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Abstract

We study the effect of a driving force F on drift and diffusion of a point Brownian particle in a 

tube formed by identical cylindrical compartments, which create periodic entropy barriers for the 

particle motion along the tube axis. The particle transport exhibits striking features: the effective 

mobility monotonically decreases with increasing F, and the effective diffusivity diverges as 

F→∞, which indicates that the entropic effects in diffusive transport are enhanced by the driving 

force. Our consideration is based on two different scenarios of the particle motion at small and 

large F, homogeneous and intermittent, respectively. The scenarios are deduced from the careful 

analysis of statistics of the particle transition times between neighboring openings. From this 

qualitative picture, the limiting small-F and large-F behaviors of the effective mobility and 

diffusivity are derived analytically. Brownian dynamics simulations are used to find these 

quantities at intermediate values of the driving force for various compartment lengths and opening 

radii. This work shows that the driving force may lead to qualitatively different anomalous 

transport features, depending on the geometry design.
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 I. INTRODUCTION

This paper deals with entropic effects in diffusive transport of noninteracting particles in a 

static fluid, caused by spatial restrictions of the individual particle motion. More specifically, 

we study the effect of a uniform driving force F on drift and diffusion of a point Brownian 

particle in a tube formed by identical cylindrical compartments (see Figure 1a), which 

effectively create periodic entropy barriers for the particle motion along the tube axis. The 

model considered here is a fairly simple example of transport through quasi-one-

dimensional (1D) structures (tubes or channels) of varying cross-section, in which transfer 

along the structure axis is coupledwithdiffusion in transverse directions. Despite its 

simplicity, the model provides qualitative insight into how the system geometry affects 

biased diffusion.

The problem of diffusion in a tube of varying cross-section arises in various contexts, 

including particle transport in porous solids1 and different complex media such as soils,2 

translocation of ions through artificial nanopores3 and channels in biomembranes,4 and 

development of architectures and technologies for controllablemass transfer on the 

nanoscale.5 The essential physics of the problem is associated with a spatial dependence of 

the diffusing particle entropy, induced by a variation in the tube cross-sectional area along 

the propagation direction.6 The particle transport in such a tube evolves through entropy 

barriers (tube constrictions) and entropy wells (tube expansions).

The problem has been extensively studied by several approaches of varying rigor and 

sophistication.1,6–13 In a force-free situation (i.e., purely diffusive transport), the most 

common approach consists in reducing the essentially 3D (or 2D) geometrically restricted 

Brownian motion to an effective 1D diffusion along the tube axis.6–8 The resulting kinetic 

equation for the effective 1D distribution is known as the Fick–Jacobs equation,8 which is 

the Smoluchowski equation with the entropy potential that accounts for changes in the space 

accessible for the diffusing particle. This dimension reduction scheme relies on the 

assumption of equilibration in the transversal directions, which implies an instantaneous 

transverse relaxation. In the modified Fick–Jacobs equation,6,7 finiteness of the transverse 

relaxation time is taken into account by introducing a renormalized longitudinal spatial-

dependent diffusion coefficient. A more general procedure of reduction to the effective 1D 

description has been developed in ref 9. The validity of the modified Fick–Jacobs equation 

for force-driven transport in tubes of periodically varying cross-section has been studied 

both analytically and numerically.10 With this approximation, the problem is reduced to the 
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well-known problem of Brownian motion in a tilted periodic potential, for which exact 

results for both the effective mobility14 and effective diffusivity15 are available in the case 

when the potential is of energetic origin. Remarkable similarities and striking differences, 

mainly in the temperature behavior, between conventional transport in 1D periodic energetic 

potential and entropic transport have been found and discussed.10 As demonstrated in 

numerous studies,6,7,9,11 the Fick–Jacobs approach is only applicable to systemswith smooth 

enough variations in the confining cross-section, but even then it fails at strong forcing.10 

Alternative approaches are available allowing one to treat the problem for systems with 

sharp geometries.12

The present work is concernedwith the effect of the driving force F on the Brownian particle 

transport through a tube of periodically varying cross-section. The key quantities 

characterizing the process are the effective mobility μ(F) and the effective diffusivity D(F). It 

is known that for a Brownian motion in a 1D tilted periodic energetic potential (i) the 

effective mobility μ(F) monotonically increases with force F between the values μ(0) < μ0 

and μ(∞) = μ0,14 where μ0 is the mobility in the absence of the periodic potential, and (ii) 

the effective diffusivity exhibits a nonmonotonic dependence on F:15 first it increases from 

the valueD(0),which is less than the bare (potential-free) diffusion coefficient D0; then it 

reaches a maximum exceeding D0, and finally approaches D0 from above. A similar 

behavior of μ(F) and D(F) has been reported in several recent studies of driven diffusion in 

2Dchannels of periodically varying width10,13 and in a 3D tube formed by spherical 

compartments,16,17 where an entropy potential is involved. From these observations, one 

might draw a conclusion that (i) the effect of an external driving force on transport through a 

tube (channel) of varying cross-section is qualitatively the same as for the Brownian motion 

in a 1Denergetic potential, and this holds true independently of the tube geometry, and (ii), 

in particular, the entropic effects in diffusive transport are always suppressed by strong 

forcing, so that in the limit F → ∞ the effective mobility and diffusivity attain the values μ0 

and D0, characterizing potentialfree, unrestricted Brownian motion. However, such a 

conclusion would be wrong as has been demonstrated recently in studies of driven diffusion 

in periodically compartmentalized tubes16,18a (or channels18b,c). More precisely, as pointed 

out in ref 16, (i) the impact of the driving force on the transport through a tube formed by 

identical compartments may be qualitatively different depending on the compartment shape, 

and (ii) in a tube formed by cylindrical compartments (see Figure 1a), the effective mobility 

monotonically decreases with increasing F and the effective diffusivity diverges as F → ∞, 

so that the driving force enhances, rather than suppresses, the entropic effects.

