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Pectobacteria are devastating plant pathogens that infect a large variety of crops, including members of the family Brassicaceae.
To infect cabbage crops, these plant pathogens need to overcome the plant’s antibacterial defense mechanisms, where isothio-
cyanates are liberated by hydrolysis of glucosinolates. Here, we found that a Pectobacterium isolate from the gut of cabbage root
fly larvae was particularly resistant to isothiocyanate and even seemed to benefit from the abundant Brassica root metabolite
2-phenylethyl isothiocyanate as a nitrogen source in an ecosystem where nitrogen is scarce. The Pectobacterium isolate harbored
a naturally occurring mobile plasmid that contained a sax operon. We hypothesized that SaxA was the enzyme responsible for
the breakdown of 2-phenylethyl isothiocyanate. Subsequently, we heterologously produced and purified the SaxA protein and
characterized the recombinant enzyme. It hydrolyzed 2-phenylethyl isothiocyanate to yield the products carbonyl sulfide and
phenylethylamine. It was also active toward another aromatic isothiocyanate but hardly toward aliphatic isothiocyanates. It be-
longs to the class B metal-dependent beta-lactamase fold protein family but was not, however, able to hydrolyze beta-lactam an-
tibiotics. We discovered that several copies of the saxA gene are widespread in full and draft Pectobacterium genomes and there-
fore hypothesize that SaxA might be a new pathogenicity factor of the genus Pectobacterium, possibly compromising food
preservation strategies using isothiocyanates.

Pectobacteria are phytopathogens that cause tuber soft rot and
blackleg (stem rot) in many horticulturally and economically

important crops during cultivation, transport, or storage. Most
Pectobacterium spp., e.g., Pectobacterium carotovorum or P. wasa-
biae, can be detrimental to many different plants, such as potato,
sugar beet, cabbage, wasabi, chicory, and Ornithogalum plants,
whereas other Pectobacterium spp., e.g., P. atrosepticum and P.
betavasulorum, have a more narrow host range of potato and sugar
beet plants, respectively (1).

Several pathogenicity factors of soft-rot-causing Pectobacte-
rium spp. have been found during the last decades (2–4). Of these,
plant cell wall-degrading enzymes produced by Pectobacterium
spp. have a large impact on the progress of the disease, as their
production leads to the degradation of invaded plant tissue (2, 3).
The production of these enzymes is dependent on cell density and
regulated by quorum sensing through N-acetylhomoserine lac-
tone (5) and intracellular regulators (6, 7). Motility and nutrient
uptake are also factors influencing phytopathogenicity (4, 8–10).
Besides these general pathogenicity factors, phytopathogens have
to overcome the toxicity of plant allelochemicals. Important alle-
lochemicals of members of the family Brassicaceae (cabbages and
mustards) are isothiocyanates that are liberated by the glucosino-
late-myrosinase defense system (11–13). The antimicrobial effect
of isothiocyanates has been mainly attributed to their reactivity
with thiol groups in proteins observed in vitro, but there is a vari-
ety of metabolic functions that have been found to be negatively
influenced by isothiocyanates in vivo (recently reviewed in refer-
ence 14). As a consequence, isothiocyanates can be used as food
preservatives to prevent microbial growth and spoilage. In micro-
organisms, general allelochemical defense systems are efflux
pumps that decrease the intracellular concentration of toxic sub-
stances. Several studies identified TolC as a pathogenicity factor
related to the extrusion of phytochemicals (4, 15, 16). TolC is an
outer membrane protein that interacts with efflux pumps of the
cytoplasmic membrane (17, 18). Although several phytochemi-

