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Abstract
Mitochondria are key players in the generation and regulation of cellular bioenergetics, producing the majority of adenosine
triphosphate molecules by the oxidative phosphorylation system (OXPHOS). Linked to numerous signaling pathways and
cellular functions, mitochondria, and OXPHOS in particular, are involved in neuronal development, connectivity, plasticity,
and differentiation. Impairments in a variety of mitochondrial functions have been described in different general and psychiatric
disorders, including schizophrenia (SCZ), a severe, chronic, debilitating illness that heavily affects the lives of patients and their
families. This article reviews findings emphasizing the role of OXPHOS in the pathophysiology of SCZ. Evidence accumulated
during the past few decades from imaging, transcriptomic, proteomic, and metabolomic studies points at OXPHOS deficit
involvement in SCZ. Abnormalities have been reported in high-energy phosphates generated by the OXPHOS, in the activity
of its complexes and gene expression, primarily of complex I (CoI). In addition, cellular signaling such as cAMP/protein kinase A
(PKA) and Caþ2, neuronal development, connectivity, and plasticity have been linked to OXPHOS function and are reported
to be impaired in SCZ. Finally, CoI has been shown as a site of interaction for both dopamine (DA) and antipsychotic drugs,
further substantiating its role in the pathology of SCZ. Understanding the role of mitochondria and the OXPHOS in particular
may encourage new insights into the pathophysiology and etiology of this debilitating disorder.

Abrégé
Les mitochondries sont un acteur clé dans la génération et la régulation de la bioénergétique cellulaire, produisant la majorité
des molécules ATP par le système de phosphorylation oxydative (OXPHOS). Liées à de nombreuses voies de signalisation et
fonctions cellulaires, les mitochondries, et OXPHOS en particulier, sont impliqués dans le développement neuronal, la
connectivité, la plasticité et la différenciation. Des déficiences d’une variété de fonctions mitochondriales ont été décrites dans
différents troubles généraux et psychiatriques, dont la schizophrénie (SCZ), une maladie grave, chronique et débilitante qui
affecte lourdement la vie des patients et de leur famille. Cet article passe en revue les résultats mettant l’accent sur le rôle
d’OXPHOS dans la pathophysiologie de la SCZ. Les données probantes accumulées au cours des récentes décennies dans des
études d’imagerie, transcriptomiques, protéomiques et métabolomiques dénoncent la participation du déficit d’OXPHOS à la
SCZ. Des anomalies ont été signalées dans les phosphates à haute énergie produits par le système OXPHOS, dans l’activité de
ses complexes et de son expression génétique, principalement du complexe I (CoI). En outre, la signalisation cellulaire, comme
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cAMP/PKA et Caþ2, le développement neuronal, la connectivité et la plasticité ont été liés à la fonction OXPHOS et sont
déclarés déficients dans la SCZ. Finalement, CoI s’est avéré être un site d’interaction pour la dopamine (DA) et les anti-
psychotiques, ce qui étaye encore son rôle dans la pathologie de la SCZ. Comprendre le rôle des mitochondries et
d’OXPHOS en particulier peut susciter de nouvelles idées pour la pathophysiologie et l’étiologie de ce trouble débilitant.

Keywords
mitochondria, oxidative phosphorylation system, complex I, Schizophrenia, cAMP/PKA and Caþ2 signaling, neurodevelopment
and plasticity, dopamine