With the present work, we continue the study of driven diffusion in a periodically 

compartmentalized tube shown in Figure 1a and explain in more detail the brief report in ref 

16. Our consideration is based on two different scenarios of the particle motion in the weak 

and strong-forcing regimes, respectively. These scenarios are deduced from the careful 

analysis of statistics of the particle transition times between neighboring openings, using 

Brownian dynamics simulation. At zero or weak forcing, a transition from one compartment 

to another is a rare event in the sense that the transition time is much greater than all other 

characteristic times involved in the problem,19 so that the particle uniformly explores the 

volume of each compartment before moving to the next one, as schematically shown in 

Figure 1b. This scenario, which we call homogeneous, suggests using a coarse-grained 
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approach,12 making the problem analytically treatable. With this approach, complemented 

by a version of the effective medium approximation called boundary homogenization,20 a 

3D motion of the particle in the tube is mapped into a 1D nearest-neighbor continuous-time 

random walk. At strong forcing, one gets a new hierarchy of times (see Figure 1c). In 

particular, the time characterizing the overwhelming majority of intercompartment 

transitions is much smaller than all other characteristic times of the problem. In addition, 

there are very rare, slow transitions associated with the particle diffusion along a cross-wall, 

which are however very important due to their dominating contribution to the transition time 

average. In other words, the driving force induces the so-called intermittency21 in the 

particle transitions between neighboring compartments, which is manifested most clearly in 

a progressive growth of the corresponding statistical moments with respect to their order. 

Thus in this regime, a different scenario for the particle motion occurs, which we call 

hereafter intermittent. In what follows, we discuss these two scenarios in detail and, on their 

grounds, analytically derive both the small-F and large-F limiting behaviors of the effective 

mobility and diffusivity. Brownian dynamics simulations are used to find the transport 

coefficients at intermediate values of the driving force for various compartment lengths and 

opening radii.

The outline of the paper is as follows. In the next section, we formulate the model and define 

the basic quantities of interest. In sections III and IV, we consider the limiting cases of weak 

and strong forcing, respectively: heuristic arguments for the homogeneous and intermittent 

scenarios are presented and supported by the careful analysis of transition time statistics, 

using Brownian dynamics simulations. Section V is devoted to the exploration of the 

transport properties in the whole range of the problem parameters. Finally, our findings are 

summarized in the last section.

 II. MODEL

Consider a point-like Brownian particle moving in a static fluid at temperature T, filling the 

tube, shown in Figure 1a, under the action of external uniform force F directed toward the 

right along the tube axis. Periodic zero-thickness partitions divide the cylindrical tube of 

radius R into identical compartments of length l. Each partition bears a circular opening of 

radius a, through which the particle can go from one compartment to another. To concentrate 

on entropic effects in diffusive transport, the model leaves out additional complexities such 

as interactions among particles and particle–wall interactions, just as previous models of 

entropic transport traditionally do.

The particle dynamics is governed by the overdamped Langevin equation

(1)

complemented by reflecting boundary conditions on the tube and partition walls. Here r(t) is 

the position vector of the particle at time t; γ is the friction coefficient; a dot refers to time 

derivative; kB is the Boltzmann constant; a vector F is pointing along the x axis; and ξ(t) 
denotes a standard 3D Gaussian white noise, with zero mean and correlation 
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 for i,j = x,y,z. Equivalently, the particle motion can be described 

in terms of a probability density of the particle position P3D(x,ρ;t|f), where ρ is the radius 

vector in cylindrical coordinates (x,ρ); f = βFR is the dimensionless parameter characterizing 

the force strength; and β = (kBT)−1. The probability density satisfies a 3D diffusion equation 

with a drift term, complemented by the condition that the normal component of the 

probability current vanishes at both the lateral tube surface and the partitions. The distinctive 

feature of the present model is that the zero-thickness partitions do not affect the equilibrium 

uniform distribution of the particle over the tube cross-section, so that the radial probability 

density is given by

(2)

for any value of the driving force.

We focus on long times when the particle’s displacement significantly exceeds the 

compartment length l. At these times the particle’s transport along the tube axis is 

conveniently characterized by the effective mobility μ(f) and diffusivity D(f), defined via the 

long-time asymptotics of the mean and variance of the particle’s displacement Δx(t|f) = x(t|f) 
– x(0)

(3)

(4)

Evidently, in the limiting cases a/R = 1 or l/R = ∞, which correspond to a tube without 

partitions, the mobility and diffusivity are equal to μ0 = 1/γ and D0 = kBT/γ independently of 

the driving force. In the force-free case, we have μ(0) < μ0 and D(0) < D0 because of the 

entropy barriers the particle has to overcome. In contrast to previous reports,10,13,17 here the 

effect of spatial restrictions on the particle motion is enhanced with application of an 

external force. As shown in the next sections, μ(f) monotonically decreases from μ(0) to 

μ(∞), and D(f) diverges as f → ∞.

A further quantity of our interest is the particle transition time between neighboring 

openings τ. The statistics of τ are distinctly different at weak and strong forcing. In the 

former case, the distribution is characterized by a single time scale, the mean lifetime in a 

compartment, which is independent of the driving force. In the latter case, two characteristic 

time scales are involved that differ widely: τd = l/(μ0F), associated with the particle drift over 

the period l, and tR = R2/D0, characterizing diffusive motion in the radial direction, with tR 

>> τd as f → ∞. This suggests two distinctly different scenarios for the particle motion in 

the tube, homogeneous and intermittent (see Figures 1b and 1c). On the basis of these 
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scenarios, the asymptotic behaviors of the effective mobility and effective diffusivity in the 

regimes of weak and strong forcing are derived in sections III and IV.