cals have been tested as substrates of Pectobacterium TolC (4, 15,
16), none of the substrates tested included isothiocyanates. In ad-
dition to this, a transposon mutagenesis study of Pseudomonas
syringae pv. tomato revealed several multidrug efflux pumps (Sax
proteins) that could be associated with TolC and be crucial for the
survival of P. syringae pv. tomato on isothiocyanate-containing
Arabidopsis extract (19). It seems that TolC, together with (mul-
tidrug) efflux pumps, may also play a role in the defense of pecto-
bacteria against isothiocyanates (14, 19). Another defense system
against isothiocyanates may be their breakdown or chemical mod-
ification. Although the antimicrobial effects of isothiocyanates
have been known for a long time, microbial isothiocyanate degra-
dation pathways have not been described so far. In light of the use
of isothiocyanates for food preservation and as antibiotic addi-
tives, a microbial enzymatic breakdown system may form the basis
of microbial resistance or detoxification. There are indications
that proteins from the Sax system identified in P. syringae pv.
tomato degrade isothiocyanates (19) and that a distinct class of
glutathione S-transferases may play a role in cyanobacteria (20,
21) and possibly in other microbes (14, 22).

In this study, we investigated a SaxA protein encoded by a
plasmid found in a Pectobacterium isolate from the cabbage root
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fly larval gut microbiome (23). It belongs to the metallo-beta-
lactamase family but is not active toward beta-lactam antibiotics.
Instead, it efficiently catalyzed the hydrolysis of aromatic isothio-
cyanates and pectobacteria could take advantage of the liberated
nitrogen compounds for metabolism and growth. We found that
the saxA gene is widespread in many Pectobacterium genomes,
sometimes even in up to three distinct copies per genome. In the
light of phytopathogenicity, the Pectobacterium saxA gene may be
an additional pathogenicity factor when Pectobacterium infects
Brassica plants that are the natural sources of isothiocyanates.

MATERIALS AND METHODS
Bacterial strains and vectors. Pectobacterium strain CW-5 was isolated
from the cabbage root fly larval gut (23). The same source was used to
obtain the saxA gene encoding the protein used in this study.

Growth characterization. Pectobacterium strain CW-5 was grown in
100 ml of minimal medium (45 mM Na2HPO4, 22 mM KH2PO4, 8.5 mM
NaCl, 1 mM MgSO4, 1 �M FeSO4, 100 �M CaCl2, 200 �l/liter vitamin
solution [DSM medium 141, http://www.dsmz.de/microorganisms
/medium/pdf/DSMZ_Medium141.pdf], 1 ml/liter trace element solution
[24], 0.2% glucose, pH 7.0) with 1 mM NH4Cl or 1 mM 2-phenylethyl
isothiocyanate as a nitrogen source. Optical density at 600 nm was deter-
mined in plastic cuvettes with a 1-cm light path.

Production and characterization of recombinant SaxA. SaxA was
produced in Escherichia coli BL21 Star (Life Technologies, Bleiswijk, The
Netherlands) with the pASK-saxA vector (23), which was derived from
the pASK-IBA3(�) vector (IBA, Goettingen, Germany). The recombi-
nant protein was C terminally fused to Strep-tag and produced in 200 ml
of maximal induction medium (25) (32 g liter�1 tryptone, 20 g liter�1

yeast extract) containing 1� M9 salts, 100 �M CaCl2, 1 mM MgSO4, 1
�M FeNH4 citrate, and 100 �M ZnSO4. The cells were grown to an
optical density at 600 nm of 0.5, after which protein production was
induced with 200 ng ml�1 anhydrotetracycline. After cell harvesting
(6,000 � g, 15 min), cells were disrupted by suspension in CelLytic B
(Sigma-Aldrich) according to the manufacturer’s instructions. After
centrifugation (15,000 � g, 15 min, 4°C), cell extract was applied to a
1-ml Strep-Tactin affinity chromatography column (IBA, Goettingen,
Germany). Affinity chromatography was done in accordance with the
manufacturer’s instructions by using Tris-HCl buffer (100 mM Tris, 150
mM NaCl, pH 8). Protein content was determined with the Bradford assay
(26), and protein-containing elution fractions were pooled.

Polyacrylamide gel electrophoresis (PAGE) was performed with a Cri-
terion TGX 4 to 15% polyacrylamide gel (Bio-Rad, Veenendaal, The
Netherlands) with SDS-Tris-glycine buffer according to the manufactur-
er’s instructions. Protein samples of 5 �g of were applied to the gel, which
was subsequently visualized by silver staining (27). Western blot analysis
was performed with antibodies directed against Strep-tag (IBA, Göttin-
gen, Germany). The recombinant SaxA protein was visualized by the re-
action of horseradish peroxidase conjugated directly to the antibody with
4-chloro-1-naphthol and H2O2 as described by the manufacturer (IBA,
Göttingen, Germany).

