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ABSTRACT

The plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria employs a type III secretion (T3S) system to translo-
cate effector proteins into plant cells. The T3S apparatus spans both bacterial membranes and is associated with an extracellular
pilus and a channel-like translocon in the host plasma membrane. T3S is controlled by the switch protein HpaC, which sup-
presses secretion and translocation of the predicted inner rod protein HrpB2 and promotes secretion of translocon and
effector proteins. We previously reported that HrpB2 interacts with HpaC and the cytoplasmic domain of the inner mem-
brane protein HrcU (C. Lorenz, S. Schulz, T. Wolsch, O. Rossier, U. Bonas, and D. Büttner, PLoS Pathog 4:e1000094, 2008,
http://dx.doi.org/10.1371/journal.ppat.1000094). However, the molecular mechanisms underlying the control of HrpB2
secretion are not yet understood. Here, we located a T3S and translocation signal in the N-terminal 40 amino acids of
HrpB2. The results of complementation experiments with HrpB2 deletion derivatives revealed that the T3S signal of
HrpB2 is essential for protein function. Furthermore, interaction studies showed that the N-terminal region of HrpB2 in-
teracts with the cytoplasmic domain of HrcU, suggesting that the T3S signal of HrpB2 contributes to substrate docking.
Translocation of HrpB2 is suppressed not only by HpaC but also by the T3S chaperone HpaB and its secreted regulator,
HpaA. Deletion of hpaA, hpaB, and hpaC leads to a loss of pathogenicity but allows the translocation of fusion proteins
between the HrpB2 T3S signal and effector proteins into leaves of host and non-host plants.

IMPORTANCE

The T3S system of the plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria is essential for pathogenicity and
delivers effector proteins into plant cells. T3S depends on HrpB2, which is a component of the predicted periplasmic inner rod
structure of the secretion apparatus. HrpB2 is secreted during the early stages of the secretion process and interacts with the cy-
toplasmic domain of the inner membrane protein HrcU. Here, we localized the secretion and translocation signal of HrpB2 in
the N-terminal 40 amino acids and show that this region is sufficient for the interaction with the cytoplasmic domain of HrcU.
Our results suggest that the T3S signal of HrpB2 is required for the docking of HrpB2 to the secretion apparatus. Furthermore,
we provide experimental evidence that the N-terminal region of HrpB2 is sufficient to target effector proteins for translocation
in a nonpathogenic X. campestris pv. vesicatoria strain.

Pathogenicity of many Gram-negative plant- and animal-
pathogenic bacteria depends on a type III secretion (T3S) sys-

tem, which translocates bacterial effector proteins directly into
eukaryotic host cells (1). T3S systems are highly complex protein
machines and consist of ring structures in the inner membrane
(IM) and outer membrane (OM) (2, 3). The IM ring is associated
with the export apparatus, which is assembled by members of at
least five different families of transmembrane proteins, designated
YscR, YscS, YscT, YscV, and YscU. The nomenclature refers to Ysc
proteins from the animal-pathogenic bacterium Yersinia (1, 4).
Components of the export apparatus interact with the predicted
cytoplasmic ring structure (C ring) and the ATPase complex,
which provides the energy for the transport process and/or con-
tributes to the unfolding of T3S substrates prior to their entry into
the T3S system (5). The ATPase, the predicted C ring, and the
cytoplasmic domains of members of the YscU and YscV families
of IM proteins were reported to interact with secreted proteins,
suggesting that they are involved in substrate recognition (2).

Proteins destined for type III-dependent secretion can be
grouped into (i) extracellular components of the T3S system, such

as pilus/needle and translocon proteins, and (ii) effector proteins,
which are translocated into eukaryotic cells. Effector protein de-
livery depends on the extracellular T3S pilus or needle, which is
associated with the membrane-spanning secretion apparatus and
serves as a transport channel for secreted proteins to the host-
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pathogen interface (2). The translocation of effector proteins
across the eukaryotic plasma membrane is mediated by the bacte-
rial channel-like T3S translocon (6). Secretion and translocation
of T3S substrates depend on an export signal, which is not con-
served on the amino acid level and is often located in the N-ter-
minal 20 to 30 amino acids (2). Despite the lack of amino acid
sequence conservation, many T3S signals consist of specific amino
acid compositions or patterns and are often structurally disor-
dered (7–12). In some T3S substrates, export signals have also
been identified in the C-terminal protein region or the 5= region of
the mRNA (13–17). Given that mRNA-based T3S signals proba-
bly do not account for the observed rapid transport rates of type
III effectors, a combination of signals present in the mRNA and
the N-terminal peptide sequence has been proposed (18, 19, 20–
22). In addition to the T3S signal, the efficient secretion of many
T3S substrates also depends on T3S chaperones, which bind to
and often stabilize secreted proteins and facilitate their recogni-
tion by components of the T3S system (23–28). The precise mo-
lecular mechanisms underlying the recognition of T3S substrates
by components of the T3S system as well as the role of the T3S
signal in substrate docking are not yet understood.

In the present study, we analyzed the secretion and transloca-
tion signal of the T3S system component HrpB2 from the plant-
pathogenic bacterium Xanthomonas campestris pv. vesicatoria
(29). The hrpB2 gene is part of the chromosomal hrp (hypersen-
sitive response and pathogenicity) gene cluster, which encodes
components of the T3S system (30). hrpB2 expression is activated
in planta and in specific minimal media by the products of two
regulatory genes, hrpG and hrpX, which are the key regulators of
the hrp gene cluster (31, 32). Deletion of hrpB2 leads to a loss of
pathogenicity, suggesting that HrpB2 is an essential component
of the T3S system (29). Previous studies revealed that HrpB2 pre-
dominantly localizes to the bacterial periplasm and is essential for
the formation of the extracellular T3S pilus and thus for T3S (29,
33, 34). HrpB2 interacts with components of the T3S pilus and the
OM ring (33); therefore, it was proposed to be a component of the
predicted inner rod, which presumably provides a periplasmic
assembly platform for the T3S pilus.

HrpB2 is itself secreted and translocated by the T3S system
similarly to predicted inner rod proteins from animal-pathogenic
bacteria (35–37). Therefore, it was suggested that HrpB2 is one of
the first substrates that travels the T3S system (29). The efficient
secretion and translocation of HrpB2 is suppressed by the control
protein HpaC, which acts as a T3S substrate specificity switch
(T3S4) protein and also promotes the secretion of translocon and
effector proteins (38–40). The analysis of HrpB2 reporter fusions
revealed the presence of a translocation signal within the N-ter-
minal 76 amino acids of HrpB2, which is suppressed by HpaC
(41). The HpaC-mediated switch in T3S substrate specificity de-
pends on the cytoplasmic domain of the IM protein HrcU
(HrcUC), which interacts with both HpaC and HrpB2 (38, 40).
HpaC presumably induces a conformational change in HrcUC

and thus alters the substrate specificity of the T3S system from
HrpB2 secretion to the secretion of translocon and effector pro-
teins (40, 41).

There is likely a second substrate specificity switch that triggers
effector protein translocation after the insertion of the translocon
into the host plasma membrane. In X. campestris pv. vesicatoria,
effector protein translocation depends on the general T3S chaper-
one HpaB and its secreted regulator, HpaA (42, 43). HpaB binds

to different sequence-unrelated effector proteins and presumably
targets them to the ATPase of the T3S system (23, 42). The lack of
HpaB leads to a significant reduction in effector protein translo-
cation and a loss of bacterial pathogenicity (42). Experimental
evidence suggests that the activity of HpaB is regulated by the
secreted HpaA protein, which binds to and thus inactivates HpaB
during the assembly of the T3S system (43). In the absence of
HpaA, HpaB presumably blocks the T3S system and thus inter-
feres with the secretion of early and late substrates. Therefore, it
was assumed that the secretion and translocation of HpaA after
assembly of the secretion apparatus liberates HpaB and activates
effector protein delivery (43).

The mechanisms underlying the recognition of early and late
T3S substrates from X. campestris pv. vesicatoria by components
of the T3S system are largely unknown. The results of previous
interaction studies suggest that effector proteins and HrpB2 inter-
act with the putative C ring component HrcQ and the cytoplasmic
domain of the IM protein HrcV (HrcVC) (44, 45). Furthermore,
as mentioned above, HrpB2 binds to the cytoplasmic domain of
HrcU (38). In the present study, we localized the secretion and
translocation signal in the N-terminal 40 amino acids of HrpB2.
We show that this region contains a binding site for HrcUC, sug-
gesting that the T3S signal of HrpB2 contributes to the docking of
HrpB2 to HrcUC. Furthermore, we provide experimental evi-
dence that the translocation of HrpB2 is suppressed not only by
HpaC but also by the general T3S chaperone HpaB and its regu-
lator, HpaA.