Our goal is to study the effective mobility, eq 3, diffusivity, eq 4, and the transition time 

statistics as functions of the driving force in a wide range of the model parameters. The 

conventional Fick–Jacobs approach is inapplicable here because the tube cross-section varies 

abruptly and the driving force can be arbitrarily large. It is thus necessary to exploit 

alternative methods, which are discussed in detail below. The essential part of this work is 

devoted to the extensive Brownian dynamics simulations, carried out to bear out our intuitive 

guess about plausible scenarios of the particle motion, to test approximations made in the 

theory, and to bridge the gap between the analytically treatable limits. Technical details of 

the simulations are presented in Appendix 1.

 III. WEAK FORCING REGIME

It is intuitively appealing to formulate the problem of a 3D particle motion in the 

periodically compartmentalized tube in terms of a 1D nearest-neighbor continuous-time 

random walk. With such a coarse-grained approach,12 the details of the particle motion in 

each compartment are disregarded, and what we need to proceed is only the distribution of 

the transition time between neighboring openings. Generally, the problem of finding this 

distribution is too difficult to be solved analytically due to mixed boundary conditions on the 

partition walls. However, at zero or very weak forcing, where we guess the homogeneous 

scenario of the particle motion (see Figure 1b), the problem can be solved using an 

approximation called boundary homogenization.20 The approximation is based on replacing 

the actual nonuniform boundary condition at the cross-wall by an effective uniform radiation 

boundary condition with a properly chosen trapping rate κ.

 A. Transition Time Statistics

With this in mind, we begin with the transition time distribution in the force-free situation, 

which serves as the reference point for our analysis of small-f behavior. The distribution is 

characterized by the probability density  that a transition occurs in the time 

interval (τ, τ + dτ). In Appendix 2 we have shown that its Laplace transform, 

, is given by

(5)

with α = D0/(κl). A very accurate approximated formula for the effective trapping rate κ was 

obtained in ref 22 by means of a computer-assisted boundary homogenization procedure

(6)
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We have compared q0(τ) found by numerically inverting the Laplace transform, eq 5, with τ-

distribution obtained from Brownian dynamics simulations at different values of a/R (from 

0.1 to 0.9) and l/R (from 0.1 to 2.0). The comparison has shown that the theoretical 

distribution of τ perfectly agrees with the simulated distribution in the whole range of the 

opening radius, providing that the period is not too small, l ≥ R. This is in agreement with 

the conclusion of refs 20d and 23a where the validity of the homogenization procedure was 

tested by comparing only the mean values of τ (theoretical and simulated). Equation 5 also 

agrees with a solution of the similar problem, obtained for a slightly different geometry.20d

Examples illustrating the τ-distribution at different values of geometric parameters l/R and 

a/R are given in Figure 2 and Table 1. Along with the probability density q0(τ) calculated 

from eq 5, in Figure 2 we present the probability density qf(τ) found in simulations for a few 

nonzero values of f. Comparison of the curves shows that the distribution remains almost 

unchanged at very weak forcing, f ≤ 0.1. Noticeable changes take place at f > 1. Figure 2 and 

Table 1 show that with increasing f the maximum (and the average) is shifting toward lower 

values of τ, which is accompanied by the appearance of a high, narrow peak. The moment 

ratios presented in Table 1 also indicate that the distribution becomes narrower as the driving 

force increases (the k-th moment is defined as ). Such a behavior of 

the moment ratios takes place only if f is not too large. At strong forcing, the situation is 

completely different, as shown in the next section: in addition to a delta-function-like peak, 

qf(τ) has a long tail; because of this tail the moment ratios grow, and the distribution 

becomes more dispersive as f increases. The larger a/R is (or the smaller l/R is), the greater 

the critical value fc, at which the change in the behavior occurs. As Table 1 indicates, when 

l/R = 2 the critical value fc is of the order of unity at a/R = 0.1, of the order of 10 at a/R = 

0.5, and of the order of 100 at a/R = 0.9.

Good agreement between the transition time statistics obtained from simulations and 

predicted by theory provides strong support for the homogeneous scenario of the particle 

motion at weak forcing. On the basis of this scenario and the results of this section, one can 

easily find the transport coefficients.

 B. Effective Diffusivity and Effective Mobility

We start again with the force-free situation, where analytical results are available. To find the 

effective diffusivity D(0), we need only the mean transition time between neighboring 

openings, ❬τ❭0, which is given in eq A2.4. Following this way, we arrive at the known 

result23

(7)

The small-f limit of the effective mobility can be obtained from the effective diffusivity via 

the Einstein relation. This leads to16
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(8)

Equations 7 and 8 perfectly agree with μ(0) and D(0) found in simulations in the whole 

range of the parameter a/R, providing that l/R ≥ 1 (as, for example, shown in Figure 3 for l/R 
= 2). However, when l/R < 1, the boundary homogenization procedure fails, and these 

equations are practically useless.

Figure 3 illustrates the effect of the driving force on the transport coefficients at small f. 
First, note that eq 8 provides reasonable estimates for μ(f) if f ≤ 10. The effective diffusivity 

appears to be more sensitive to the forcing than the effective mobility: the estimate given by 

eq 7 becomes inadequate at values of f smaller than the estimate given by eq 8. Deviations 

from the limiting values μ(0) and D(0), caused by the forcing, are more pronounced at 

intermediated values of a/R. Next, as Figure 3 shows, the effective diffusivity increases with 

increasing f, D(f) > D(0), as one might expect because the forcing leads to a decreased 

average transition time. Qualitatively, such behavior of D(f) at weak forcing is universal 

(insensitive to the tube geometry).