Enzyme assays. Enzyme activity was determined in a discontinuous
assay in a 5-ml reaction mixture that contained KP buffer (40 mM
KH2PO4-K2HPO4, pH 7.0), 100 �M substrate (diluted in dimethyl sul-
foxide [DMSO]), and 7.5 �g of SaxA at 20°C. At various time points
within 30 min, 500-�l samples were taken from the reaction mixture and
isothiocyanates were directly extracted with 100 �l of dichloromethane.
One microliter of the dichloromethane sample was injected into an Inter-
science TRACE gas chromatograph (GC) 2000 (Interscience, Breda, The
Netherlands) that contained an HP-5ms capillary column (30-m length,
0.25-mm inside diameter [ID], 0.25 �m; Agilent Technologies, Middel-
burg, The Netherlands) and an AL3000 autoinjector. This GC was con-
nected to a Thermo Finnigan (Polaris Q) ion trap mass spectrometer
(Interscience, Breda, The Netherlands). The gas chromatography condi-
tions used for isothiocyanate analyses were 50°C for 1 min, followed by a

temperature gradient of 50°C/min to 250°C for 1 min. The split ratio was
1:20. Peaks were integrated, and DMSO was used as an internal standard
to quantify isothiocyanates. Control reactions without enzyme were per-
formed for every enzyme assay to correct for the non-enzyme-mediated
volatility or reactivity of the substrate.

Degradation of the beta-lactam antibiotics ampicillin and cefotaxime
was assayed by high-performance liquid chromatography (HPLC; Agilent
1100; Agilent, Amstelveen, The Netherlands) with a Merck Lichrocart
250-4 RP-18 (5 �m) column. One milliliter of KP buffer containing 1 mM
ampicillin or cefotaxime and 10 �g of SaxA was incubated at 15°C in an
HPLC reaction vial, and every 7.2 min, a 10-�l sample was injected into
the HPLC column. An isocratic mixture of 0.05 M KH2PO4 (pH 4.0) and
acetonitrile (50:50) was used for elution. Peaks were detected with a pho-
todiode array detector with 360 nm as the integration wavelength. A con-
trol sample without SaxA was measured to ensure the stability of the
antibiotics under the conditions used.

Breakdown product analysis. For the analysis of carbonyl sulfide
(COS) production, the enzyme assay was performed with a rubber-stop-
pered 15-ml serum bottle as described for enzyme assays. The solution
was stirred with a Micro Stir Bar at 400 rpm at room temperature. Samples
were taken for 2 min every 11.5 min with a solid-phase microextraction
(SPME) fiber (100-�m polydimethylsiloxane, fused silica 24-gauge nee-
dle; Sigma-Aldrich, Bellefonte, PA, USA). Immediately after sampling, the
fiber was desorbed in the GC injection port (250°C) and analyzed by gas
chromatography coupled to a high-resolution mass spectrometer (JEOL
AccuTOF-GCv JMS-100GCv equipped with an Agilent 7890A GC that
contains an HP-5ms column [30 m by 0.25 mm, 0.25 �m]). The gas
chromatography program was set to 50°C for 1.5 min, followed by a tem-
perature gradient of 50°C/min to 300°C for 1 min; a split ratio of 1:10 was
used. Peaks were detected by using the total ion current (TIC) and a
selected ion trace with a mass range of m/z 59.85 to 60.15 for the determi-
nation of COS. Quantification was performed with comparison to a cali-
bration curve based on a COS standard (�96%; Aldrich). As other vola-
tiles (e.g., isothiocyanate) in the reaction mixture may interfere with
adsorption of COS to the SPME fiber, which would not be the case for
measurement of the calibration curve, this method should be regarded as
semiquantitative and likely overestimates the amount of COS in the reac-
tion mixture (28). The other expected reaction product was phenylethyl-
amine. Below a pH of 9.83 (pKa of phenylethylamine), the compound is
protonated and cannot be extracted with dichloromethane from water.
For this reason, the pH of 1 ml of the sample mixture (assay performed
according to the enzyme assay procedure) was adjusted with 10 �l of 10 M
sodium hydroxide to adjust the pH to �10; this was followed by extrac-
tion with 100 �l of dichloromethane. A 1-�l volume of the dichlorometh-
ane phase was analyzed by high-resolution gas chromatography-mass
spectrometry (50°C for 1.5 min, followed by a temperature gradient of
50°C/min to 300°C for 1 min; split ratio of 1:10; detector voltage of 2,000
V). Peaks were detected by TIC and a selected ion trace with a mass range
of m/z 56.00 to 56.10 for the determination of phenylethylamine. As a
standard, a phenylethylamine sample (Fluka) was analyzed by high-reso-
lution gas chromatography-mass spectrometry under the same condi-
tions as the dichloromethane phase from the enzyme sample.