Brain development, neuronal plasticity, and synapse connec-

tivity are highly complex processes, related to various brain

functions such as learning, memory, emotions, cognition,

and sensorimotor function. These core processes facilitate

the brain’s constant interaction with and adaption to the

environment and are highly dependent on continuous oxygen

supply.1,2 The latter is evident by high energetic demands

and oxygen uptake of the brain, roughly 20% of total body

consumption while only about 2% of body’s weight.3 Energy

in the form of adenosine triphosphate (ATP) is generated

mainly in mitochondria by the oxidative phosphorylation

(OXPHOS) process, in which electrons produced by the

citric acid cycle are transferred down the mitochondrial

respiratory complexes. Mitochondria and the OXPHOS are

not only responsible for production of high-energy phos-

phates, such as ATP and phosphocreatine, but are also

involved in a variety of cellular processes, including calcium

homeostasis, cAMP/protein kinase A (PKA) signaling,

inflammation, reactive oxygen species (ROS) production,

and apoptosis.4-9 Therefore, it is not surprising that multi-

faceted OXPHOS dysfunctions, originating from both

genetic (maternal, or mendelian inheritance) and environ-

mental influences, have been reported in many diseases and

disorders, including neuropsychiatric disorders such as Alz-

heimer and Parkinson diseases, schizophrenia (SCZ), and

bipolar disorder (BD).2,10-12 SCZ is a severe mental disorder,

heavily affecting the lives of those afflicted and their

families. The disorder is characterized by various abnormal

cognitive, affective, and motor behavioural features, asso-

ciated with a variety of impairments in occupational and

social functioning. No single symptom is pathognomonic

of SCZ; consequently, the disorder is noted for its great

heterogeneity across individuals and for its variability within

individuals over time.13 One consistent pathological finding

implicated in SCZ is abnormal brain energy metabolism in

specific neuronal circuits. Mitochondria, key players in brain

bioenergetics, portray various deficits in SCZ. This review

focuses on malfunctioning of the OXPHOS, source of

ATP production, and main driving force of various

mitochondrial-related cellular functions.

Brain Energy Metabolism in SCZ

Brain activity and function depend profoundly on ATP sup-

ply, with energetic demands varying significantly according

to neuron type and brain activity levels.6,14,15 Cellular

buffering of brain ATP is mainly regulated by ATPase and

creatine kinase reactions.14 Creatine is phosphorylated by

creatine kinase and converted into phosphocreatine (PCr),

a high-energy phosphate, capable of donating a phosphate

group to adenosine diphosphate (ADP), forming ATP, and

vice versa.6 In SCZ patients, most imaging studies using

positron emission tomography (PET), functional magnetic

resonance imaging (fMRI), magnetic resonance spectro-

scopy (MRS), phosphorous magnetic resonance spectro-

scopy (31P-MRS), and single-photon emission tomography

(SPECT) reveal altered metabolism, as expressed by

changes in glucose, PCr, and ATP in different brain regions,

including the prefrontal cortex (PFC), left temporal lobe, and

frontal lobe.16-22 Interestingly, the severity of negative

symptoms and neuropsychological performance correlate

with ATP and PCr levels.23 In BD, which also portrays psy-

chotic symptoms and shares genetic risk with SCZ, 31P-MRS

studies did not find significant alterations in ATP levels.24,25

However, similar alterations have been reported for both

disorders in other brain bioenergetic indicators such as ele-

vated lactate and decreased intracellular pH (pHi) levels, as

well as abnormalities in PCr and creatine kinase.24-30 It has

been suggested that this shift from aerobic respiration to

anaerobic glycolysis increases the risk for metabolic syn-

dromes in these patients.31,32 Such maladaptations to the

energetic demands of the central nervous system (CNS)

point to a dysfunction of brain mitochondrial OXPHOS.

Producing about 90% of ATP molecules generated in the

brain, the OXPHOS is responsible for powering cell signal-

ing and neuronal activity processes, such as pre- and post-

synaptic action potentials, neurotransmitter release, and

postsynaptic currents.14,33 Thus, damage to the OXPHOS

can have detrimental effects on the CNS energetic balance

that may lead to various neuronal dysfunctions.

Mitochondrial OXPHOS

The OXPHOS consists of 5 protein complexes and 2 electron

carriers embedded in the inner mitochondrial mem-

brane.34,35 High-energy phosphate production is achieved

by coupling electron transfer to proton translocation across

the inner membrane, resulting in an electrochemical gradi-

ent, which generates a motive force driving ATP synthesis

by the fifth complex, ATP synthase (complex V [CoV]).

During respiration, electrons are first transferred from the

citric acid cycle products, NADH and succinate, through
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complexes I (CoI) and II (CoII), respectively, to ubiquinone.