Finally, the most intriguing observation is that the effective mobility decreases with the 

application of force. The origin of the unusual behavior observed is attributed to the special 

geometry of the tube. Indeed, the previous studies10,13,17 dealt with tubes with curved (e.g., 

spherical17) compartments. In these tubes, the force not only pushes the particle in the x-

direction but also drives it inward toward the tube axis that leads to localization of the 

particle in the cylinder connecting the openings and, as a result, to a higher mobility. The 

distinctive feature of the tube composed of cylindrical compartments is that the driving force 

does not affect the uniform particle distribution over the tube cross-section (see eq 2). 

However, the uniform longitudinal distribution of the particle in each compartment is 

modified by the force, so that the probability becomes higher to find the particle near the 

right cross-wall. As a result, the slowing-down effect of the right cross-wall increases with 

the force, which leads to a lower mobility.

 IV. STRONG FORCING REGIME

At strong forcing, the particle motion along the tube changes qualitatively, in that it becomes 

intermittent (see Figure 1c). The particle randomly switches between two states, “running” 

and “locked”. In the running state, it moves in the cylinder of radius a surrounding the tube 

axis, with the drift velocity vd = μ0F. When the particle is outside the cylinder, it is in the 

locked state, in which it does not move along the tube, being pressed to one of the cross-

walls. The state of the particle is determined by its radial position. Switching between the 

states occurs due to radial diffusion. Since the particle distribution over the tube cross-

section is uniform at any forcing level (see eq 2), the probability to find the particle in the 

running state equals (a/R)2, so that the effective drift velocity of the particle reads
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(9)

 A. Transition Time Statistics

 1. Fast and Slow Transitions—We begin with consideration of statistics of transition 

times, which is significantly different from that we have seen in the weak forcing regime. As 

Brownian dynamics simulations show, the overwhelming majority of intercompartment 

transitions take time of the order τd = l/(μ0F) = f−1(l/R)tR. This time scale is associated with 

the particle drift over the period l. As f → ∞, τd is much smaller than all other characteristic 

times of the problem. Moreover, the fraction of these fast transitions rises as the driving 

force increases. For example, it is 0.80 at f = 104 and 0.98 at f = 105 (for a/R = 0.5 and l/R = 

2).

In addition to the fast transitions, there are also transitions taking longer, which can be 

subdivided into “intermediate” and “slow”. While the fast transitions are associated with the 

particle’s stay in the running state, both intermediate and slow transitions occur due to 

switching between the running and locked states, or, in other words, due to particle’s visits 

outside the cylinder connecting the openings. The intermediate transitions are related to 

short-lived excursions outside the cylinder, so that their characteristic time is comparable 

with τd. The slow transitions are caused by the long-lasting excursions, during which the 

particle being pressed to a cross-wall diffuses in the annulus bounded by the two concentric 

circles of radii a and R. These excursions maintain the uniform particle distribution over the 

tube cross-section (see eq 2). The characteristic time scale of slow transitions is of the order 

of tR = R2/D0, tR >> τd as f → ∞. The slow transitions are rare but very important because 

of their dominating contribution to the mean and especially to higher moments of τ.

The slowest intercompartment transitions are responsible for the far tail of the τ-distribution. 

Figure 4 gives the far tails of the probability density qf(τ) obtained from Brownian dynamics 

simulations. Panels (a) and (b) show the results at different values of a/R and f but at a fixed 

value of l/R. Panel (c) presents the results obtained at different values of l/R and f but at a 

fixed value of a/R. All curves in the figure clearly exhibit an exponential decay, 

, at τ ≳ tR. The values of the dimensionless decay rates 

found in simulations are given in Table 2. As this table and Figure 4 indicate, the values of 

 are independent of f and l/R and are solely determined by the radius ratio a/R.

This observation suggests that the slow transitions, corresponding to the far tail of qf(τ), are 

controlled by the radial diffusion along a cross-wall: as soon as the particle reaches the 

opening, a transition to the next compartment immediately occurs due to strong forcing. To 

test this surmise, in Appendix 3 we analyze the survival of a Brownian particle in the 

annulus bounded by two concentric circles of radii a and R > a, with absorbing (reflecting) 

boundary condition on the inner (outer) circle. We find that the particle lifetime probability 

density w(t) decays as a single exponential, w(t) ∝ exp(−k1τ/tR) as t → ∞, with the 

dimensionless rate k1 defined by eq A3.5. The values of k1 as calculated from eq A3.5 are 

presented in Table 2 for different values of radius ratio a/R. A perfect agreement between the 
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long-time decay rates k1 and  for different parameters of the model (see Table 2) 

corroborates our surmise.

 2. Probability Density—On the basis of the heuristic arguments and simulation results 

discussed above, we assume that as f → ∞ the transition time probability density, qf(τ), can 

be presented as a sum of two terms. The first term is associated with the contribution of the 

fast transitions, the probability density of which can be approximated by the δ-function, 

qfast(τ)δ(τ – τd). The second term represents the contribution of the slow transitions. 

Following the observation made in the previous section that the slow transitions are 

controlled by the diffusion of a particle along the partition wall, we assume that the 

corresponding probability density, qslow(τ), can be approximated by the lifetime probability 

density for this particle, w(τ), which is independent of f, i.e., qslow(τ)w(τ). Thus, we have

(10)

where λ(f) and 1 – λ(f) are the fractions of the slow and fast transitions, respectively. Note 

that the second term in eq 10 depends on f only through the coefficient λ(f). In writing eq 10, 

we have neglected the intermediate transitions: their fraction is negligible as compared to the 

fast ones, and on the other hand, their contribution to the averages is much smaller than that 

from the slow transitions.

