Skip to main content
. 2016 Jan 20;17(Suppl 2):13. doi: 10.1186/s12859-015-0855-y

Table 2.

Comparison between different methods to analyse the dynamical behaviour of proteins and their inter-residue communication

COMMA Bio3D [11] GSATools [16] PyInteraph [10] PSN-ENM [20] Taylor et al. [17]
Software availability - -
Open source - -
Dependencies MDtraj, Eigen and Numpy python packages R, Muscle GNU, Scientific Library, GROMACS Python, Pymol - -
Programming language C++, Python R C Python - -
Input trajectory formats AMBER, GROMACS, NAMD, CHARMM... GROMACS (.dcd) GROMACS AMBER, GROMACS, NAMD, CHARMM... - -
Dynamical properties:
non-covalent interactions - -
inter-residue distances - - - -
secondary structures - - - - -
dynamical correlations ✓(PCA, LFA, CP) ✓(ENM-NMA, PCA) ✓(between frames) - ✓(ENM-NMA) ✓(MI)
Description levels:
residue -
secondary structure - - - - -
region/domain - -
protein
Outputs:
protein network -
communicating regions ✓(pathway- and clique-based blocks) ✓(dynamic domain, correlation network) ✓(functional fragments) - - ✓(communities)
communicating segment pairs - - - - -
functional domains - - - -
pathways -

The technical characteristics and functionalities of COMMA and of five state-of-the-art methods are reported. The PSN-ENM method [20] and the method proposed by Taylor et al. [17] are not implemented as software