Genome analyses. For the investigation of the presence or absence of
the saxA gene in fully sequenced genomes of the Pectobacterium clade, we
used the genome sequences that were available in the Kyoto Encyclopedia
of Genes and Genomes (http://www.genome.jp/kegg/) to look for ortho-
logues. At the time of the analysis (June 2015), this comprised eight ge-
nomes (eca, patr, pato, pct, pcc, pcv, pwa, and pec).

To determine the distribution of the saxA gene in draft genome se-
quences of members of the Pectobacterium clade, the Drgb-derived SaxA
protein (Drgb-SaxA, Delia radicum gut bacteria) sequence (GenBank ac-
cession number ALG88671) was used as a query in a BLASTp search of
NCBI (http://www.ncbi.nlm.nih.gov/, June 2015) that targeted only the
genus Pectobacterium (taxid:122277). Those hits with high bit scores
(�250) and E values of �1.0 � e�50 were considered further in the anal-
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ysis. The protein sequences were extracted and compared by multiple-
sequence alignment (http://www.ebi.ac.uk/Tools/msa/clustalo/). Using
this information, a phylogenetic tree was calculated with MEGA6 (29).

RESULTS AND DISCUSSION

In this study, we investigated a new mechanism for the phyto-
pathogen Pectobacterium to overcome the toxicity of isothiocya-
nates. We showed previously that a Pectobacterium isolate from
the gut of cabbage root fly larvae (Delia radicum L.) feeding on
kohlrabi and rutabaga, two Brassica crops, contained a plasmid
encoding a SaxA protein (23). The present study aimed at charac-
terizing the Pectobacterium SaxA protein with respect to the break-
down of the toxic isothiocyanate and highlights an important
additional function, the provision of ammonium in nitrogen-de-
prived ecosystems.

Pectobacterium strain CW-5 uses isothiocyanate as a nitro-
gen source. Cabbage roots have a more woody structure than
other annual plants, with a high lignin content and a very low N/C
ratio (30) that makes nitrogen scarce for cabbage root-feeding
insects and phytopathogenic root bacteria. As the cabbage root fly
larvae from which the Pectobacterium strain CW-5 isolate investi-
gated here was obtained were fed on cabbage roots, Pectobacte-
rium strain CW-5 likely also experienced nitrogen limitation.
Therefore, we investigated whether additional nitrogen could be
assimilated from nitrogen-containing isothiocyanates. We per-
formed growth experiments with minimal medium containing 1
mM NH4

�, 1 mM 2-phenylethyl isothiocyanate, and both com-
pounds as a combined nitrogen source (Fig. 1). It appeared that
both NH4

� and 2-phenylethyl isothiocyanate served equally well
as nitrogen sources, leading to the same amount of biomass, as
measured by determining the final optical density. The growth
rate was higher in the NH4

� cultures. When both nitrogen sources
were combined, the final optical density was twice as high. This
illustrates that 2-phenylethyl isothiocyanate could indeed be used
as a nitrogen source, either independently or together with other
nitrogen sources like ammonium. 2-Phenylethyl isothiocyanate
was not used as carbon or energy source.