The fraction of the slow transitions, λ(f), is found by comparing two expressions for the 

mean transition time ❬τ❭f. The first follows directly from the definition of ❬τ❭f and eq 10

(11)

In writing eq 11, we have neglected τd as compared to the mean lifetime of the particle 

diffusing along the partition, , which is of the order of tR >> τd, if a is 

not too close to R. The second expression for ❬τ❭f is obtained from eq 9 for the effective 

velocity

(12)

By equating eqs 11 and 12, we get

(13)

This formula shows that the fraction of the slow transitions vanishes as 

, which is in agreement with the simulation results.
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Our last remarks in this section concern eq 12. First, note that ❬τ❭f is (R/a)2 times larger than 

τd (characterizing the overwhelming majority of transitions), which emphasizes a significant 

contribution of the slow transitions. Second, the estimate for ❬τ❭f given by eq 12 is in 

reasonable agreement with simulations results at f = 105, as the third column of Table 3 

indicates.

 3. Moment Ratios—Consider the moments of the transition time distribution, 

. Using eqs 10 and 13, we get for the leading term of 

large-f asymptotic behavior of the k-th moment

(14)

where . Equation 14 shows that all the moments of the transition time 

distribution, irrespective of their order, are proportional to f−1 as f → ∞. As a consequence, 

there is a progressive growth of the moment ratios with respect to their order

(15)

Numerical results for the ratios of the moments of the second, third, and fourth order, 

presented in Table 3, support the scaling law given in eq 15. This in turn justifies the 

approximation made in eq 10 for the probability density qf(τ). The divergence of the 

transition time moment ratios as f → ∞ is a clear manifestation of intermittency in 

transitions between neighboring openings.

At strong forcing, the effect of the driving force on the moment ratios (see Table 3) is just 

opposite to what we have seen at weak forcing, where these ratios decrease with increasing f 
(see Table 1). This is one more argument indicating the difference between the scenarios of 

the particle motion in these regimes. The force-induced intermittency contrasts qualitatively 

with previously reported results,10,13,17 predicting qf(τ) → δ(τ – τd) and the moment ratios 

tending to unity as f → ∞. The origin of unusual transition time statistics is the special 

geometry of the considered tube.

 B. Transport Coefficients

 1. Effective Mobility—The analysis of transition time statistics provides convincing 

support for the intermittent scenario of the particle motion at strong forcing (see Figure 1c). 

On the basis of this scenario one can easily derive the effective mobility. As follows from eq 

9, the large-f limiting value of the effective mobility is given by16,18a
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(16)

One can check that when l/R ≥ 1 and hence the boundary homogenization procedure is 

applicable, μ(∞) is less than μ(0), eq 8, at any value of a/R. Figure 5 shows the ratio μ(0)/

μ(∞) asa function of a/R for several values of l/R. It is seen that the smaller a/R is or the 

larger l/R is, the more pronounced the difference between the two limits. In addition, this 

figure demonstrates very good agreement between the numerical and analytical results in the 

whole range of a/R.

 2. Effective Diffusivity—To find the asymptotic behavior of the effective diffusivity as 

f → ∞, it is convenient to introduce residence time τa(t), spent by the particle in the running 

state for a sufficiently long observation time t. The mean of this random variable, ❬τa(t)❭ = 

(a/R)2t, determines the average displacement of the particle, ❬Δx(t|F)❭ = μ0F❬τa(t)❭. This 

leads to the results for the effective drift velocity, eq 9, and the effective mobility, eq 16. The 

variance of the residence time, , determines the variance of the 

particle displacement

(17)

since as f → ∞ the main contribution to the width of the particle displacement distribution is 

due to fluctuations of τa(t). The large-t asymptotic behavior of σ2(t) has been recently 

found24

(18)

Using the definition of D(f), eq 4, and the relations in eqs 17 and 18, we get16

(19)

In writing eq 17 we have neglected the contribution from the bare longitudinal diffusion. 

This contribution is dominant, however, when a/R → 1 (at any finite value of f). In this 

trivial case, the effect of the cross-walls is negligible and the variance of the particle 

displacement is equal to 2D0t, so that the diffusivity approaches its unperturbed value D0, 

independently of the driving force.

Figure 6 compares the effective diffusivity as calculated from eq 19 with that obtained from 

simulations at various values of f and a/R. There is very good agreement between the 
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analytical and numerical results for sufficiently strong forcing, f ≳ 104. Figure 6 also 

illustrates a nonmonotonic dependence of D(f) on the parameter a/R, with the maximum at 

a/R ≈ 0.65. Interestingly, even at a large opening size (e.g., a/R = 0.9), D(f) substantially 

exceeds D0 as f → ∞, while μ(f) in this case is close to its unperturbed value μ0. Note that 

both the asymptotic behavior of D(f) and the limiting value of μ(f), as well as the moments 

of the τ-distribution, do not depend on the other geometric parameter l/R. Moreover, these 

asymptotic results are applicable to tubes with aperiodic location of cross-walls. The 

parameter l/R drops out in this regime because the particle, being pressed to a cross-wall, is 

distributed within a layer of thickness (βF)−1 << l, so that it “feels” the confinement length 

(βF)−1, rather than the compartment length l. The dimensionless parameter f = βFR 
compares two lengths characterizing the particle distribution as f → ∞: the confinement 

length and the tube radius. It plays the determining role at strong forcing, reflecting the 

combined effect of the force, thermal noise, and the system geometry.

Giant enhancement of the diffusivity predicted by eq 19 arises from the coupling of the 

transversally modulated longitudinal mobility of the particle and its radial diffusion. The 

effect has the same origin as the Taylor dispersion25 of a particle diffusing in a laminar flow. 

The quadratic f-dependence of D(f) as f → ∞, along with the intermittency in the transition 

time statistics and a decrease of the mobility, μ(∞) < μ(0), is a signature of sharp 

compartmentalization.