MATERIALS AND METHODS
Bacterial strains and growth conditions. Bacterial strains and plasmids
used in this study are listed in Table 1. Escherichia coli and X. campestris pv.
vesicatoria strains were cultivated at 37°C in lysogeny broth (LB) and at
30°C in nutrient-yeast-glycerol (NYG) medium (46), respectively. For the
analysis of in vitro T3S, X. campestris pv. vesicatoria was cultivated in
minimal medium A (47) supplemented with sucrose (10 mM) and Casa-
mino Acids (0.3%).

Plant material and infection experiments. X. campestris pv. vesicato-
ria strains were inoculated into leaves of the near-isogenic pepper culti-
vars Early Cal Wonder (ECW), ECW-10R, and ECW-30R, as well as into
leaves of gfp (green fluorescent protein)-transgenic N. benthamiana at a
concentration of 4 � 108 CFU ml�1 in 1 mM MgCl2 if not stated other-
wise (30, 48, 49). gfp-transgenic N. benthamiana plants were generated
using the viral construct pICH18951, which contains the gfp gene and the
RNA-dependent RNA polymerase (RdRp)-encoding sequence down-
stream of the alcA promoter as described previously (50). After infection,
pepper plants were incubated in an incubation chamber for 16 h of light at
28°C and 65% humidity and 8 h of darkness at 22°C and 65% humidity. N.
benthamiana plants were incubated for 16 h of light at 20°C and 75%
humidity and 8 h of darkness at 18°C and 70% humidity. The appearance
of plant reactions was scored over a period of 1 to 12 days postinfection
(dpi). For the better visualization of the hypersensitive response (HR),
leaves were destained in 70% ethanol. In planta bacterial growth curves
were performed as described previously (30). Experiments were repeated
at least twice.

Generation of expression constructs. To generate plasmid pBR356,
the lacZ� gene from pUC19 was amplified by PCR and primers lacZ-for
and lacZ-BstY-rev (Table 2) from pUC19. The corresponding PCR frag-
ment was digested with BpiI and ligated with avrBs3�2, which was excised
from plasmid pBS300 by HindIII and partial BstYI digestion into
pBBR1mod1, generating pBR356.

For the generation of hrpB2 expression constructs, hrpB2 fragments,
including the stop codon, were amplified by PCR from X. campestris pv.
vesicatoria strain 85-10 and cloned into the Golden Gate-compatible ex-
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TABLE 1 Bacterial strains and plasmids used in this study

Strain or plasmid Relevant characteristic(s)a Reference(s)

Strains
X. campestris pv. vesicatoria
85-10 Pepper-race 2; wild type; Rifr 49, 80
85* 85-10 derivative containing the hrpG* mutation 58
85*�avrBs1 85* derivative containing a 1,251-bp in-frame deletion in avrBs1 This study
85*�hrcN 85* derivative deleted in the ATPase gene hrcN 23
85*�hpaA 85* derivative with a 532-bp deletion in hpaA and a frameshift 43
85*�hpaB Derivative of strain 85* deleted in codons 13 to 149 of hpaB 42
85*�avrBs1�hpaB 85* derivative deleted in avrBs1 and hpaB This study
85*�hpaC 85* derivative deleted in the T3S4 gene hpaC 81
85-10�hpaC 85-10 derivative deleted in the T3S4 gene hpaC 81
85*�avrBs1�hpaC 85* derivative deleted in avrBs1 and hpaC This study
85*�hpaAB Derivative of strain 85* deleted in hpaA and hpaB 43
85*�hpaAC Derivative of strain 85* deleted in hpaA and hpaC This study
85*�hpaBC Derivative of strain 85* deleted in hpaB and hpaC 81
85*�hpaABC Derivative of strain 85* deleted in hpaA, hpaB and hpaC This study
85-10�hpaABC Derivative of strain 85-10 deleted in hpaA, hpaB and hpaC This study
85*�hpaABC�hrcN Derivative of strain 85* deleted in hpaA, hpaB, hpaC and hrcN This study
85*�hpaC�hrpF Derivative of strain 85* deleted in hpaC and hrpF 41
85*�hpaC�hrpE Derivative of strain 85* deleted in hpaC and hrpE 38
85-10�hrpB2 Derivative of strain 85-10 deleted in hrpB2 29
85*�hrpB2 Derivative of strain 85* deleted in hrpB2 29
85*�hrpB2�hpaC Derivative of strain 85* deleted in hrpB2 and hpaC 33

E. coli
BL21(DE3) F� ompT hsdSB (rB

� mB
�) gal dcm (DE3) Stratagene

Top10 F� mcrA�(mrr-hsdRMS-mcrBC) �80lacZ�M15 �lacX74 recA1 ara�139�(ara-leu)7697
galU galK rpsL endA1 nupG

Invitrogen

DH5��pir F� recA hsdR17(rK
� mK

�) φ80dlacZ�M15 [�pir] 82

Plasmids
pBRM Golden Gate-compatible derivative of pBBR1MCS-5 containing the lac promoter, a lacZ�

fragment flanked by BsaI recognition sites and a 3� c-Myc epitope-encoding
sequence; Gmr

83

pBRMavrBs1 Derivative of pBRM encoding AvrBs1-c-Myc This study
pBRMhrcU265–357 Derivative of pBRM encoding HrcU265–357-c-Myc 40
pBRMhrpB21–40-avrBs1 Derivative of pBRM encoding HrpB21–40-AvrBs1-c-Myc This study
pBRMhrpB2Stop Derivative of pBRM encoding HrpB2 This study
pBRMhrpB2�2–8Stop Derivative of pBRM encoding HrpB2�2–8 This study
pBRMhrpB2�2–9Stop Derivative of pBRM encoding HrpB2�2–9 This study
pBRMhrpB2�2–10Stop Derivative of pBRM encoding HrpB2�2–10 This study
pBRMhrpB2�2–11Stop Derivative of pBRM encoding HrpB2�2–11 This study
pBRMhrpB2�2–20Stop Derivative of pBRM encoding HrpB2�2–20 This study
pBRMhrpB21–90Stop Derivative of pBRM encoding HrpB21–90 This study
pBRMhrpB21–90/�2–10Stop Derivative of pBRM encoding HrpB21–90/�2–10 This study
pBRMhrpB21–20-356 Derivative of pBR356 encoding HrpB21–20-AvrBs3�2 This study
pBRMhrpB21–25-356 Derivative of pBR356 encoding HrpB21–25-AvrBs3�2 This study
pBRMhrpB21–30-356 Derivative of pBR356 encoding HrpB21–30-AvrBs3�2 This study
pBRMhrpB21–40-356 Derivative of pBR356 encoding HrpB21–40-AvrBs3�2 This study
pBRMhrpB21–40/�2–8-356 Derivative of pBR356 encoding HrpB21–40/�2–8-AvrBs3�2 This study
pBRMhrpB21–40/�2–9-356 Derivative of pBR356 encoding HrpB21–40/�2–9-AvrBs3�2 This study
pBRMhrpB21–40/�13–22-356 Derivative of pBR356 encoding HrpB21–40/�13–22-AvrBs3�2 This study
pBRMhrpB21–40/�12–25-356 Derivative of pBR356 encoding HrpB21–40/�12–25-AvrBs3�2 This study
pBRMhrpB21–40/�16–25-356 Derivative of pBR356 encoding HrpB21–40/�16–25-AvrBs3�2 This study
pBR356 Derivative of plasmid pBBR1MCS-5 containing avrBs3�2 downstream of the lac

promoter and the lacZ� fragment, which is flanked by BsaI sites
This study

pDSK602 Broad-host-range vector; contains triple lacUV5 promoter; Smr 84
pDS356F Derivative of pDSK602 encoding AvrBs3�2-FLAG 60
pGEX-6p-1 GST expression vector; pBR322 ori; Apr GE Healthcare
pGhrpB2 Derivative of pGEX-2TKM encoding GST-HrpB2 39
pGhrpB2�2–20 Derivative of pGEX-2TKM encoding GST-HrpB2�2–20 This study

(Continued on following page)
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pression vector pBRM in a restriction/ligation reaction (51). pBRM con-
tains a lac promoter upstream of the lacZ� gene. The lacZ� gene is flanked
by recognition sites for the type IIS enzyme BsaI. To introduce internal
deletions into the 5= region of hrpB2, hrpB2 was first cloned using SmaI
and ligase into pUC57�BsaI, giving pUC57hrpB2 (52). hrpB2 deletion
derivatives were generated by PCR using pUC57hrpB2 as the template
and primers that contained a 5= phosphate group and were annealed back
to back to the flanking sequences of the deleted regions. The resulting
hrpB2 fragments were cloned into pBRM using BsaI and ligase.