They then pass through complex III (CoIII) and cytochrome

c, terminating at complex IV (CoIV). In this process, CoIV

reduces O2 to H2O.35 The interaction between OXPHOS

complexes and their organization is still unclear. According

to the ‘‘fluid-state model,’’ these complexes diffuse freely

across the membrane, transferring electrons by randomly

colliding. In contrast, the ‘‘solid-state model’’ supports the

formation of stable supercomplex assemblies, or respira-

somes, composed of several complexes functioning

together.36,37 The assembly process of the OXPHOS com-

plexes is tremendously intricate and is composed of multiple

stages in which many structural, catalytic, and assembly

proteins participate. In addition, proteins encoded by nuclear

DNA (nDNA, *70 proteins), synthesized in the cytosol and

imported into the mitochondria, have to assemble with pro-

teins encoded by mitochondrial DNA (mtDNA, 13 pro-

teins).38 Deficiencies in OXPHOS complexes formation

and function are associated with either mtDNA or nDNA

mutations and can lead to various defects, including synapse

damage, axon degradation, ROS production, apoptosis, and

cell death.4,39-41

Functional and Genetic Alterations
of the OXPHOS in SCZ

Many patients diagnosed with mitochondrial diseases with a

variety of OXPHOS deficiencies, CoI in particular, portray

psychotic-like symptoms.12 On the other hand, OXPHOS

dysfunction has been widely reported in disorders with psy-

chotic features, such as SCZ and BD.42-45 Taken together,

these findings suggest a role for mitochondrial dysfunction

in the pathophysiology of psychosis. Dysfunctions of the

OXPHOS have been observed at the level of high-energy

phosphate production as well as enzymatic activity and sub-

unit expression of OXPHOS complexes. Genetic studies

implicate OXPHOS complexes, particularly CoI, in both

disorders.23,27,44,46-50

Functional impairments of OXPHOS complexes I, II, and

IV have long been described in various brain areas of SCZ

patients.47-49,51 In BD, however, only 1 study has reported a

decrease in CoI activity in the PFC, with no change in SCZ

patients.52 We have reported aberrant OXPHOS activity in

platelets of SCZ patients, with CoI showing the most con-

sistent impairments. Our studies show that in blood cells, the

enzymatic activity of CoI, but not that of complexes I to III

and CoIV, exhibits disease state–dependent alterations.