 V. TRANSPORT COEFFICIENTS OVER THE ENTIRE RANGE OF F

The limiting small- and large-f behaviors of the effective mobility μ(f) and diffusivity D(f) 
have been derived and discussed in the previous sections. To find these transport coefficients 

between the two limits and to ascertain the range of applicability of the asymptotic formulas, 

we have made use of Brownian dynamics simulations. In this section we present the results 

and discuss the functions μ(f) and D(f) over the entire range of f at different values of the 

tube parameters.

The results are presented in Figures 7 and 8, using μ0 and D0 as scaling factors. The ratios 

μ(f)/μ0 and D(f)/D0 are plotted against f for different values of a/R and l/R = 2 (Figures 7a 

and 8a) and for different values of l/R and of a/R = 0.3 (Figures 7b and 8b). The periodic 

entropy barriers slow down the transitions between neighboring compartments. This is why 

the effective mobility is smaller than μ0 at all f. The smaller the opening size (i.e., the higher 

the entropy barrier), the stronger the effect. Upon application of the driving force, the 

slowing-down effect caused by the periodic barriers is enhanced. As Figure 7 shows, the 

effective mobility μ(f) monotonically decreases between the values μ(0) and μ(∞) < μ(0), in 

qualitative contrast with the predicted monotonic growth previously reported in studies of 

transport in 1D tilted periodic energetic potential14 and driven entropic transport.10,13,17 A 

possible explanation for this unusual behavior has been discussed in the last paragraph of 

section III. Figure 8 shows that the diffusivity D(f) also exhibits a distinctive behavior: it 

monotonically increases with f and diverges as f → ∞, while in the previous studies 

dependence D(f) has been shown to be nonmonotonic and approaching D0 from above at 

strong forcing.
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We find in Figures 7 and 8 that the small-f behaviors of D(f) and μ(f) are determined by both 

a/R and l/R, in accordance with the estimates of D(0) and μ(0) given by eqs 7 and 8, 

respectively. At very weak forcing the theoretical predictions and the simulation data are in 

very good agreement in the range of applicability of these equations, l > R. However, they 

can differ widely for short compartments (see the case of l/R = 0.1 in Figures 7b and 8b), 

which are outside of the validity range of eqs 7 and 8. With increase of the forcing, the 

simulation data deviate more and more from the force-free values μ(0) and D(0). The larger 

a/R (or the smaller l/R), the greater the value fw, up to which the description in terms of the 

weak forcing regime holds. A rough estimate of fw varies from the order of unity up to the 

order of 100, depending on the tube parameters.

At strong forcing, the effective mobility approaches its limiting value μ(∞), eq 16, and the 

effective diffusivity approaches the quadratic dependence on f, eq 19. As Figures 7 and 8 

indicate, the analytical predictions are in very good agreement with the simulation data for 

different values of the model parameters. The large-f behaviors of μ(f) and D(f) are solely 

determined by the ratio a/R. The other geometric parameter l/R determines the level of 

forcing fs required to reach the asymptotic region: the larger l/R is, the greater fs is (see 

Figures 7b and 8b). A rough estimate of fs varies from the order of 10 (at l/R = 0.1) up to the 

order of 100 (at l/R = 2). Figures 7a and 8a show that the forcinginduced decrease in the 

effective mobility becomes the more pronounced the smaller the opening size (see also 

Figure 5), whereas the effective diffusivity takes the maximum value at a/R ≈ 0.65 (see also 

Figure 6).

 VI. CONCLUSIONS

We have investigated a driven diffusion of a point particle in a tube formed by identical 

cylindrical compartments. The analysis of statistics of transition times between neighboring 

openings, τ, has shown that there are two different scenarios of the particle motion in the 

tube. At weak forcing, the particle motion in a compartment keeps no memory about the 

entrance point (provided the compartment length l exceeds the tube radius R), which implies 

a uniform distribution of the particle within each compartment (homogeneous scenario). At 

strong forcing, there is intermittency in the transitions, so that the radial distribution 

becomes uniform as a result of the particle traveling through many compartments 

(intermittent scenario). We have found and discussed the probability densities and statistical 

moments of τ in both limiting cases. The analytical predictions are supported by Brownian 

dynamics simulations. At weak forcing, the effect of the force is to narrow the transition 

time distribution. In the strong forcing regime, notable observations are: (i) in addition to a 

delta-function-like peak, attributable to frequent fast transitions, the τ-distribution has a far 

tail, very important due to its dominating contribution to the mean and especially to higher 

moments of τ; (ii) the tail is associated with rare slow transitions, which are controlled by 

the radial diffusion along a cross-wall; (iii) the tail decays as a single exponential as τ f ∞, 

with the rate independent of the dimensionless force f and the ratio l/R; and (iv) because of 

the tail there is a progressive growth of the moment ratios with respect to their order as 
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On the basis of these scenarios, we have derived formulas for the effective mobility and 

diffusivity in the weak and strong-forcing regimes. Using Brownian dynamics simulations to 

bridge the gap between the two limits, we have found the transport coefficients over the 

entire range of the dimensionless driving force at different values of the tube parameters. 

The results obtained demonstrate that application of the driving force leads to an 

enhancement of the entropic effects (associated with spatial restrictions of individual particle 

motion) in the particle transport, which is manifested in a monotonic decrease of the 

effective mobility between the two limiting values and, especially, in a monotonic 

unbounded increase of the effective diffusivity, as the dimensionless driving force grows.