For the generation of glutathione S-transferase (GST) expression con-
structs, derivatives of hrpB2 were amplified by PCR and cloned into the
BamHI and XhoI sites of pGEX-6p-1. To obtain expression constructs
encoding HrpB2-AvrBs3�2 fusions, 5= regions of hrpB2 were amplified by
PCR and cloned into the BsaI sites of the Golden Gate-compatible vector
pBR356. dTALE-2 (designer transcription activator-like effector) expres-
sion constructs and derivatives thereof were generated by Golden Gate
assembly of individual DNA modules (51, 53). For the generation of the
dTALE-2 expression construct, modules containing the lac promoter, the
dTALE-2-encoding sequence, and a transcription terminator were com-
bined. The expression construct encoding dTALE-2�N was assembled
with modules encoding a linker of lysine residues, amino acids 65 to 288,
the central repeats, and the C-terminal region of dTALE-2. The module
containing the linker was generated by annealing two oligonucleotides.
For the generation of HrpB21-x-dTALE-2�N expression constructs, we
generated modules encoding amino acids 1 to 40, 10 to 40, and 11 to 40 of
HrpB2, respectively, and assembled them with modules encoding the N-
terminal, the repeat, and the C-terminal regions of dTALE-2�N in a
Golden Gate reaction mixture as described above. The DNA sequences of
the final constructs are given in the supplemental material. All primer
sequences are listed in Table 2.

Generation of X. campestris pv. vesicatoria deletion mutants. For
the generation of X. campestris pv. vesicatoria deletion mutants, we used
derivatives of the suicide vector pOK1, which contained the flanking re-
gions of the deleted genes (Table 1). For the generation of the avrBs1

deletion mutant, 727-bp and 692-bp fragments flanking avrBs1 and con-
taining the last 29 and the first 58 bp of avrBs1, respectively, were ampli-
fied by PCR and cloned into the Golden Gate-compatible vector pOGG2.
Derivatives of pOK1 and pOGG2 were introduced into X. campestris pv.
vesicatoria by triparental conjugation, and deletion mutants were selected
as described previously (54).

Preparation of protein extracts and in vitro secretion assays. For the
analysis of protein synthesis, bacteria were cultivated overnight in liquid
NYG medium and cells were harvested by centrifugation. Equal amounts
of proteins adjusted according to the optical density of the culture were
analyzed by immunoblotting, using AvrBs3- or HrpB2-specific antibod-
ies. In vitro secretion assays were performed as described previously (55).
Equal amounts of bacterial total cell extracts and culture supernatants
(adjusted according to the optical density of the cultures) were analyzed
by SDS-PAGE and immunoblotting using antibodies specific for AvrBs3,
HrpB2, the predicted IM ring protein HrcJ, the periplasmic HrpB1 pro-
tein, and the secreted translocon protein HrpF, respectively (29, 56, 57).
Horseradish peroxidase-labeled anti-rabbit antibodies (GE Healthcare)
were used as secondary antibodies. Experiments were performed three
times.

GST pulldown assays. GST pulldown assays were performed as de-
scribed previously (33). Total protein lysates and eluted proteins were
analyzed by SDS-PAGE and immunoblotting using antibodies specific for
the c-Myc epitope and GST (Roche Applied Science), respectively. Exper-
iments were performed at least three times.

RESULTS
The N-terminal nine amino acids of HrpB2 are dispensable for
secretion and/or protein function. We previously reported that
the secretion of HrpB2 presumably depends on a protein region
spanning amino acids 10 to 25 (38). To further localize the T3S
signal of HrpB2 and to analyze the contribution of the N-terminal
region of HrpB2 to protein function, we generated expression

TABLE 1 (Continued)

Strain or plasmid Relevant characteristic(s)a Reference(s)

pGhrpB2�2–40 Derivative of pGEX-2TKM encoding GST-HrpB2�2–40 This study
pGhrpB21–40 Derivative of pGEX-2TKM encoding GST-HrpB21–40 This study
pGhrpB21–40/�2–9 Derivative of pGEX-2TKM encoding GST-HrpB21–40/�2–9 This study
pOK1 Suicide vector; sacB sacQ mobRK2 oriR6K; Smr 54
pOK�hpaB pOK1 derivative containing the flanking regions of hpaB and hpaB with an in-frame

deletion of codons 13 to 149 of hpaB
42

pOK�hpaC pOK1 derivative containing the flanking regions of hpaC including the first 39 and the
last 130 bp of the gene

81

pOK�hrcN pOK1 derivative containing the flanking regions of hrcN including the first 36 and the last
33 bp of the gene

23

pOGG2 Golden Gate-compatible derivative of pOK1 85
pOGG2�avrBs1 pOGG2 derivative containing the flanking regions, the first 58 bp and the last 28 bp of

avrBs1
This study

pUC19 Cloning vector with lacZ� fragment and pMB1-type ColE1 origin of replication, Apr 86
pBBRmod1 Derivative of pBBR1MCS-5 which contains a single EcoRI and HindIII site that replace

the polylinker
83

pIC18951 Viral vector construct, a derivative of pICH17272, containing the RdRp-encoding
sequence under the control of the alcA promoter and gfp

50, 87

pICH77739 Derivative of pBIN19, RK2 ori, level 2 vector containing the lacZ� flanked by BpiI
sites; Kmr

53, S. Marillonnet,
unpublished

pAGB128/1 Derivative of pICH77739 encoding dTALE-2 This study
pAGB146/1 Derivative of pICH77739 encoding dTALE-2�N deleted in the N-terminal 64

amino acids
This study

pAGB143/1 Derivative of pICH77739 encoding HrpB21–40-dTALE-2�N This study
pAGB145/1 Derivative of pICH77739 encoding HrpB21–40/�2–9-dTALE-2�N This study
pAGB144/1 Derivative of pICH77739 encoding HrpB21–40/�2–10-dTALE-2�N This study

a Ap, ampicillin; Km, kanamycin; Rif, rifampin; Sm, spectinomycin; Gm, gentamicin.
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TABLE 2 Primers used in this study

Primer Sequence (5=–3=)a

lacZ-for TTTGAAGACAAAATTCTATGAGAGACCAAATGACCATGATTACGCCAAGC
lacZ-BstY-rev TTTGAAGACAAGATCAGAGACCTTACAATTTCCATTCGC

avrBs1 constructs
avrBs1-Bsa-for TTTGGTCTCTTATGTCCGACATGAAAGTTAATTTC
avrBs1-Bsa-rev TTTGGTCTCTCACCCGCTTCTCCTGCATTTGTAAC
avrBs1-L-Bsa-for TTTGGTCTCTCGACTGATGCGCTGGCCTAC
avrBs1-L-Bsa-rev TTTGGTCTCTTACATGTTACAAATGCAG
avrBs1-R-Bsa-for TTTGGTCTCTTGTACTTCACTGGGTGTTGAATC
avrBs1-R-Bsa-rev TTTGGTCTCTATGGGGCAGACGAGCAACAG

hrpB2-avrBs1 expression constructs
hrpB2N40_for TTTGGTCTCTTATGACGCTCATTCCTC
hrpB2N40-TCCG-Bsa-rev TTTGGTCTCTCGGATTGCATCAGCGCTTGAAAG
avrBs1-Bsa-TCCG-for TTTGGTCTCTTCCGACATGAAAGTTAATTTC
avrBs1-Bsa-rev TTTGGTCTCTCACCCGCTTCTCCTGCATTTGTAAC

hrpB2 expression constructs
hrpB2-EcoRI-for ATCGAATTCATGACGCTCATTC
hrpB2-AccI-rev AAAGTCGACCTGGTTCTTCACCAGCGTCTG
hrpB2-Bsa-for ACTGGTCTCTTATGACGCTCATTCCTCCTG
hrpB2-Bsa-rev ACTGGTCTCTCACCCTACTGGTTCTTCACCAGC
hrpB2-9-Bsa-for ACTGGTCTCTTATGGCGATTGCCGGCACC
hrpB2-10-Bsa-for ACTGGTCTCTTATGATTGCCGGCACCAGTGC
hrpB2-11-Bsa-for ACTGGTCTCTTATGGCCGGCACCAGTGCTG
hrpB2-12-Bsa-for ACTGGTCTCTTATGGGCACCAGTGCTGCC
hrpB2-21-Bsa-for ACTGGTCTCTTATGCTGTCCCCGGTGGC
hrpB2-90-Bsa-rev ACTGGTCTCTCACCCTACATTTCCTGCAGCC
hrpB2�10-25-for Pho-ACGCCCAACCAAGCGCTGGTG
hrpB2�13-22-for Pho-CCGGTGGCAACGCCCAAGCAAGCG
hrpB2�13-22-rev Pho-GCCGGCAATCGCTTGGACAGGAGG
hrpB2�12-25-rev Pho-GGCAATCGCTTGGACAGGAG
hrpB2�16-25-rev Pho-AGCACTGGTGCCGGCAATCGCTTG