To elucidate how nitrogen was released from 2-phenylethyl

isothiocyanate, we envisioned different intermediates of 2-phe-
nylethyl isothiocyanate breakdown that may yield NH4

� as a
by-product (Fig. 2). When we compared the growth of Pecto-
bacterium strain CW-5 with the two potential intermediates of 2-
phenylethyl isothiocyanate breakdown—phenylethylamine and
thiocyanate—as nitrogen sources, it became apparent that 2-phe-
nylethyl isothiocyanate and phenylethylamine could be used
equally well as nitrogen sources, whereas thiocyanate did not sup-
port growth. There are two pathways described for the breakdown
of phenylethylamine, one that is oxygen dependent using an oxi-
dase and one that uses an oxygen-independent dehydrogenase.
We found that growth with phenylethylamine as a nitrogen source
was dependent on the presence of oxygen, whereas anaerobic
growth on the same medium with ammonium as a nitrogen
source was also possible. We concluded that the release of nitro-
gen, probably in the form of ammonium, was dependent on the
action of phenylethylamine oxidase (31).

Drgb-SaxA catalyzes the hydrolysis of aromatic isothiocya-
nates. The SaxA protein that was investigated in this study was
obtained from a Pectobacterium strain isolated from the D. radi-
cum gut (23). Here, we purified and characterized this protein.
The Strep-tag-fused protein appeared as a single band with an
approximate molecular mass of 30 kDa on an SDS-polyacryl-
amide gel after silver staining. The identity of the protein was
confirmed by Western blotting with an antibody directed against
Strep-tag. The protein could be purified from the E. coli culture in
high yields (2 to 5 mg/100-ml culture volume). The activity of the
enzyme was recorded in a discontinuous assay after extraction of
the isothiocyanates with dichloromethane and measurement of
the isothiocyanate content by gas chromatography coupled to
mass spectrometry (Fig. 3A). Enzyme assays were performed with
2-phenylethyl isothiocyanate, which is one of the main root vola-
tiles of Brassica plants (32). The temperature optimum was found
at 40°C with 4.4 U mg�1 (Fig. 3B), whereas at 50°C, enzyme ac-
tivity was essentially inactivated. Pectobacteria infect crops at a
variety of temperatures (stored versus field crops), so it is note-
worthy that the temperature spectrum at which Drgb-SaxA is ac-
tive is relatively broad and reasonable activity can still be detected
at only 10°C with about 1.0 U mg�1. When we tested other plant
volatiles as substrates (Table 1), it became apparent that the aro-
matic benzyl isothiocyanate was also a substrate for the Drgb-
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SaxA protein. In contrast, Drgb-SaxA was hardly active toward the
aliphatic allyl and ethyl isothiocyanates. Cinnamic acid is a wide-
spread plant secondary metabolite not limited to Brassica plants
that has an aromatic ring structure and an activated carbon atom

in an aliphatic side chain, similar to 2-phenylethyl isothiocyanate.
We found that it was not hydrolyzed by the Drgb-SaxA protein. As
SaxA belongs to the metallo-beta-lactamase fold enzyme class, we
also determined whether it can hydrolyze beta-lactam antibiotics.

TABLE 1 Substrates tested with the recombinant Drgb-SaxA enzyme
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FIG 3 Biochemical characterization of the recombinant Drgb-SaxA enzyme. (A) Discontinuous enzyme activity measurement (�) and control without enzyme
(�). The assay mixture contained 5 ml of buffer (40 mM K2HPO4-KH2PO4, pH 7.0), 7.5 �g of Drgb-SaxA, and 100 �M 2-phenylethyl isothiocyanate
(2-PE-ITC), and the assay was performed at 20°C. (B) Temperature dependence of Drgb-SaxA enzyme activity. The highest activity was found at a temperature
of 40°C.
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Neither ampicillin (of the penicillin class) nor cefotaxime (of the
cephalosporin class) was hydrolyzed (Table 1).