To summarize, in the present paper we have demonstrated that spatial restrictions play a 

significant role in the diffusive transport of driven particles, potentially leading to anomalous 

transport properties in certain geometry designs. In particular, in a periodically 

compartmentalized tube, biased diffusion exhibits unusual force-induced features such as 

decrease of the mobility and divergence of the diffusivity. We have also shown that the 

statistical mechanism behind such anomalous effects is underpinned by intermittency in the 

transition time statistics of particle motion through the tube. These results provide a new 

significant insight into diffusive transport in complex geometries and may find applications 

in fields as diverse as drug delivery, cellular biology, materials engineering, and development 

of architectures and technologies for controllable mass transfer on the nanoscale.
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 APPENDIX 1: DETAILS OF BROWNIAN DYNAMICS SIMULATIONS

In our simulations, particle trajectories were propagated by numerical integration of the 

dimensionless stochastic equation of motion, equivalent to eq 1, using the forward Euler 

algorithm. The reflecting boundary conditions were implemented as follows: if a trajectory 

crossed the lateral tube surface, only the last step displacement along the tube axis was 

accepted; if a trajectory crossed a cross-wall, only the last step displacement orthogonal to 

the axis was accepted. We found that different reasonable ways to implement the boundary 

conditions led to slightly varying results. However, the difference between the results does 

not exceed the accuracy of our simulations. The effective mobility and diffusivity were 

calculated according to the definitions given in eqs 3 and 4 as the average over 105 

trajectories. The simulation data confirmed that the particle distribution over the tube cross-

section remains uniform at any value of the driving force (see eq 2).

The simulations were performed at different values of the dimensionless parameters f = βFR 
(from 0 to 105), a/R (from 0.1 to 0.9), and l/R (from 0.1 to 2). Different values of the 

dimensionless time step  were taken: from 10−7 at large f or small 

a/R and l/R to 10−5. The number of steps was also different: from 2 × 107 to 2 × 108, so that 

the trajectory length (the observation time) varied from 20tR to 200tR. In each simulation, 

Makhnovskii et al. Page 15

J Phys Chem B. Author manuscript; available in PMC 2016 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the transition times between neighboring openings τ were collected and used to gain insight 

into the statistical properties of τ. The number of observed transitions varied from 106 (at 

weak forcing) to 1010 (at strong forcing).

 APPENDIX 2: TRANSITION TIME STATISTICS AT ZERO FORCING

To find the desired probability density q0(τ) of the transition time τ, consider the problem of 

Brownian particle survival in the interval (0,l). For the particle starting at t = 0 from x = 0, 

the propagator G(x,t) satisfies the diffusion equation

(A2.1)

with the initial condition G(x,0) = δ(x) and the boundary conditions

(A2.2)

The effective trapping rate κ is defined by eq 6. The boundary conditions have a simple 

physical meaning: the boundary condition at x = 0 reflects the problem symmetry, and the 

radiation boundary condition at x = l models the homogenized boundary.

First, taking the Laplace transform of eq A2.1 and solving the resulting ordinary differential 

equation, we find the Laplace transform of the propagator. Then, using this result, the 

Laplace transform of the particle survival probability  can be written in 

the form

(A2.3)

where R = D0/(κl). Finally, taking advantage of the relation q0(τ) = −dS(τ)/dτ, we arrive at 

eq 5 in the main text. From eq 5 one can find the k-th moment of τ using the relation 

. In particular, the first four moments, which 

are discussed in the text, are given by

(A2.4)

(A2.5)
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(A2.6)

(A2.7)

 APPENDIX 3: LIFETIME PROBABILITY DENSITY OF A BROWNIAN 

PARTICLE IN THE ANNULUS

Consider the problem of Brownian particle survival in the annulus bounded by two 

concentric circles of radii a and R > a, with absorbing (reflecting) boundary condition on the 

inner (outer) boundary. The probability density for finding the particle at distance ρ from the 

origin, a ≤ ρ ≤ R, at time t, W(ρ,t), satisfies the 2D diffusion equation

(A3.1)

with the initial condition , and the boundary 

conditions  and . A solution for the probability density can 

be written in terms of the eigenfunctions φn(ρ) and eigenvalues ξn (n = 1,2, …) of the 2D 

Laplace operator Δ2D that satisfy

(A3.2)

The eigenfunctions are the Bessel functions of zero order of the first and second kind, 

J0(ξnρ) and Y0(ξnρ), respectively. The eigenvalues can be written as ξn = νn/a, where νn is 

the nth root of the equation26

(A3.3)

ordered so that νn+1 > νn > 0. The eigenfunction expansion of the probability density has the 

form

(A3.4)

where coefficients An and Bn can be found from the initial condition, and kn = (νn/a)2.
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Then the survival probability of the particle, , as well as its lifetime 

probability density, W(t)= −dS(t)/dt, can be written as infinite sums of exponentials. At long 

times, the first terms in the sums are dominant, so that the lifetime probability density 

decays as a single exponential, W(t) exp(−k1t/tR), with the dimensionless rate k1 determined 

by the first eigenvalue ξ1

(A3.5)

where ν1 is the first (smallest in magnitude) root of eq A3.3. The values of k1 calculated 

from eqs A3.3 and A3.5, as well as the longtime decay rates of the transition time 

probability density, , obtained from simulations, are summarized in Table 2 for different 

values of radius ratio a/R.
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Figure 1. 
(a) Schematic representation of the model. A Brownian particle moves in a tube formed by 

identical cylindrical compartments of radius R and length l under the action of uniform 

driving force F. The particle, with coordinates x (along the tube axis) and ρ (in the radial 

direction), goes from one compartment to another through circular openings of radius a in 

the centers of infinitely thin partitions separating the compartments. (b) A typical pattern of 

particle motion through a compartment at zero or small forcing, illustrating the 

homogeneous scenario. (c) A typical pattern of particle motion through a tube at strong 

forcing, illustrating the intermittent scenario. The “break” symbol is used to emphasize the 

fact that an overwhelming majority of particle transitions between neighboring openings 

occur while the particle remains in the cylinder of radius a. Long series of fast transitions are 

interrupted by rare slow transitions during which the particle moves outside the cylinder, 

diffusing along the partition wall.
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Figure 2. 
Probability density of the transition time between neighboring openings at weak forcing. 