hrpB21-x-avrBs3�2 expression constructs
hrpB2-Bsa-for ACTGGTCTCTTATGACGCTCATTCCTCCTG
hrpB2-20-Bsa-GATC-rev TTTGGTCTCTGATCGCTTGGGTCGCGGCAGCACTGG
hrpB2-25-Bsa-GATC-rev TTTGGTCTCTGATCTGCCACCGGCGACAG
hrpB2-30-Bsa-GATC-rev TTTGGTCTCTGATCCGCTTGGTTGGGCGTTG
hrpB2-40-Bsa-GATC-rev TTTGGTCTCTGATCTTGCATCAGCGCTTGAAAGCG
hrpB2-FL-Bsa-GATC-rev AAAGGTCTCTGATCCTGGTTCTTCACCAGC

gst-hrpB2 expression constructs
hrpB2-11-BamHI-for TTTGGATCCATTGCCGGCACCAGTGCTGC
hrpB2-21-EcoRI-for TTTGGATCCCTGTCGCCGGTGGCAACGCCCAAC
hrpB2-41-EcoRI-for TTTGGATCCTCCTCCAGCCCCTTGCCG
hrpB2-BamHI-for TTTGGATCCATGACGCTCATTCCTCCTGTC
hrpB2-40-Xho-rev TTTCTCGAGTTGCATCAGCGCTTGAAAGCG
hrpB2-Xho-rev TTTCTCGAGCTACTGGTTCTTCACCAG

dTALE expression constructs
hrpB2N40_for TTTGGTCTCTTATGACGCTCATTCCTC
hrpB2N40-CTGA_rev TTTGGTCTCTCTGATTGCATCAGCGCTTG
hrpB2N10-40_for TTTGGTCTCTTATGATTGCCGGCACCAGTG
hrpB2N11-40_for TTTGGTCTCTTATGGCCGGCACCAGTGCTG
linker-TALDN64_rev TTTGAAGACAACTATTTTTTCATTTTGTCTTCAAA
linker-TALDN64_for TTTGAAGACAAAATGAAAAAATCAGTTGTCTTCAAA
TALDN64_for TTTGGTCTCTTCAGCGGGCAGCTTCTCTG
TALDN64_rev TTTGGTCTCTGATTCAAGGGTGCTCCAG

a Recognition sites of restriction enzymes are indicated in boldface, and overhangs generated after restriction by BsaI or BpiI are in italics. Pho, 5= phosphate group.
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constructs encoding HrpB2 derivatives deleted in amino acids 2 to
8, 2 to 9, and 2 to 10, respectively. Given our earlier observation
that the presence of a C-terminal epitope tag interferes with
HrpB2 function (33), we analyzed untagged HrpB2 derivatives in
an X. campestris pv. vesicatoria hrpB2 deletion mutant. Immuno-
blot analysis with an HrpB2-specific antiserum revealed that
all HrpB2 derivatives were stably synthesized in the 85-
10hrpG*�hrpB2 (85*�hrpB2) strain, which contains a constitu-
tively active version of the key regulator HrpG, HrpG*, and there-
fore expresses the hrp genes in vitro (58) (Fig. 1A). For the analysis
of T3S, bacteria were incubated in secretion medium, and cell
extracts and culture supernatants were analyzed by immunoblot-
ting. HrpB2, but not the N-terminal deletion derivatives of

HrpB2, was detected in the culture supernatant of the 85*�hrpB2
strain, suggesting that amino acids 2 to 10 are required for the
efficient secretion of HrpB2 (Fig. 1A). However, when analyzed in
the 85*�hrpB2�hpaC strain, which lacks the T3S4 gene hpaC and
therefore oversecretes HrpB2 (38), HrpB2�2– 8 and HrpB2�2–9

were detectable in the culture supernatant. No secretion was ob-
served for HrpB2�2–10 (Fig. 1B), suggesting that the N-terminal 10
amino acids are essential for secretion of HrpB2. The blots were
reprobed with antibodies specific for the periplasmic HrpB1 pro-
tein and the predicted IM ring protein HrcJ to ensure that no cell
lysis had occurred (Fig. 1A and B).

Given the essential role of HrpB2 in T3S, it cannot be excluded
that the observed lack of secretion of HrpB2 derivatives was
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caused by their inability to compensate for the loss of HrpB2 in
85*�hrpB2 and 85*�hrpB2�hpaC strains. Therefore, we investi-
gated whether HrpB2 derivatives can complement the in planta
hrpB2 mutant phenotype in leaves of susceptible and resistant
pepper plants. As expected, strain 85* induced water-soaked le-
sions in susceptible ECW plants and the HR in resistant ECW-10R
plants (Fig. 1C). The HR is a local cell death response at the infec-
tion site and is part of the plant defense response, which is acti-
vated upon recognition of individual effector proteins in plants
with a matching resistance gene (59). Pepper ECW-10R plants
contain the resistance gene Bs1 and induce the HR upon recogni-
tion of the effector protein AvrBs1 (48). In contrast to strain 85*,
no plant reactions were observed after inoculation of the hrpB2
deletion strain, as reported previously (Fig. 1C). The wild-type
phenotype was restored in the 85*�hrpB2 strain by HrpB2,
HrpB2�2– 8, and HrpB2�2–9 but not by HrpB2�2–10 (Fig. 1C). Sim-
ilar results were obtained for derivatives of the hrpG wild-type
strain 85-10 and the 85-10�hrpB2 strain (see Fig. S1 in the sup-
plemental material), suggesting that amino acids 2 to 10 of HrpB2
are essential for protein function. To confirm this finding, we
generated two additional HrpB2 deletion derivatives lacking
amino acids 2 to 11 and 2 to 20, respectively. As was observed for
HrpB2�2–10, HrpB2�2–11 and HrpB2�2–20 did not restore the wild-
type phenotype in 85*�hrpB2 (Fig. 1C) and 85-10�hrpB2 (see Fig.
S1) strains. Loss of protein function was not caused by a domi-
nant-negative effect of HrpB2 derivatives on the host-pathogen
interaction, because ectopic expression of hrpB2 deletion deriva-
tives in strain 85-10 did not alter the wild-type phenotype in
planta (see Fig. S1).

To further analyze whether the observed lack of secretion of
HrpB2�2–10 in 85*�hrpB2 and 85*�hrpB2�hpaC strains was
caused by a loss of protein function (i.e., the inability of this
HrpB2 derivative to complement the hrpB2 mutant phenotype) or
a nonfunctional T3S signal, we also performed T3S assays with
truncated HrpB2 derivatives, which were deleted in the C-termi-
nal 40 amino acids (HrpB21–90; deletion of amino acids 91 to 130).
HrpB21–90 migrated at a different molecular size than the native
HrpB2 protein and therefore could be analyzed in hrpB2 wild-type

strains (Fig. 1D). T3S assays with the 85*�hpaC strain revealed
that HrpB2 and HrpB21–90 were detectable in the culture super-
natant, suggesting that both proteins were secreted (Fig. 1D). In
contrast, secretion of HrpB21–90/�2–10 was significantly reduced,
indicating that the deletion of amino acids 2 to 10 interferes with
HrpB2 secretion (Fig. 1D). Therefore, it is possible that the ob-
served loss of protein function of HrpB2�2–10 was caused by the
absence of a functional T3S signal (Fig. 1C and as described
above).

