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It is clear that the candidate gene × environment (cG×E) interaction literature has proved 

controversial, perhaps nowhere more so than in relation to the putative moderating effect of 

5-HTTLPR genotype on the association between exposure to stressful life events and the 

subsequent development of major depressive disorder. Tabery [1] argues that much of this 

controversy can be traced to the distinct scientific traditions of, on the one hand, identifying 

genetic and environmental sources of variance (after Fisher) and, on the other hand, 

understanding biological mechanisms (after Hogben). There is certainly some truth in this, 

reflected in a number of reviews and commentaries from either side of this epistemological 

divide. However, an alternative (or additional) perspective is that the approaches that Tabery 

characterizes as exemplifying these two traditions – genomewide association studies 

(GWAS) for variance partitioning and candidate gene studies for mechanism elucidation – 

differ fundamentally in evidential value, in other words their ability to produce robust, 

reproducible findings.

It is now generally accepted that candidate gene studies have produced very few 

reproducible findings, for two main reasons. First, the sample sizes used were simply too 

small to detect the very small effects that we now know to expect in relation to common 

genetic variation [2]. The resultant low statistical power meant that most claimed 

associations very either false, or at the very least reflected grossly over-estimated any true 

associations [3, 4]. Second, candidate gene studies were predicated on the known (or 

presumed) neurobiology of the phenotype of interest. In some cases, this approach was 

successful; for example, reduced or null activity variants in genes encoding drug 

metabolizing enzymes (e.g., CYP2A6 for nicotine and ALDH2 for alcohol) appear to have 

relatively strong effects on the corresponding drug consumption behaviours [5]. However, in 

many cases it seems our knowledge was incomplete – many loci identified by subsequent 

GWAS are located within genes that were not prominent candidate genes. This same basic 

conclusion appears to hold regardless of whether the phenotypes investigated are diagnostic 

categories or mechanistic intermediate phenotypes [6, 7].
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The reasons for the demonstrable superiority of GWAS over candidate gene studies as a 

means of identifying common genetic variants associated with complex behavioural and 

disease phenotypes are themselves interesting. The combination of a profound multiple 

testing burden (given the very large number of variants simultaneously tested within 

GWAS), growing awareness that the effects associated with common variants would be very 

small, and the poor reproducibility of many of the claimed associations reported in the 

candidate gene literature necessitated an important cultural change, from research conducted 

in individual laboratories to research conducted collaboratively across large, international 

consortia. Applying a common, hypothesis-free analytical approach across multiple studies 

(thereby achieving large sample sizes and adequate statistical power), and meta-analysing 

and reporting all results (thereby protecting against publication bias), provides a relatively 

unbiased source of information, in stark contrast to the output of candidate gene studies [8]. 

As a result, GWAS has been remarkably successful in identifying common genetic variants 

associated with a range of complex disease and behavioural phenotypes.

Of course, the success of GWAS in identifying genetic main effects does not mean that 

genetic influences do not moderate the impact of environmental exposures – on the contrary, 

the interplay of genetic and environmental influences is likely to be common. A trivial 

example is cigarette smoking – a genetic influence on heaviness of smoking can only be 

expressed if one becomes a smoker in the first place (i.e., is exposed to smoking). What is at 

issue is whether the current evidence for specific cG×E effects is sufficiently robust – in 

other words has the cG×E literature fared any better than the wider candidate gene 

literature? The principal argument of those critical of the cG×E literature is simply that it 

does not, and instead recapitulates many of the limitations of the wider candidate gene 

literature. Sample sizes are for the most part too small to detect credible effects, while the 

background testing of multiple genotypes, environmental exposures and their interactions, 

with only selected effects (typically those that achieve P < 0.05) ultimately being reported, 

leads to strong publication bias [9].

Those critical of the cG×E literature argue that it has followed the same trajectory as the 

wider candidate gene literature: initial promise and excitement, followed by numerous 

failures to replicate key findings and a growing appreciation that putative findings generated 

by this literature are simply not robust. Special pleading – that large studies bring inadequate 

phenotypic characterization, for example, or that that the effects observed may be specific to 

certain populations – is common, again similarly to wider the candidate gene literature, but 

rarely empirically justified [10]. In other words, it is not yet able to provide useful insights, 

either in terms of population risk or in terms of mechanism. Fundamentally, we need to 

know whether cG×E effects hold robustly at the population level, since all cG×E results 

reported to date apply inferential statistics designed to investigate group-level effects [11]. It 

may be that most cG×E effects are in fact so unique, idiosyncratic and multi-factorial as to 

essentially be stochastic, and therefore simply not amenable to analysis within this 

framework. However, if this is the case then many cG×E effects will remain essentially 

unknowable, at least with the statistical tools currently available to us [11]. Reducing the 

debate to one between, on the one hand statisticians, and on the other biologists, neglects the 

fact that the latter still ultimately rely on Fisher’s venerable P-value in order to draw 

inferences.
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If the evidence for specific cG×E effects is weak, why does the belief in them persist? One 

explanation is that those critical of the relevant literature are simply mistaken. Another (as 

argued by Tabery) is that these differing interpretations reflect different methodological 

traditions. However, belief in a particular literature may depend on factors beyond the 

evidence itself. For example, authors of studies that report evidence in favour of a particular 

phenomenon are more likely to believe that an ambiguous meta-analysis supports their 

conclusions, compared with methodologists (who, presumably, are more impartial) [12]. 

Selective citation of studies that support a phenomenon, compared to studies that do not, can 

also give a distorted impression of the strength of evidence for that phenomenon [13]. There 

is an extensive literature on the distorting impact of financial vested interests on scientific 

findings, but less attention has been paid to the role of confirmation bias and other 

psychological factors in science. We are understandably reluctant to retreat from our 

publicly-stated positions, and interpret ambiguous evidence in a way that supports our 

preconceived beliefs, often unconsciously. It is therefore unsurprising that the debate around 

the cG×E literature has become so polarized, since this process is presumably operating on 

both sides of the epistemological divide described by Tabery.

What hope is there for cG×E research? Here, the answer is simple – our candidates should 

generally be identified via GWAS, rather than via our existing understanding of the relevant 

biology. Only under very specific circumstances would a G×E effect be present in the 

absence of a detectable main effect of genotype [14]. Loci identified via GWAS can then be 

pursued further, to both explore underlying mechanisms and elucidate the population health 

impact of genetic and environmental risk factors. This approach has been successfully 

applied to FTO in the context of physical activity and obesity risk [15], and recently 

extended to include multiple loci combined in a genetic risk score [16]. G×E effects that 

hold at the population level may be rare or very small [17], but the message is clear – we 

will not reliably identify them through the a priori selection of candidate genes for 

investigation. However, even here, we will need to be wary of issues such as the scale-

dependence of interaction effects [14], simply because effects that can appear or disappears 

as a function of the statistical model employed are ultimately likely to be uninteresting. We 

therefore need to be wary of G×E research that is informed by GWAS but nevertheless 

recapitulates many of the other problems that beset the cG×E literature.
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