The force-free case is represented by the solid (black) line, calculated by numerically 

inverting the Laplace transform given by eq 5. Histograms for different values of the 

dimensionless parameter f = βFR are obtained from Brownian dynamics simulations (the 

symbols are described in the legend). The curves in the main graph and in the inset are 

obtained at l/R = 2 and l/R = 1, respectively, and at a/R = 0.3 for both.
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Figure 3. 
Effective mobility and diffusivity at different values of a/R and f = βFR. The solid line 

represents the dependence of μ(0)/μ0 = D(0)/D0 on a/R, as calculated from eqs 6–8. Red 

(blue) symbols represent the results for the effective mobility (diffusivity) obtained from 

Brownian dynamics simulations. The symbols are described in the legend.
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Figure 4. 
Far tail of the transition time distribution qf(τ) obtained from Brownian dynamics 

simulations at strong forcing (the symbols are described in the legends). The initial part of 

the distribution (up to τ/tR = 10−2), responsible for fast and intermediate transitions, is not 

shown. Panels (a) and (b) show the results obtained at different values of a/R (0.1, 0.3, 0.5, 

and 0.65) and f (103, 104, and 105) but at fixed l/R = 2. These results clearly indicate that at 

long times the probability density qf(τ) decays exponentially, , 

where  is the dimensionless decay rate. The values of  obtained from simulations, as 

well as the decay rates calculated from eq A3.5, are presented in Table 2. Panel (c) shows 

the results at different values of l/R (0.1, 1, and 2) and f (103 and 104) but at fixed a/R = 0.3. 

The probability density decays at the same rate , which is independent of the 

parameters f and l/R.
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Figure 5. 
Ratio of limiting values of the effective mobility μ(0)/μ(∞) as a function of a/R. The solid, 

dashed, and dotted lines corresponding to l/R equal to 1, 2, and ∞, respectively, as indicated 

by numbers near the curves, are calculated from eqs 7, 8, and 16. Circles represent the ratio 

μ(0)/μ(105) found in simulations at l/R = 2.
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Figure 6. 
Effective diffusivity D(f) scaled by f2D0 as a function of a/R. The solid line is calculated 

from eq 19. Points, marked by symbols described in the legend, are obtained from 

simulations at l/R = 2.
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Figure 7. 
Effective mobility as a function of the parameter f = βFR at different values of a/R and l/R = 

2 (panel a) and different values of l/R and a/R = 0.3 (panel b). Points, marked by symbols 

described in the legends, are obtained from simulations. The dashed and dotted lines 

represent the limiting small-f and large-f behaviors of the effective mobility, as calculated 

from eqs 8 and 16, respectively.
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Figure 8. 
Effective diffusivity as a function of the parameter f = βFR at different values of a/R and l/R 
= 2 (panel a) and different values of l/R and a/R = 0.3 (panel b). Points, marked by symbols 

described in the legends, are obtained from simulations. The dashed and dotted lines 

represent the limiting small-f and large-f behaviors of the effective diffusivity, as calculated 

from eqs 7 and 19, respectively.
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Table 1

Average (scaled by ) and the Moment Ratios of the Transition Time for Different Values of a/R and f = 

βFR at l/R = 2
a

a/R f τ f τ 0 τ2
f τ f

2 τ3
f τ f

3 τ4
f τ f

4

0.1 0 1.00 1.92 5.52 21.2

0.1 0.90 1.80 4.52 14.2

1.0 0.68 1.74 4.18 12.2

10 0.11 1.86 5.14 18.8

0.5 0 1.00 1.71 4.29 14.4

0.1 0.99 1.71 4.28 14.4

1.0 0.76 1.65 3.95 12.6

10 0.11 1.39 2.63 6.55

100 0.018 3.78 28.5 295

0.9 0 1.00 1.67 4.07 13.2

0.1 0.99 1.66 4.06 13.1

1 0.76 1.59 3.62 11.0

10 0.10 1.10 1.33 1.77

100 0.010 1.03 1.10 1.24

1000 0.0011 1.44 4.70 31.2

a
The results in the force-free case are calculated from eqs A2.4–A2.7 and 6. The other results are obtained from Brownian dynamics simulations.
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Table 2

Dimensionless Long-Time Decay Rates of the Particle Lifetime Probability Density, k1 (See Appendix 3), and 

of the Transition Time Probability Density,  (see Figure 4)
a

a/R k1
k

103 k
104 k

105

0.1 1.22 1.21 1.22 1.22

0.3 3.06 3.06 3.07 3.07

0.5 7.41 7.39 7.40 7.41

0.65 16.4 16.5 16.4 16.2

0.9 236 233 236 235

a
The values of k1 are calculated from eq A3.5, and the values of  are obtained from simulations for different values of f and a/R at l/R = 2.
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Table 3

Average (Scaled by ) and Moment Ratios of the Transition Time Found in Brownian Dynamics 

Simulations at Strong Forcing, f = βFR ≥ 103, for Different Values of a/R
a

a/R f τ f τ d τ2
f τ f

2 τ3
f τ f

3 τ4
f τ f

4

0.1 103 53.3 14.6 334 1.0 × 104

104 78.1 97.8 1.5 × 104 3.1 × 106

105 90.4 844 1.1 × 106 2.0 × 109

0.3 103 8.81 31.0 1.8 × 103 1.3 × 105

104 10.2 264 1.3 × 105 7.9 × 107

105 10.7 2.5 × 103 1.1 × 107 6.9 × 1010

0.5 103 3.49 25.7 1.5 × 103 1.2 × 105

104 3.77 231 1.2 × 105 8.6 × 107

105 3.89 2.3 × 103 1.2 × 107 7.9 × 1010

a
τd = l/(μ0F) is the drift time; l/R = 2.
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