The N-terminal 40 amino acids of HrpB2 provide a binding
site for HrcUC. We previously reported that the N-terminal 89
amino acids of HrpB2 are required for the binding of HrpB2 to
HrcUC (amino acids 265 to 357 of HrcU) (33). To investigate
whether the T3S signal of HrpB2 contributes to this interac-
tion, we performed GST pulldown assays with GST-HrpB2 de-
rivatives and a C-terminally c-Myc epitope-tagged derivative
of HrcU265–357. GST and GST-HrpB2 derivatives were immo-
bilized on glutathione Sepharose and incubated with bacterial
lysates containing HrcU265–357-c-Myc. Immunoblot analyses of
eluted proteins revealed that HrcU265–357-c-Myc coeluted with
GST-HrpB2 and a GST-HrpB2 derivative lacking amino acids 2
to 20 (GST-HrpB2�2–20) (Fig. 2A). In contrast, HrcU265–357-c-
Myc was not detected in the eluate of GST-HrpB2�2– 40 (Fig.
2A). We also observed an interaction of HrcU265–357-c-Myc
with GST-HrpB21– 40 and GST-HrpB21– 40/�2–9; however, com-
pared to GST-HrpB2, reduced amounts of HrcU265–357-c-Myc
were detected in the eluates of both fusion proteins (Fig. 2B).
Taken together, these experiments suggest that the N-terminal
40 amino acids of HrpB2 are essential and sufficient for the
interaction with HrcU265–357.

The N-terminal 40 amino acids of HrpB2 harbor a functional
translocation signal. To localize the translocation signal of
HrpB2, we analyzed fusion proteins between the N-terminal 20,
25, 30, and 40 amino acids of HrpB2 and the reporter protein
AvrBs3�2, which is an N-terminal deletion derivative of the tran-
scription activator-like (TAL) effector AvrBs3. AvrBs3�2 lacks
amino acids 2 to 152 and, thus, the secretion and translocation
signal (60). When present as a fusion partner of a functional se-
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cretion and translocation signal, AvrBs3�2 is translocated by
the T3S system and triggers the HR in AvrBs3-responsive ECW-
30R pepper plants (60, 61). HrpB21–20-AvrBs3�2, HrpB21–25-
AvrBs3�2, and HrpB21–30-AvrBs3�2 did not elicit the AvrBs3-
specific HR when analyzed in 85* and 85*�hpaC strains,
suggesting that they were not translocated (Fig. 3A). In contrast,
HrpB21– 40-AvrBs3�2 induced the HR in leaves of ECW-30R pep-
per plants when delivered by the 85*�hpaC strain but not by 85*
(Fig. 3A). This implies that the N-terminal 40 amino acids of
HrpB2 contain a functional translocation signal that targets the
AvrBs3�2 reporter for translocation in the absence of HpaC.
HrpB21– 40-AvrBs3�2 did not induce the HR when analyzed in
85*�hpaC�hrpF and 85*�hpaC�hrpE strains, which additionally
lack the translocon gene hrpF and the pilus gene hrpE, respec-
tively, and are deficient in T3S-dependent protein translocation
(Fig. 3B). All 85* strains induced the AvrBs1-specific HR when
inoculated into leaves of AvrBs1-responsive ECW-10R pepper
plants, suggesting that HrpB2-AvrBs3�2 fusion proteins did not
interfere with the activity of the T3S system (see Fig. S2 in the
supplemental material). In contrast to HrpB21– 40-AvrBs3�2,
translocation of the full-length AvrBs3 protein was not signifi-
cantly affected by the deletion of hpaC (Fig. 3B). T3S assays showed
that HrpB21–40-AvrBs3�2 was secreted by the 85*�hpaC strain but

was not detectable in the supernatant of strain 85* (Fig. 3C). No
secretion was observed for HrpB2-AvrBs3�2 fusions containing the
N-terminal 20, 25, or 30 amino acids of HrpB2 (Fig. 3C). This is in
agreement with the results of the translocation assay and suggests that
the N-terminal 30 amino acids of HrpB2 do not contain a functional
secretion and translocation signal.

To further analyze the contribution of the N-terminal region of
HrpB2 to translocation, we performed translocation assays with
HrpB21– 40/�2– 8-AvrBs3�2 and HrpB21– 40/�2–9-AvrBs3�2 fusion
proteins, which are deleted in amino acids 2 to 8 and 2 to 9 of
HrpB2, respectively. Compared with HrpB21– 40-AvrBs3�2, both
fusion proteins induced a reduced and delayed AvrBs3-specific
HR after delivery by the 85*�hpaC strain, suggesting that amino
acids 2 to 9 contribute to but are not essential for the translo-
cation of HrpB2 (Fig. 4A). Similar results were obtained with
the hrpG wild-type 85-10�hpaC strain (Fig. 4A). As expected,
HrpB21– 40/�2– 8-AvrBs3�2 and HrpB21– 40/�2–9-AvrBs3�2 were
secreted by the 85*�hpaC strain, and small amounts of both
proteins were also detected in the culture supernatant of strain
85* (see Fig. S3 in the supplemental material).

Amino acids 12 to 25 are dispensable for secretion and trans-
location of HrpB2. We also investigated the possible contribution
of internal N-terminal protein regions of HrpB2 to translocation.
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For this, we generated HrpB21– 40-AvrBs3�2 fusion proteins with
deletions of amino acids 13 to 22, 12 to 25, and 16 to 25, respec-
tively. All fusion proteins induced the AvrBs3-specific HR when
delivered by the 85*�hpaC strain (Fig. 4B). However, com-
pared to that of HrpB21– 40-AvrBs3�2, the HR induced by
HrpB21– 40/�13–22-AvrBs3�2, HrpB21– 40/�12–25-AvrBs3�2, and
HrpB21– 40/�16 –25-AvrBs3�2 was slightly reduced (Fig. 4B). To
investigate the contribution of amino acids 12 to 25 to the
secretion of HrpB2, we generated HrpB21–90 derivatives with

internal deletions. Secretion of HrpB21–90 in the 85*�hpaC
strain was not significantly affected by deletions of amino acids
13 to 22 and 16 to 25, respectively (Fig. 4C). In contrast,
HrpB21–90/�12–25 was not detectable in the culture supernatant
of the 85*�hpaC strain (Fig. 4C). However, the protein was
probably unstable because it was only present in small amounts
in the cell extract (Fig. 4C). Taken together, we conclude from
these findings that amino acids 12 to 25 contribute to but are
not essential for the secretion and translocation of HrpB2. The
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results of the secretion and translocation assays with HrpB2
derivatives and reporter fusion proteins are summarized in Ta-
bles 3 and 4.

HrpB21– 40-AvrBs3�2 is efficiently translocated by the non-
pathogenic hpaABC deletion mutant. To investigate whether the
translocation of HrpB2 is controlled not only by HpaC but also by
additional Hpa proteins, we performed translocation assays with

derivatives of strain 85* deleted in genes encoding the general T3S
chaperone HpaB or its secreted regulator, HpaA. We also gener-
ated double and triple deletion mutants lacking hpaAB, hpaAC,
and hpaABC. To investigate whether the combined deletion of
several hpa genes leads to a loss of pathogenicity, bacteria were
inoculated into leaves of susceptible ECW and resistant ECW-10R
pepper plants. In contrast to 85*, the 85*�hpaAB, 85*�hpaAC,
85*�hpaBC, and 85*�hpaABC strains did not induce visible plant
reactions, suggesting that they were not pathogenic (Fig. 5A). The
analysis of the in planta bacterial growth revealed that strain 85*
reached approximately 108 CFU cm�2 by 9 dpi, whereas growth of
85*�hpaB, 85*�hpaBC, and 85*�hpaABC strains was signifi-
cantly reduced (Fig. 5B). Given the contribution of HpaA, HpaB,
and HpaC to effector protein secretion, this suggests that
85*�hpaB, 85*�hpaBC, and 85*�hpaABC strains fail to efficiently
translocate effector proteins into plant cells.

For translocation assays, double and triple hpa deletion mu-
tants containing HrpB21– 40-AvrBs3�2 were inoculated into
leaves of AvrBs3-responsive pepper plants. Compared with the
85*�hpaC strain, 85*�hpaBC and 85*�hpaABC strains delivering
HrpB21– 40-AvrBs3�2 induced a stronger HR (Fig. 6A), suggesting
that the T3S chaperone HpaB and possibly also HpaA are involved
in the control of HrpB2 translocation. Similar findings were ob-

TABLE 3 Results of in vitro T3S assays with HrpB2 derivatives

HrpB2 derivative

Secretion in mutanta:

�hpaC �hrpB2 �hrpB2 �hpaC

HrpB2 NA � �
HrpB2�2–8 NA � �
HrpB2�2–9 NA � �
HrpB2�2–10 NA � �
HrpB21–90 � NA NA
HrpB21–90/�2–10 �/� NA NA
HrpB21–90/�12–25

b � NA NA
HrpB21–90/�13–22 � NA NA
HrpB21–90/�16–25 � NA NA
a NA, not analyzed; �, secreted; �/�, significantly reduced secretion; �, no secretion
detectable.
b Protein is unstable in cell extracts of X. campestris pv. vesicatoria.