Thus, increased CoI activity positively correlates with pos-

itive symptomology and active psychosis, while decreased

activity is associated with the residual state.51 Transcrip-

tomic, proteomic, and metabolomic studies in different brain

areas, mostly the PFC, have demonstrated specific robust

changes (both increases and decreases) in gene expression

and protein level associated with mitochondrial function in

SCZ, among them OXPHOS genes and proteins. For exam-

ple, the expression levels of several CoI subunits, such as

NDUFV1, NDUFV2, and NDUFS1, which comprise one

functional subunit that includes CoI’s substrate binding site,

were significantly altered in the PFC, striatum, hippocam-

pus, and parieto-occipital cortex as well as in somatic

cells.27,53-58 Interestingly, 1 study reported a positive corre-

lation between the extent of change in blood cells and pos-

itive symptomology in SCZ first-episode patients.50 In BD,

transcriptomic abnormalities of mitochondrial genes were

also reported mainly in subunits of complexes I, IV, and

V.59,60 However, both disorders differ with respect to the

extent and characteristics of mitochondrial impairments,

energy metabolism, and ROS production. Overall, there is

an inconsistency in the literature regarding alterations in

OXPHOS gene expression. These discrepancies may be

explained in part by our findings that the change in gene

expression exhibits a disease-specific neuroanatomical pat-

tern44 and/or is cell type specific.56 Moreover, varying

results may be due to disease subtype and ethnicity of the

tested population, as has been shown for NDUFV2 protein

expression in lymphoblastoid cells of Japanese and Eur-

opean Caucasian BD-I and BD-II patients.58,61 We have

previously suggested that change in expression of at least

some of the mitochondrial genes in SCZ can be attributed to

abnormal expression of the transcription factor Sp1, which

controls many nDNA encoded mitochondrial genes, includ-

ing NDUFV2 and NDUFV1.62 Indeed, a highly significant

positive correlation and a parallel pattern of change in tran-

scripts of Sp1 and CoI subunits in various brain areas and

blood cells have been observed.62

A growing number of studies have found susceptibility

loci and associated risk genes, including those of the

OXPHOS in SCZ, even though genome-wide association

studies (GWAS) have failed to consistently replicate genetic

risk factors among these genes.63-65 One of these NDUFV2

has been reported to be a high-risk gene for SCZ.66 Single-

nucleotide polymorphisms (SNPs) in its promoter, introns,

and 30-UTR regions, have been associated with both SCZ

and BD.67,68

A small but growing number of studies report mtDNA

SNPs as risk factors in SCZ,69,70 possibly due to somatic

rather than inherited mutations.29 SNPs in ND1, ND4, and

ND5 mtDNA encoded subunits of CoI have been repeatedly

reported in SCZ.71,72 In line with the latter, a significant

comorbidity was observed between SCZ and mitochondrial

disease.12,73 Taken together, the data obtained from func-

tional, expression, and genetic evidence point to a role for

OXPHOS complexes, particularly CoI, in SCZ. In this con-

text, it is noteworthy that CoI has been shown to be the rate-

limiting enzyme for O2 consumption in nerve terminals, as a

10% inhibition of CoI is sufficient for major alterations in O2

consumption.74

The OXPHOS and cAMP/PKA Signaling

Driving cellular respiration, on one hand, and mitochondrial

apoptosis cascade, on the other, the OXPHOS is linked to

La Revue Canadienne de Psychiatrie 61(8) 459



different, tightly regulated cell signaling pathways, with

cyclic AMP (cAMP) and its effector PKA being the most

studied OXPHOS-related cellular signaling pathway.8,75 The

significance of this pathway in cell growth, survival, neuro-

protection, axon regeneration, and ROS production is well

established.76-78 However, relatively little is known about

the mechanisms of action of mitochondrial cAMP and

PKA.8,75 In mitochondria, it has been shown that this path-

way plays a role in fission/fusion process via phosphoryla-

tion and inactivation of the fission protein dynamin-related

protein 1 (Drp1), thereby promoting mitochondrial elonga-

tion and facilitating fusion, which is important for neuronal

survival.79,80 Identification of cAMP and soluble adenylyl

cyclase (sAC) inside the mitochondria indicates the local

production of mitochondrial cAMP.8,81 PKA, the down-

stream target of cAMP, has also been shown to be located

inside the mitochondria at different compartments (outer

membrane, intermembrane space, and the matrix), despite

not having a mitochondrial targeting sequence.8 In line with

these findings, cAMP/PKA signaling has been shown to

regulate transcription and phosphorylation of OXPHOS sub-

units from both nuclear and mitochondrial origin.8,75,82

cAMP/PKA-dependent phosphorylation of nuclear CoI

encoded subunits has been reported for NDUFB11,

NDUFA1, NDUFS4 NDUFA7, NDUFA10, NDUFC2, and

GRIM19.83-87 Interestingly, 1 study has shown that phos-

phorylation of NDUFB11 results in a reduction of CoI activ-

ity.88 In line with the latter, inhibition of sAC, which product

cAMP was shown to prevent degradation of CoI subunits

NDUFS4, NDUFS2, and NDUFA9, reduced CoI activity.89

A tissue-specific activity of the cAMP/PKA pathway was

also shown to regulate CoIV activity by phosphorylation

of various subunits.90,91 This interaction is further exhibited

by the involvement of targets downstream to cAMP/PKA,

such as cAMP-responsive element-binding protein (CREB)

and peroxisome proliferator–activated receptor coactivator

1a (PGC-1a), in the transcription of mitochondrial genes

from both mitochondrial and nuclear origin.82,92,93 CREB,

in addition to its functions in the nucleus, is imported into the

mitochondria via the translocase of the outer membrane

(TOM complex). In the mitochondria, CREB was shown

to regulate the expression of mtDNA encoded genes, ND1,

ND6, and COXIII in the periphery and ND2, ND4 and ND5

in brain.94 In brain, CREB induced changes in the mtDNA

encoded genes affecting CoI activity and CoI-dependent

respiration.94 PGC-1a activates transcription factors regulat-

ing the transcription of OXPHOS subunits by Sp1 and

nuclear respiratory factors (NRF1 and NRF2).95,96 cAMP/

PKA signaling pathway also affects cellular calcium home-

ostasis, which is discussed in the following section.

Abnormalities in the cAMP/PKA signaling pathway have

been reported in SCZ. For example, postmortem analysis of

SCZ patients revealed an asymmetry of cAMP binding to

PKA in temporal cortices.97 An alteration in PKA activity

has been reported in the dorsolateral prefrontal cortex

(DLPFC) but not in the anterior cingulate (ACC) in SCZ.