Drgb-SaxA hydrolyzes 2-phenylethyl isothiocyanate to COS
and phenylethylamine. The in vivo assays with Pectobacterium
strain CW-5 indicated that SaxA hydrolyzes the N	C double
bond of the RON	C	S moiety of 2-phenylethyl isothiocyanate
(Fig. 2). Therefore, in vitro assays with Drgb-SaxA and 2-phenyl-
ethyl isothiocyanate as the substrate should yield the breakdown
products COS and phenylethylamine. We were able to identify
COS in nearly stoichiometric amounts. Phenylethylamine was
identified unambiguously on a qualitative scale. Enzymatic assays
were run until the endpoint of 30 min until all of the 2-phenylethyl
isothiocyanate was converted and breakdown products were ana-
lyzed. For the measurement of COS, an SPME fiber was exposed to
the closed headspace of the enzyme assay to adsorb gaseous com-
pounds. The fiber was subsequently injected into the GC coupled
to a high-resolution mass spectrometer, where adsorbed sub-
stances were liberated. A clear peak was observed at 1.2 min with
an accurate mass of 59.9673 mass units that matched well the
monoisotopic expected mass of COS (59.9669 mass units).
The difference in measured mass (0.0003 mass unit) is within the
range of the specified inaccuracy of the instrument (0.0020 mass
unit). Furthermore, a molecule isotope peak of 34S was visible at
the expected abundance in the spectrum that confirmed the pres-
ence of sulfur. COS was the only molecule we found that explains
the above-mentioned measurements. After a COS calibration
curve was recorded by the same semiquantitative method, we
found that 135% of the substrate 2-phenylethyl isothiocyanate
was converted to COS, indicating that all of the substrate was
converted to COS in a 1:1 stoichiometry. Without enzyme, no
COS production was observed. The second breakdown product,
phenylethylamine, was detected by extraction with dichlorometh-
ane, followed by high-resolution gas chromatography coupled to
mass spectrometry. During the analysis of the sample, a peak was

detected with the same retention time (6.3 min) as the phenyleth-
ylamine standard and an identical mass spectrum. This peak had a
measured accurate mass of 121.0903 mass units that differed by
only 0.0012 mass unit from the calculated monoisotopic mass
(121.0891 mass units). During an enzyme assay with SaxA, the
respective phenylethylamine peak increased while the 2-phenyl-
ethyl isothiocyanate peak decreased, which strongly suggests that
phenylethylamine is the reaction product of 2-phenylethyl iso-
thiocyanate hydrolysis. We also investigated whether thiocyanate
would be formed in any of our fractions, but that compound
could not be detected. Therefore, we established that 2-phenyl-
ethyl isothiocyanate is hydrolyzed to phenylethylamine and COS.

Drgb-SaxA is the first member of the new class of isothiocya-
nate hydrolases for which an enzymatic activity has been experi-
mentally demonstrated. Therefore, comparison to other isothio-
cyanate hydrolases is not yet possible. As Drgb-SaxA contained a
metallo-beta-lactamase fold, we compared its catalytic activity to
that of related enzymes in the same superfamily. The most closely
related enzymes were the beta-lactamases of Shigella flexneri and
Serratia marcescens, which catalyzed the hydrolysis of the beta-
lactam antibiotic imipenem at 14.1 and 61.0 U mg protein�1,
respectively (33, 34). These specific activity values are about 10-
fold higher than the specific activities that we have found for
Drgb-SaxA. More distant beta-lactamases, however, exhibit con-
siderably higher specific activity (e.g., 272 U mg protein�1 re-
ported in reference 35), highlighting that catalytic parameters
within the enzyme superfamily are not directly comparable.