TABLE 4 Results of translocation assays

Protein-reporter fusion

Result of translocation assaysa

wt �hpaC �hpaB �hpaBC �hpaA �hpaAC �hpaAB �hpaABC

AvrBs3 � � � � NA NA NA �

AvrBs3�2 fusion partners
HrpB21–20 � � NA NA NA NA NA NA
HrpB21–25 � � NA NA NA NA NA NA
HrpB21–30 � � NA NA NA NA NA NA
HrpB21–40

b � � � �� � � �/� ��
HrpB21–40/�2–8 � �/� NA NA NA NA NA �
HrpB21–40/�2–9 � �/� NA NA NA NA NA �
HrpB21–40/�13–22 � �/� NA NA NA NA NA NA
HrpB21–40/�12–25 � �/� NA NA NA NA NA NA
HrpB21–40/�16–25 � �/� NA NA NA NA NA NA

AvrBs1 �c NA �/�c � NA NA NA �

AvrBs1 fusion partners
HrpB21–40 �d �d �d � NA NA NA �

dTALE-2 � NA NA NA NA NA NA �/�e

dTALE-2�N � NA NA NA NA NA NA �

dTALE-2�N fusion partners
HrpB21–40 � NA NA NA NA NA NA �e

HrpB21–40/�2–9 � NA NA NA NA NA NA (�/�)
HrpB21–40/�2–10 � NA NA NA NA NA NA �

a For translocation assays, X. campestris pv. vesicatoria strain 85* and hpa deletion mutants containing effector proteins or effector fusions were inoculated at an optical density of
4 � 108 CFU ml�1 into leaves of AvrBs1- or AvrBs3-responsive pepper plants. wt, wild type. For AvrBs3 and its AvrBs3�2 fusion partners, translocation assays were performed in
AvrBs3-responsive pepper plants; for AvrBs1 and its fusion partners, translocation assays were performed in AvrBs1-responsive pepper plants; for dTALE-2 and its dTALE-2�N
fusion partners, assays were performed in gfp-transgenic N. benthamiana. Symbols for pepper plant assays: �, HR induction; ��, strong HR induction; �/�, reduced HR
induction; �, no HR induction visible; NA, not analyzed. Symbols for N. benthamiana assay (strain 85* induces a necrosis reaction in N. benthamiana): �, fluorescence; �/�, weak
fluorescence; (�/�), only a few fluorescent spots were detectable; �, no detectable fluorescence.
b HrpB21– 40-AvrBs3�2 was not translocated when analyzed in 85*�hpaC�hrpF, 85*�hpaC�hrpE, and 85*�hpaABC�hrcN strains.
c Translocation of AvrBs1-c-Myc was analyzed in 85*�avrBs1 and 85*�avrBs1�hpaB strains.
d Translocation of HrpB21– 40-AvrBs1-c-Myc was analyzed in 85*�avrBs1, 85*�avrBs1�hpaB, and 85*�avrBs1�hpaC strains.
e No fluorescence was detectable with the 85*�hpaABC�hrcN strain.
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served for the N-terminal deletion derivatives HrpB21– 40/�2– 8-
AvrBs3�2 and HrpB21– 40/�2–9-AvrBs3�2 (Fig. 6B). Translocation
of HrpB21– 40-AvrBs3�2 by the 85*�hpaABC strain was T3S de-
pendent, because the additional deletion of the ATPase-encoding
gene hrcN, which is essential for T3S, abolished HR induction
(Fig. 6C). Unexpectedly, HrpB21– 40-AvrBs3�2 also induced a
weak HR when delivered by the 85*�hpaAB strain, suggesting that
it was translocated in the presence of HpaC (Fig. 6A and D).
Secretion assays revealed that HrpB21– 40-AvrBs3�2 was detected
in the culture supernatants of 85*�hpaC, 85*�hpaBC, and
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FIG 6 HpaA and HpaB contribute to the control of HrpB2 translocation.
(A) Translocation assays with HrpB21– 40-AvrBs3�2 in double and triple
hpa deletion mutants. Strain 85* and the 85*�hpaB (�hpaB), 85*�hpaC
(�hpaC), 85*�hpaBC (�hpaBC), 85*�hpaA (�hpaA), 85*�hpaAB
(�hpaAB), 85*�hpaAC (�hpaAC) and 85*�hpaABC (�hpaABC) mutants
containing HrpB21– 40-AvrBs3�2 were inoculated at a bacterial density of
4 � 108 CFU ml�1 into leaves of AvrBs3-responsive ECW-30R pepper
plants. For the better visualization of the HR, leaves were destained in
ethanol 3 dpi. Dashed lines indicate the infiltrated areas. Phenotypes in
ECW-10R pepper plants are shown in Fig. S4 in the supplemental material.
Equal amounts of cell extracts (adjusted according to the optical density)
were analyzed by immunoblotting using an AvrBs3-specific antiserum. (B)
The N-terminal nine amino acids of HrpB2 are dispensable for transloca-
tion by the 85*�hpaABC strain. Strain 85* and the 85*�hpaC (�hpaC) and
85*�hpaABC (�hpaABC) mutants, containing HrpB2-AvrBs3�2 fusion
proteins as indicated, were inoculated into pepper plants as described for
panel A. Leaves were destained in ethanol 2 and 3 dpi. Equal amounts of cell
extracts were analyzed by immunoblotting using AvrBs3-specific antibod-
ies. (C) Translocation of HrpB21– 40-AvrBs3�2 in 85*�hpaABC mutant is
T3S dependent. Strain 85* and the 85*�hpaABC (�hpaABC) and
85*�hpaABC�hrcN (�hpaABC �hrcN) mutants containing HrpB21– 40-
AvrBs3�2 were inoculated into leaves of AvrBs3-responsive ECW-30R
plants. Leaves were destained in ethanol 3 dpi. (D) HrpB21– 40-AvrBs3�2 is
translocated in the absence of HpaA and HpaB. Strain 85* and the
85*�hpaC (�hpaC) and 85*�hpaAB (�hpaAB) mutants containing
HrpB21– 40-AvrBs3�2 were inoculated at a bacterial density of 8 � 108 CFU
ml�1 into leaves of AvrBs3-responsive ECW-30R plants. Leaves were
destained in ethanol 3 dpi.
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FIG 5 hpaABC mutants do not induce macroscopic reactions on host and
non-host plants. (A) Double and triple hpa deletion mutants do not elicit
reactions in pepper and N. benthamiana leaves. Strain 85* and the 85*�hpaB
(�hpaB), 85*�hpaBC (�hpaBC), 85*�hpaAC (�hpaAC), 85*�hpaAB
(�hpaAB), 85*�hpaABC (�hpaABC), and 85*�hrcN (�hrcN) mutants were
inoculated into leaves of susceptible ECW and AvrBs1-responsive ECW-10R
pepper plants as well as into leaves of the non-host plant N. benthamiana.
Leaves of ECW-10R plants were destained in ethanol 2 dpi. Photographs were
taken 9 dpi. Dashed lines indicate the infiltrated leaf areas. (B) In planta growth
of double and triple hpa deletion mutants in susceptible pepper plants. Strain
85* and the 85*�hpaB (�hpaB), 85*�hpaBC (�hpaBC), 85*�hpaABC
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differences from results for the wild-type strain, with a P value of 	0.05 based
on the results of an unpaired Student’s t test.
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85*�hpaABC strains, whereas secretion of HrpB21– 40-AvrBs3�2
by the 85*�hpaAB strain was not detectable (see Fig. S4 in the
supplemental material).

We also analyzed the translocation of the full-length AvrBs3
protein in hpa deletion mutants. For this, an expression construct
encoding AvrBs3 was introduced into 85*, 85*�hpaB, 85*�hpaC,
85*�hpaBC, and 85*�hpaABC strains which lack the native
avrBs3 gene. Infection assays with AvrBs3-responsive pepper
plants revealed that AvrBs3 was translocated by all strains (Fig.
7A). We did not observe significant differences in HR induction
by AvrBs3 and HrpB21– 40-AvrBs3�2 when both proteins were
delivered by 85*�hpaABC and 85-10�hpaABC strains (Fig. 7A;
also see Fig. S4 in the supplemental material). We conclude from
these observations that AvrBs3 is translocated by the hpaABC mu-
tant. This is in contrast to AvrBs1, which is not or not efficiently
translocated by the 85*�hpaABC strain (see also below).