No changes were observed in levels of PKA catalytic sub-

units.98 A more significant change in the cAMP/PKA signal-

ing pathway was observed in BD, with a widespread

decrease in cAMP binding to PKA in brain99 and abnormal

PKA level and activity.100,101 In platelets of both SCZ and

BD patients, abnormal levels of the catalytic subunits of

PKA were reported.102,103 Alterations in CREB expression

and protein levels were also reported to vary according to

brain region, in a disease-specific manner, with a decrease in

the cingulate gyrus (CG) and in the DLPFC in BD and a

decrease in the CG with no change in the DLPFC in SCZ.104

Finally, a number of phosphodiesterases (PDEs) have been

shown to inactivate cAMP by hydrolysis.105-108 PDE4 has been

shown to interact with the protein disrupted in schizophrenia 1

(DISC1) in a cAMP/PKA-dependent manner and inactivate

cAMP.109 Both proteins have been localized to the mitochon-

dria,110 suggesting that variations in both can affect mitochon-

drial cAMP catabolism, with elevated cellular cAMP in SCZ

leading to dissociation of PDE4B from DISC1 and increased

PDE4B activity.109 All 3 proteins have been implicated in SCZ.

For example, alterations in PDE4A and PDE10 protein levels

have been observed in different brain regions of SCZ patients,

and SNPs were identified in several PDEs and in DISC1.66,111-

113 These findings attribute an additional role for cAMP/PKA

signaling pathways in the interaction between mitochondria

and the cell, regulating mitochondrial activity according to cell

demands and vice versa.

The OXPHOS and Calcium Homeostasis

Calcium, one of the cells’ most common second messengers,

is involved in many essential cellular functions, including

gene transcription, signaling pathways, cell proliferation and

regulation of neuronal functions, synaptic plasticity, learning,

memory, and cognition. Mitochondria play an important role

in Caþ2 buffering and signaling, while Caþ2 regulates mito-

chondrial localization, movement within the neuron, and their

degradation.114-117 N-methyl-d-aspartate (NMDA) receptors

(NMDARs) are responsible for the main flux of Caþ2 into

CNS cells.30 Cellular Caþ2 is mainly stored within the endo-

plasmic reticulum (ER), where its concentration is several

orders of magnitude higher than in the cytoplasm.118,119 ER

and the mitochondria connect and interact via the

mitochondria-associated ER membrane, allowing release of

Caþ2 at maximal proximity.120,121 The main mechanism of

ER calcium release is through inositol-1,4,5-trisphosphate

(IP3), which activates the IP3 receptor (IP3 R) on the ER

membrane, leading to Caþ2 release into the cytosol.122,123 The

cAMP/PKA pathway plays an important role in Caþ signal-

ing, with PKA modulating both IP3 R capacity124 and

NMDAR permeability for extracellular Caþ2.30 Cytosolic

Caþ2 enters the mitochondria via the Caþ2 uniporter, due to

the membrane potential driving force generated by the

OXPHOS.123,125 Intramitochondrial Caþ2 (Caþ2
im ) affects

OXPHOS function through different mechanisms. For exam-

ple, Caþ2
im modulates and stimulates sAC activity and thereby
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the PKA signaling cascade.126 In addition, Caþ2
im stimulates

the phosphorylation of CREB-dependent protein kinases,

initiating transcription of CRE-regulated genes.127,128 Caþ2
im

has been suggested to facilitate activation, regulation, and

proper function of OXPHOS genes by activating key dehy-

drogenases of citric acid, including pyruvate dehydrogenase,

NADþ-isocitrate dehydrogenase, and oxoglutarate dehydro-

genase.123,129,130 A direct effect of Caþ2
im on regulation of ATP

production has been suggested via the activation of complex

V and an increase of electron flow through CoIII.131,132 A

reciprocal interaction between OXPHOS and Caþ2
im has been

suggested as CoI, CoII, and CoIV deficiencies are associated

with abnormalities in Caþ2 signaling.133-135 The possible

involvement of Caþ2 signaling in SCZ had been suggested

as early as 1979 based on correlations between SCZ psychotic

symptoms and increased cerebrospinal fluid Caþ2 levels.136

More recently, an increase in Caþ2 levels has been reported in

platelets of SCZ and BD patients.137,138 Genetic studies also

support the involvement of Caþ2 in both disorders, with poly-

morphisms found in calcium channels,139-141 NMDAR, and

their related genes.142-144 Altered levels of specific subunits of

the NMDA complex have been demonstrated in SCZ post-

mortem brains.145,146 Notably, administration of NMDAR

antagonists (e.g., ketamine and phencyclidine) can produce

SCZ-like symptoms.147-149 Additional pathways related to

neuronal Caþ2 signaling are impaired in SCZ, for example,

IP3, GSK-3, and ryanodine receptor signaling path-

ways.149,150 While Ca2þ signaling alterations in psychiatric

disorders have still not been directly related to OXPHOS

abnormalities, the regulatory effects of Ca2þ signaling on the

OXPHOS suggest a possible link between the two.