SaxA may compromise isothiocyanate-utilizing food preser-
vation strategies. Allyl isothiocyanate has been tested as a preser-
vative for a wide variety of foods, including water (36), spinach
leaves (37), cherry tomatoes (38), fresh cut onions (39), canta-
loupe (40), kimchi (41), bread (42), chicken meat (43, 44), catfish
(45), and ham (46). The application of allyl isothiocyanate is usu-
ally via microencapsulation into different matrices to trap the

TABLE 2 Analysis of full and draft Pectobacterium genome sequences for the presence of SaxA-encoding genes, including
isolation sites and geographic locations
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strong odor of allyl isothiocyanate. Other isothiocyanates, includ-
ing benzyl isothiocyanate and 2-phenylethyl isothiocyanate, have
been proposed for use as food preservatives because of their strong
growth inhibition of various pathogenic bacteria (47–50) but have
not yet been tested as single compounds in food preservation.
Because of their antimicrobial effect, isothiocyanates could also be
used as synergists with antibiotics, lowering the doses of conven-
tionally used antibiotics (51–53). Here we show that Drgb-SaxA
hydrolyzes isothiocyanates in vitro and in vivo and may therefore
be regarded as a potential resistance protein compromising the
use of isothiocyanates in food preservation and as synergists for
antibiotics.

Comparative genome analysis of pectobacteria for saxA
genes. Pectobacteria are important phytopathogens with many
representatives whose genomes have been sequenced. In a first
step to analyze the occurrence of the saxA gene, we compared
Pectobacterium spp. whose genomes have been fully sequenced
with an available isolation source for the presence of saxA genes.
We observed that all of the isolates that were cultivated from Bras-
sica and wasabi plants contained saxA genes, whereas only part of
the strains isolated from potato (Solanum tuberosum) plants con-
tained a saxA gene in their genomes. In a second step, we investi-

gated the distribution of saxA genes in draft genome sequences of
pectobacteria. Draft genome sequences lacking a saxA gene were
not included in the analysis; rather, we focused on those genomes
that contained one or more copies of the saxA gene. It became
apparent that P. wasabiae strains isolated from wasabi (Eutrema
wasabi) plants contained three copies of the saxA gene in their
genomes (Table 2) whose corresponding protein sequences were
remarkably distinct from each other (Fig. 4). At the same time,
three distinct saxA copies was also the maximum number that we
found in a single Pectobacterium genome. The first and second
saxA copies occurred individually or in combination in other draft
genomes, whereas the third copy seems to be unique to the P.
wasabiae clade, as it was not present in any of the other genomes
investigated. Regarding the distribution of the first two copies, we
found that P. carotovorum subsp. carotovorum strains contained
either one or both of the two copies in their genomes and were
isolated predominantly from Brassica rapa. All of the draft ge-
nome sequences of P. carotovorum subsp. brasiliense and P. atro-
septicum investigated contained only the first copy of the saxA
gene. When the three different copies were compared on the
amino acid level, it became apparent that there was a remarkable
difference between the second copy and the other two. All of the
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FIG 4 Neighbor-joining tree of SaxA homologues found in full and draft Pectobacterium genome sequences. Amino acid sequences were aligned with Clustal
Omega, and phylogenetic trees were calculated in MEGA6 (29) by using 500 bootstrap replicates. Analysis of the data set by the maximum-likelihood method
resulted in the same tree topology. The values on the branches are the percentages of replicate trees in which the associated taxa clustered together in the bootstrap
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proteins that were encoded by the second copy contained a signal
peptide for periplasmic translocation of the SaxA protein, whereas
the other two copies encoded cytoplasmic enzymes, which is un-
usual for metallo-beta-lactamase class proteins. All of the copies
contain conserved amino acids for the binding of two zinc ions
(His67, His69, Asp71, His72, His128). The overall sequence iden-
tity of all of the amino acid sequences investigated was as low as
31%. The closely related class B beta-lactamases also show weak
sequence similarity and therefore great structural variety. At the
same time, they often exhibit similar catalytic behavior (54),
which is why we think that their low overall amino acid conserva-
tion does not contradict a similar substrate range for the SaxA
enzymes. The sequence identity within the different copy groups
was high: the proteins derived from copy one were 83% identical
to each other, and those from copy two were 66% identical to each
other, excluding the signal peptide, which was functionally but
not structurally conserved (16% identity). Only one sequence of
copy three was available. These results demonstrate that the saxA
gene is widespread in phytopathogenic pectobacteria, specifically,
in those strains that were isolated from Brassica or wasabi vegeta-
bles. This analysis cannot reveal the possible roles or substrates
of the different enzyme groups, which await further biochemical
studies.
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