The hpaABC mutant translocates a HrpB21– 40-AvrBs1 fu-
sion protein. We next investigated whether the HrpB2 T3S and
translocation signal can target a full-length effector protein for
translocation in the hpaABC deletion mutant. For this, we ana-
lyzed the effector protein AvrBs1, which induces the HR in
AvrBs1-responsive ECW-10R pepper plants. To monitor the
translocation of a fusion protein between the N-terminal 40
amino acids of HrpB2 and AvrBs1, we deleted the native avrBs1

gene from the genome of 85*, 85*�hpaB, and 85*�hpaC strains.
As expected, deletion of avrBs1 in strain 85* led to a loss of HR
induction in ECW-10R pepper plants (Fig. 7B). HR induction was
restored by a C-terminally c-Myc epitope-tagged derivative of
AvrBs1 (Fig. 7B). HrpB21– 40-AvrBs1-c-Myc induced the HR
in AvrBs1-responsive plants when delivered by 85*�avrBs1,
85*�avrBs1�hpaB, and 85*�avrBs1�hpaC strains, suggesting
that it was translocated (Fig. 7B). We assume that the intrinsic
effector-specific signal of AvrBs1 targets the fusion protein for
translocation in the presence of HpaC (Fig. 7B). HrpB21– 40-
AvrBs1-c-Myc also induced the HR when delivered by
85*�hpaBC and 85*�hpaABC strains, indicating that the T3S and
translocation signal of HrpB2 targets AvrBs1 for translocation in
the absence of HpaA, HpaB, and HpaC (Fig. 7B). This is in con-
trast to AvrBs1-c-Myc, which did not induce the HR and presum-
ably is not efficiently translocated in the absence of HpaA, HpaB,
and HpaC (Fig. 7B).

The N-terminal 40 amino acids of HrpB2 target a designer
TAL effector for translocation into Nicotiana benthamiana. We
also analyzed whether the HrpB2 secretion and translocation sig-
nal targets effector proteins for translocation into cells of the non-
host plant Nicotiana benthamiana. For this, we used a designer
TAL effector (dTALE-2) as the reporter protein. TAL effectors
contain a central repeat region with repeat-variable diresidues
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FIG 7 Translocation of HrpB21– 40-effector fusions by the hpaABC deletion mutant. (A) AvrBs3 is translocated by the 85*�hpaABC mutant. Strain 85* and the
85*�hpaB (�hpaB), 85*�hpaC (�hpaC), 85*�hpaBC (�hpaBC), and 85*�hpaABC (�hpaABC) mutants, containing AvrBs3 or HrpB21– 40-AvrBs3�2 as indi-
cated, were inoculated into leaves of AvrBs3-responsive ECW-30R pepper plants. For the better visualization of the HR, leaves were destained in ethanol 3 dpi.
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(RVDs), which bind to specific DNA sequences in the promoter
regions of target genes (62). dTALE-2 is a derivative of the TAL
effector AvrBs3 and contains modified RVDs, which were de-
signed to bind to the DNA target sequence 5=-TCCCCGCATAG
CTGAACAT-3= (63). As a reporter system, we used transgenic N.
benthamiana plants containing a stably integrated tobacco mosaic
virus (TMV)-based viral vector which encodes an RdRp and GFP
(50, 63). The viral vector construct was placed under the control of
the alcA promoter from Aspergillus nidulans, which requires bind-
ing of the AlcR transcriptional activator for transcription activa-
tion. In transgenic N. benthamiana plants, which lack AlcR, tran-
scription of the viral vector is induced in the presence of dTALE-2,
which binds to a sequence upstream of the TATA box of the alcA
promoter (63). The primary nuclear transcript is replicated in the
cytosol by the RdRp, which leads to the expression of gfp from a
subgenomic RNA transcript. The amplification of the viral vector
in the presence of dTALE-2 results in a high-level expression of
gfp. The resulting GFP fluorescence is locally restricted to infected
cells because the viral vector lacks coding sequences for the move-
ment and coat proteins, which are needed for cell-to-cell and sys-
temic movement (50, 63).

For translocation assays, we used dTALE-2 and a deletion de-
rivative thereof which lacks the N-terminal 64 amino acids
(dTALE-2�N). It was shown for AvrBs3 that the N-terminal re-
gion is required for secretion (42, 64) (Fig. 8A). dTALE-2, dTALE-
2�N, and dTALE-2�N fusion proteins containing amino acids 1

to 40, 10 to 40, and 11 to 40 of HrpB2, respectively, were analyzed
in X. campestris pv. vesicatoria 85* and 85*�hpaABC strains and
the 85*�hpaABC�hrcN T3S-deficient strain. The delivery of
dTALE-2 by strain 85* led to GFP fluorescence 3 dpi, suggesting
that dTALE-2 was translocated and induced the expression of gfp
(see Fig. S5 in the supplemental material). Notably, however,
strain 85* induced a necrosis in N. benthamiana leaves which in-
terfered with the GFP fluorescence (Fig. 5A; also see Fig. S5). The
induction of a necrosis reaction in N. benthamiana also was pre-
viously reported for X. campestris pv. vesicatoria strain GM98-38
(65). When delivered by the 85*�hpaABC strain, dTALE-2 in-
duced a weak and spotty GFP fluorescence 8 dpi (Fig. 8B). This
suggests that the translocation of dTALE-2 was significantly re-
duced in the 85*�hpaABC strain compared to that in strain 85*.
The 85*�hpaABC strain delivering HrpB21– 40-dTALE-2�N in-
duced a spotty and nonconfluent fluorescence 4 dpi which in-
creased in intensity at later time points, indicating that the fusion
protein was translocated. GFP fluorescence after delivery of
HrpB21– 40-dTALE-2�N by the 85*�hpaABC strain was slightly
increased compared to the GFP signal induced by dTALE-2 (Fig.
8B). Significantly reduced or no fluorescence was observed for
HrpB21– 40/�2–9-dTALE-2�N and HrpB21– 40/�2–10-dTALE-2�N
fusions (Fig. 8B; also see Fig. S5). Thus, amino acids 10 to 40 do
not efficiently target the dTALE-2�N reporter for translocation in
N. benthamiana. No GFP fluorescence was detected after inocula-
tion of the 85*�hpaABC�hrcN strain, which lacks the ATPase-
encoding gene hrcN and therefore is deficient in T3S (Fig. 8B). All
fusion proteins were detected by immunoblot analysis using an
AvrBs3-specific antiserum; however, additional degradation
products were present in all cases (see Fig. S5). Taken together, we
conclude from these data that the N-terminal 40 amino acids of
HrpB2 target dTALE-2�N for translocation into cells of the non-
host plant N. benthamiana in the absence of HpaA, HpaB, and
HpaC.

DISCUSSION

In the present study, we localized the T3S and translocation signal
of HrpB2 and analyzed its contribution to protein function and to
the interaction of HrpB2 with HrcUC. The successive introduction
of small deletions and the analysis of reporter fusion proteins re-
vealed that the secretion and translocation signal of HrpB2 is lo-
cated in the region spanning amino acids 10 to 40 (Fig. 1 and 3).
However, not all amino acids in this region appear to be essential
for the targeting of HrpB2 to the secretion apparatus, because
internal deletions between amino acids 12 to 25 did not signifi-
cantly interfere with the secretion and/or translocation of HrpB2
(Fig. 1 and 4). The N-terminal 40 amino acids of HrpB2 do not
share homology with protein regions of known T3S substrates
from X. campestris pv. vesicatoria. This is in agreement with the
observed lack of sequence conservation in T3S signals. The N-ter-
minal region of HrpB2 contains 10% leucine and 5% serine resi-
dues (compared to 6.7% leucine and 8.9% serine residues, respec-
tively, in the rest of the protein); therefore, it does not match the
criteria predicted for T3S signals, e.g., a depletion of leucine and
an enrichment of serine residues (8, 9, 66–68). Notably, however,
in the effector protein AvrPto from Pseudomonas syringae, the
functional importance of these characteristic amino acid patterns
could not be confirmed by mutational approaches, suggesting a
high variability of the T3S signal and the presence of additional
targeting patterns (12).
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The finding that amino acids 10 to 40 of HrpB2 are sufficient
for secretion and translocation of HrpB2 in the absence of HpaC
suggests that HrpB2 contains one joint secretion and transloca-
tion signal which also determines the secretion specificity, i.e., the
HpaC-mediated suppression of HrpB2 secretion and transloca-
tion. It is still unknown whether other T3S substrates from X.
campestris pv. vesicatoria contain separate secretion and translo-
cation signals and how the secretion specificity in hpaB or hpaC
mutants is determined. We have previously shown that the N-ter-
minal 50 and 200 amino acids of the putative translocon proteins
XopA and HrpF, respectively, contain translocation signals which
are suppressed by the general T3S chaperone HpaB (42). How-
ever, minimal transport signals as well as protein regions required
for the HpaB-dependent translocation of XopA and HrpF have
not yet been identified. To date, separate secretion and transloca-
tion signals have been described in effector proteins from the an-
imal-pathogenic bacterium Yersinia and the plant pathogen Er-
winia amylovora (69–72). In the case of the Yersinia effector
protein YopE, the secretion specificity is determined by the min-
imal secretion signal (73). In contrast, the N-terminal minimal
secretion and translocation signal of the translocon protein PopD
from Pseudomonas aeruginosa is not sufficient for the secretion of
PopD in the presence of calcium. It was shown that the translo-
con-specific secretion of PopD in the presence of calcium requires
additional protein regions located next to the T3S signal and the C
terminus (16). Similarly, the secretion and translocation signal in
the N-terminal 20 amino acids of translocon proteins from enter-
opathogenic E. coli is not sufficient to mediate translocon-specific
secretion in mutant strains which lack the control proteins SepD
and SepL (74–78). Therefore, it was suggested that T3S is con-
trolled by composite signals, which are involved in a multistep
recognition process (68, 74, 75). Notably, however, this model
does not appear to apply to HrpB2, suggesting that the presence of
additive export signals in T3S substrates is not a general rule.