The OXPHOS in Neuronal
Development and Plasticity

Adaptation of the nervous system to the ever changing

environment by neurogenesis and active modulation of

synaptic connections between neurons is a high-energy

demanding process, termed synaptic plasticity, a concept

initially proposed by Donald Hebb in 1949.151 Defects in

neuronal connectivity, synaptic modeling, and neuronal sig-

naling have been suggested to be part of the underling patho-

physiological mechanisms of SCZ.43,152-156 Mitochondria,

localized in dendrites and axons, participate in essential pro-

cesses related to plasticity, including morphological changes

such as development of new synapses and remodeling of

mature ones, Caþ2 signaling, generation of action potential,

synaptic transmission, and ion homeostasis.157-159 Attached

to vesicles, they are transported along microtubules to synap-

tic terminals, enabling these high-energy demanding pro-

cesses.160,161 Removal of mitochondria from nerve endings

can lead to abnormal synaptic transmission.162,163 Interest-

ingly, DISC1, implicated in SCZ, affects mitochondria loca-

lization and microtubule transport.164

In cells, mitochondria routinely fuse, divide (fission),

branch, and change their size in a dynamic manner. This

process, termed mitochondrial network dynamics, enables

proper mitochondrial function, including inheritance and

maintenance of mtDNA, regulation of metabolic energy,

mitochondrial trafficking, and maintenance of a healthy

mitochondrial population.159,165-167 Mutations related to this

process have been previously linked to neurodegenerative

diseases such as Parkinson and Huntington diseases, and

more recently, impairments in mitochondrial network

dynamics have been reported by us in SCZ and by others

in BD-derived cells.168-173 The extent to which the OXPHOS

affects neuronal branching and plasticity is still an open

question. However, in CoI mutagenized Caenorhabditis ele-

gans, an increased number of dendrites and their branching

in sensory neurons were observed.174 In humans, we have

demonstrated impairments in differentiation and maturation

into dopaminergic and glutamatergic neurons of SCZ-

derived induced pluripotent stem cells (iPSCs), alongside a

reduction in CoI-driven respiration. In addition, dissipation

in mitochondrial membrane potential, impaired mitochon-

drial network structure and connectivity, and abnormal

expression levels of NDUFV1, NDUFV2, and NDUFS1

were reported.170 Mammalian embryonic stem cell (ESCs),

which originate from the blastocyst inner cell mass, are natu-

rally exposed to hypoxic conditions,175 with mitochondria

showing immature morphology at this stage.176-178 Not sur-

prising, the main source of energy at this stage comes mainly

from glycolysis and not oxidative phosphorylation. Only

later during differentiation, O2 levels rise and an increase

in mitochondria number is accompanied by a shift towards

oxidative phosphorylation respiration.177,179 Indeed, it was

shown that cellular differentiation of ESCs and iPSCs

depends on OXPHOS and is hampered by the inhibition of

CoI or CoIII.180-182 In line with these findings, we have

shown that abnormalities in mitochondrial function are asso-

ciated with a failure of SCZ-derived iPSCs to differentiate

into dopaminergic and glutamatergic neurons.170 These find-

ings imply a key role for mitochondria and their OXPHOS in

synaptic plasticity and differentiation into neurons.

Dopamine and Antipsychotic Drugs
Interact with the OXPHOS

Dopamine (DA) has been suggested to play a pivotal role in

the pathophysiology of a number of mental disorders, par-

ticularly in SCZ.183-186 The DA hypothesis in SCZ originally

stemmed from the ability of antipsychotic drugs to inhibit

DA receptors, primarily D2 receptors, and that of psychos-

timulants to activate DA transmission.187 Even though the

mechanisms of action of antipsychotic drugs are not entirely

clear, a reduction in energy-demanding processes induced by

these substances in the frontal lobes and basal ganglia of

medicated SCZ patients has been reported.23,188 Concomi-

tantly, in vitro exposure of rat pancreas cells to clozapine

resulted in reduced levels of glucose oxidation and ATP

production.189 Similarly, inhibition of ATP-related

responses was demonstrated following exposure of PC12
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cells to haloperidol.190 We and others have shown that both

