzumab + trastuzumab + docetaxel T-DM1 Capecitabine + lapatinib

2 Pertuzumab + trastuzumab + docetaxel Trastuzumab + lapatinib Trastuzumab + capecitabine

3 Trastuzumab + docetaxel T-DM1 Trastuzumab + lapatinib

4 Trastuzumab + docetaxel Trastuzumab + lapatinib Trastuzumab + capecitabine

T-DM1: trastuzumab emtansine.
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Table 2

Clinical trials used for individual patient data reconstruction organized by treatment line.

Study (year) Treatment(s) Treatment
line

Reference

Swain et al. (2013) Pertuzumab + trastuzumab +
docetaxel

First 9

Swain et al. (2013) Trastuzumab + docetaxel First 9

Verma et al. (2012) T-DM1 Second 10

Blackwell et al. (2010) Trastuzumab + lapatinib Second 13

Geyer et al. (2006) Capecitabine + lapatinib Third 12

von Minckwitz et al.
  (2009)

Trastuzumab + capecitabine Third 11

Blackwell et al. (2010) Trastuzumab + lapatinib Third 13

T-DM1: trastuzumab emtansine.
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Table 3

Summary measures collected from the original publications and their corresponding estimates obtained from 

the reconstructed individual patient data (IPD).

Treatment(s) Median PFS Median OS

Original Reconstructed Original Reconstructed

Pertuzumab + trastuzumab +
  docetaxel

18.7 m 19.0 m NE NE

Trastuzumab + docetaxel 12.4 m 12.9 m 37.6 m 37.8 m

Capecitabine + lapatinib 5.9 m 27.7 w

(6.4 m)*
NA 30.0 w

Trastuzumab + lapatinib 12.0 w 12.45 w 51.6 w 50.2 w

T-DM1 9.6 m 10.13 m 30.9 m 32.1 m

Trastuzumab + capecitabine 8.2 m 8.7 m 25.5 m 25.4 m

T-DM1: trastuzumab emtansine; PFS: progression-free survival; OS: overall survival; NE: not estimated; NA: not available; m: months; w: weeks.

*
Conversion from weeks to months using online converter (http://www.convertunits.com/from/weeks/to/months).
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Table 4

Shape and scale parameters of the parametric regression of the log-logistic model on the Kaplan–Meier data.

Therapy PFS OS

Shape (γ) Scale (λ) Shape (γ) Scale (λ)

Pertuzumab + trastuzumab +
  docetaxel

0.6218719 0.052051 0.5436962 0.019241

Trastuzumab + docetaxel 0.5553811 0.074128 0.576501 0.024996

Capecitabine + lapatinib 0.5161625 0.03389 0.4647835 0.015981

Trastuzumab + lapatinib 0.5538419 0.082315 0.5882669 0.018985

T-DM1 0.6106105 0.104256 0.4743332 0.032557

Trastuzumab + capecitabine 0.0556305 0.115186 0.4513023 0.040966

PFS: progression-free survival; OS: overall survival; T-DM1: trastuzumab emtansine.
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