Our complementation studies revealed that the deletion of
amino acids 2 to 9, which are dispensable for HrpB2 secretion,
does not interfere with HrpB2 function. In contrast, HrpB2�2–10,
which lacks a functional T3S signal, failed to complement the
hrpB2 mutant phenotype, suggesting that the T3S signal is essen-
tial for HrpB2 function (Fig. 1). We assume that the T3S signal of
HrpB2 is required for its recognition by components of the T3S
system and allows the subsequent entry of HrpB2 into the inner
secretion channel of the T3S system. Given the predicted role of
HrpB2 as an inner rod protein, the entry of HrpB2 into the secre-
tion apparatus presumably is required for its function. The results
of interaction studies revealed that amino acids 10 to 40 of HrpB2
are essential and sufficient for the interaction of HrpB2 with
HrcUC (Fig. 2). In agreement with the predicted role of the T3S
signal in substrate recognition, it was previously reported that the
T3S signal of the effector protein YopR from Yersinia enterocolitica
contributes to the interaction of YopR with the T3S ATPase YscN
(79). In contrast, however, in the case of the secreted filament
protein EspA from enteropathogenic E. coli (EPEC), the interac-
tion with the T3S-associated ATPase depends on the binding of
the T3S chaperone CesAB to EspA and appears to be independent
of the T3S signal of EspA (24). Similarly, our previous interaction
studies revealed that the N-terminal region of the TAL effector
AvrBs3 from X. campestris pv. vesicatoria, which contains the T3S
and translocation signal, is dispensable for the interaction of
AvrBs3 with the putative C ring component HrcQ and the IM

protein HrcV (44, 45). HrcV and HrcQ are putative docking sites
for T3S substrates, yet it cannot be excluded that additional com-
ponents of the T3S system, such as the ATPase HrcN or HrcUC,
are involved in the recognition of T3S signals. However, previous
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FIG 9 Model of the HpaC/HrcU-mediated T3S substrate specificity switch in
X. campestris pv. vesicatoria. (A) HpaA, HpaB, and HpaC control the secretion
of HrpB2, translocon, and effector proteins. During the early stages of the T3S
process, the cytoplasmic domain of HrcU is proteolytically cleaved and the
C-terminal cleavage product of HrcU (HrcUCC) interacts with the early T3S
substrate HrpB2. The interaction between HrcUCC and HrpB2 is presumably
essential for HrpB2 secretion. The secretion of HrpB2 is subsequently sup-
pressed by the T3S4 protein HpaC, which interacts with HrcUCC and HrpB2. It
is unknown whether HpaC is inactivated by an unknown protein (indicated in
gray) during the early stages of the secretion process to allow secretion of
HrpB2. HpaC presumably induces a conformational change in HrcUCC, which
might interfere with the docking of HrpB2 to HrcUCC and switches the T3S
substrate specificity from secretion of HrpB2 to the secretion of translocon and
effector proteins. The efficient secretion of effector proteins requires HpaC
and the T3S chaperone HpaB, which both interact with effectors. HpaB pre-
sumably is inactivated by binding of the control protein HpaA during the
assembly of the T3S system. Secretion of HpaA liberates HpaB and thus acti-
vates the secretion of effector proteins. IM, inner membrane. Letters refer to
conserved components of the T3S system, i.e., HrcU (U), HrcR (R), HrcS (S),
HrcT (T), HrcV (V), HrcVC (VC), HrcQ (Q), HrcN (N), and HrcL (L). The
C-terminal domain of HrcU is cleaved at a conserved NPTH amino acid motif,
resulting in the cytoplasmic HrcUCN (UCN) and HrcUCC (UCC) domains. (B)
Secretion in the hpaC deletion mutant. The absence of HpaC allows the con-
stitutive secretion of HrpB2 but interferes with the efficient secretion of
translocon and effector proteins. (C) Secretion in the hpaABC deletion mu-
tant. In the absence of HpaA, HpaB, and HpaC, only HrpB2 is efficiently
secreted and translocated. Efficient secretion of translocon and effector pro-
teins is abolished in the absence of HpaA, HpaB, and HpaC.
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interaction studies did not reveal an interaction between HrcUC

and effector proteins (38).
According to our current model, secretion of HrpB2 depends

on the recognition of the HrpB2 T3S signal by HrcUC (Fig. 9). As
described previously, a conformational change in HrcUC induced
by the T3S4 protein HpaC likely suppresses the secretion and
translocation of HrpB2 (38, 40, 41) (Fig. 9). The present study
suggests that the translocation of HrpB2 is also controlled by the
general T3S chaperone HpaB and its secreted regulator, HpaA,
which are both essential for the efficient secretion of effector pro-
teins (Fig. 6 and 7). It is possible that the reduced effector protein
secretion in the absence of HpaB and/or HpaA indirectly pro-
motes the secretion and translocation of components of the T3S
system, as was previously proposed for the translocation of the
putative translocon proteins HrpF and XopA in the hpaB deletion
mutant (42). In agreement with this hypothesis, deletion of hpaB
in the hpaC and hpaAC mutant led to significantly enhanced
translocation of HrpB21– 40-AvrBs3�2. As expected, HrpB21– 40-
AvrBs3�2 was not translocated in the hpaAC deletion mutant
because HpaB presumably blocks the T3S system in the absence of
HpaA (43 and described above). Given the observed inhibitory
influence of HpaA, HpaB, and HpaC on the translocation of
HrpB2, we performed all further translocation assays using the
nonpathogenic hpaABC triple deletion mutant. Notably, the re-
sults of the infection assays with resistant pepper plants suggest
that the hpaABC deletion mutant translocates AvrBs3 but not
AvrBs1 (Fig. 7). It remains to be investigated whether the observed
differences in the translocation of AvrBs3 and AvrBs1 are caused
by a more sensitive detection of AvrBs3 than AvrBs1 in corre-
sponding resistant plants. It was previously reported that AvrBs3
efficiently induces the resistance gene Bs3, which triggers the
AvrBs3-responsive HR (62). In future experiments, we will use
AvrBs3�2 as a reporter to investigate the translocation of addi-
tional effectors in the hpaABC deletion mutant. Furthermore, we
will also test whether AvrBs3 contains a translocation signal which
specifically promotes its translocation in the absence of HpaA,
HpaB, and HpaC.

In addition to AvrBs3�2 reporter fusion proteins, we analyzed
fusion proteins between the N-terminal 40 amino acids of HrpB2
and the effector protein AvrBs1. In contrast to AvrBs1, the
HrpB21– 40-AvrBs1 fusion protein was efficiently translocated by
the hpaABC deletion mutant (Fig. 7). This suggests that the HrpB2
signal targets AvrBs1 for translocation in the absence of HpaA,
HpaB, and HpaC. The HrpB2 T3S and translocation signal can
also be used to deliver proteins into N. benthamiana cells, as was
shown by the analysis of TAL reporter fusion proteins in the
hpaABC mutant (Fig. 8). In the field of plant pathology, protein
transport into plant cells is of special interest with regard to the
functional characterization of bacterial type III effector proteins.
Given that T3S systems of bacterial plant pathogens usually trans-
locate a large set of effectors with redundant functions, the deliv-
ery of individual effectors by bacterial strains, which are either
deprived of effectors or are deficient in the translocation of their
native effector protein repertoire, as is the case for the hpaABC
mutant, will help to elucidate effector-triggered modifications of
host cellular pathways.
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