typical and atypical antipsychotic drugs inhibit CoI activity

and CoI-driven respiration in isolated mitochondria and in

intact neuronal cells.191-194 In mice, acute and chronic halo-

peridol administration specifically inhibited CoI in extrapyr-

amidal brain regions, the extent of inhibition correlating with

D2 abundancy.195 In human and rat brain specimens, a drug-

and dose-dependent in vitro inhibition of CoI activity was

observed with haloperidol > chlorpromazine > risperidone >

zotepine > clozapine.169,194,196 Interestingly, we have shown

that CoI activity is increased in peripheral blood cells of

medicated and nonmedicated SCZ patients at the acute

stage, while decreased in chronically medicated SCZ

patients at the residual state.169 Similar to antipsychotics,

DA also affects mitochondrial functions.197 In neuronal cell

cultures, L-3,4-dihydroxyphenylalanine (L-DOPA) and DA

reduced striatum CoI activity and ATP production.198-201

We have shown that these effects on mitochondria are due

to the ability of DA to be taken up by the mitochondria and

elicit a dose-dependent inhibition of CoI activity but not that

of complexes II, IV, and V.201 Although DA and antipsy-

chotics both inhibit CoI activity, they interact with the com-

plex at different sites, DA with the hydrophilic matrix

penetrating arm and antipsychotics with the hydrophobic

inner membrane embedded arm of the complex.169 The clin-

ical efficiency of antipsychotic drugs has been attributed to

their antagonism of the D2 receptor, while in the mitochon-

dria, these drugs mimic DA action on CoI. This drug-

Figure 1. Summary of the most reproducible deficiencies in the oxidative phosphorylation system (OXPHOS) and its related cellular
signaling in schizophrenia (SCZ) and bipolar disorder (BD). (A) The most frequent single-nucleotide polymorphisms (SNPs) reported in
nuclear and mitochondrial DNA (nDNA and mtDNA, respectively) encoded subunits of complex I. (B) Increase and decrease in the
expression of various subunits of the OXPHOS complexes. (C) Reduced and enhanced enzymatic activity of 3 complexes of the OXPHOS.
(D) The respiratory chain complexes, electron transfer, and adenosine triphosphate (ATP) production. (E) The mitochondrial cAMP/protein
kinase A (PKA) signaling pathway, which affects the expression of mtDNA encoded subunits of the OXPHOS complexes. (F) Altered
glutamate NMDA receptor transmission and intracellular Ca2þ concentration and signaling. (G) Alterations in mitochondrial originated high-
energy phosphates, lactate, and pH, indicating impaired energy production in cell or tissue. (H) Disease-related neurodevelopmental
consequences of the alterations presented in A to G. Arrows indicate the direction of alteration. PCr, phosphocreatine.
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mitochondria interaction may be one mechanism involved in

the side effects exhibited by the drugs. Alternatively, DA

and antipsychotic drugs may both interact independently

with the mitochondria, participating in a compensatory

mechanism aimed to overcome mitochondrial dysfunction.

Conclusion

Neuronal energetic demands render them heavily dependent

on the mitochondria, particularly on the OXPHOS. Apart

from ATP production, the OXPHOS is a major player in

many cellular processes, including calcium buffering, cell

signaling, ROS production, and apoptosis. In mental disor-

ders, mitochondrial deficits are significant yet of a relatively

limited magnitude. Therefore, a deviation from normal func-

tioning rather than lack of functioning and cell death is

expected, specifically in cells highly dependent on energy

supply for their activity. Indeed, in mental disorders, mild

alterations in brain development, synaptic plasticity, and

neuronal network connectivity have been observed. Such

changes, however, can affect brain functioning, which may

ultimately manifest in distorted cognitive and emotional

behaviours, characteristic of mental disorders. As expected,

many studies have found defects in various components of

the OXPHOS protein apparatus (Figure 1). The fact that the

OXPHOS interacts with antipsychotic drugs (typical and

atypical) and with dopamine suggests mitochondria in gen-

eral and CoI in particular, as an additional pathological fac-

tor in SCZ, which may serve as a novel target for future

treatment strategies.
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