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Abstract
Mitochondrial dysfunction is commonly observed in bipolar disorder (BD) and schizophrenia (SCZ) and may be a central feature
of psychosis. These illnesses are complex and heterogeneous, which is reflected by the complexity of the processes regulating
mitochondrial function. Mitochondria are typically associated with energy production; however, dysfunction of mitochondria
affects not only energy production but also vital cellular processes, including the formation of reactive oxygen species, cell cycle
and survival, intracellular Ca2þ homeostasis, and neurotransmission. In this review, we characterize the upstream
components controlling mitochondrial function, including 1) mutations in nuclear and mitochondrial DNA, 2) mitochondrial
dynamics, and 3) intracellular Ca2þ homeostasis. Characterizing and understanding the upstream factors that regulate mito-
chondrial function is essential to understand progression of these illnesses and develop biomarkers and therapeutics.

Abrégé
La dysfonction mitochondriale est communément observée dans le trouble bipolaire (TB) et la schizophrénie (SCZ) et peut
être un élément central de la psychose. Ces maladies sont complexes et hétérogènes, ce qui est reflété par la complexité des
processus régulant la fonction mitochondriale. Les mitochondries sont typiquement associées à la production d’énergie;
cependant, la dysfonction des mitochondries affecte non seulement la production d’énergie, mais aussi des processus cellu-
laires vitaux, y compris la formation des dérivés réactifs de l’oxygène, le cycle et la survie des cellules, l’homéostasie intra-
cellulaire Ca2þ, et la neurotransmission. Dans cette revue, nous caractérisons les composantes en amont qui contrôlent la
fonction mitochondriale, notamment (1) les mutations de l’ADN nucléaire et mitochondrial, (2) la dynamique mitochondriale,
et (3) l’homéostasie intracellulaire Ca2þ. La caractérisation et la compréhension des facteurs en amont qui régulent la fonction
mitochondriale sont essentielles pour comprendre la progression de ces maladies et mettre au point des biomarqueurs et des
thérapeutiques.
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Highlights

� Mitochondrial dysfunction is frequently reported in

both bipolar disorder (BD) and schizophrenia (SCZ).

� This may lead to increased generation of reactive

oxygen species (ROS).

� ROS may react with cellular macromolecules to alter

signaling pathways, decompensate myelin, and cause

damage to DNA and RNA.
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� Mutations in mitochondrial DNA (mtDNA) and

nuclear DNA (nDNA) may produce mitochondrial

dysfunction in BD and SCZ.

� Disrupted mitochondrial fusion, fission, and traffick-

ing may impair mitochondrial function in SCZ.

� Enhanced release of Ca2þ from the endoplasmic reti-

culum in BD and SCZ may lead to mitochondrial

Ca2þ overload, disrupting function.

Introduction

Bipolar disorder (BD) and schizophrenia (SCZ) are severe

psychiatric disorders with a lifetime prevalence exceeding

3% of the population worldwide.1 These disorders are char-

acterized by clinical features such as mania and depression

in BD or hallucinations and delusions in SCZ. Relapse and

recurrent psychosis are common to both disorders, causing

lifelong disease burden and impairment.2,3 Understanding

the etiology and pathophysiology of these disorders is nec-

essary to develop biomarkers and rational therapeutics to

ease their burden. Substantial evidence exists suggesting a

role for mitochondrial dysfunction in the pathophysiology of

major psychoses.4-6 Although mitochondria are traditionally

associated with adenosine triphosphate (ATP) production,

they are also crucial in regulating cell cycle,7 death and

survival,8 intracellular Ca2þ homeostasis,9 and neurotrans-

mission.10 The brain in particular is affected by dysfunction

in mitochondria due to its high energy demands and sensi-

tivity to oxidative damage.11 Because neurotransmitter

release and cell survival are dependent on ATP production

and Ca2þ homeostasis, mitochondrial dysfunction can alter

synaptic connectivity, which may in turn produce symptoms

of psychosis.12,13 Understanding mitochondrial function will

be crucial to comprehend disease progression and to develop

rational therapeutics to improve the quality of life of patients

with psychiatric illness.

Three of the major upstream pathways that may impair

mitochondrial function in BD and SCZ include 1) mutations

in nuclear and mitochondria DNA, 2) altered mitochondrial

dynamics, and 3) perturbed Ca2þ flux. BD and SCZ are

complex diseases that cannot be characterized by a singular

narrow pathway. Rather, numerous subtle alterations likely

converge upon particular pathways (i.e., mitochondrial func-

tion) to produce functional alterations. Thus, examining

upstream pathways that control mitochondrial function will

lead to a more comprehensive understanding of the etiology

and pathophysiology of BD and SCZ. In this review, will

address how these interrelated upstream processes may con-

tribute to mitochondrial dysfunction in major psychosis.

Mitochondrial Dysfunction
in Major Psychosis

Mitochondria are a major endogenous source of reactive

oxygen species (ROS).14 During normal mitochondrial

metabolism, only a small proportion of electrons escape the

electron transport chain (ETC), mainly through complex I.15

These electrons reduce O2 to produce superoxide anion,

which is then dismutated by superoxide dismutase (SOD)

to yield hydrogen peroxide (H2O2) (Figure 1B).16 In the

presence of reduced transition metals, H2O2 may further

react to form a hydroxyl radical.16 Hydroxyl radicals are

highly reactive and can oxidize nucleic acids, lipids, and

proteins (Figure 1C).17,18 ROS are strong oxidants and

important signaling molecules, whose effects are balanced

by antioxidants,19,20 such as glutathione, SOD, and glu-

tathione peroxidase (GPx).21 Dysregulation of the ETC may

lead to greater proportion of electrons escaping and forming

ROS.22 When ROS production exceeds the capacity of anti-

oxidant networks, the cell is subjected to oxidative

stress.15,18 The brain in particular is susceptible to oxidative

stress due to its high-energy demand, easily oxidized poly-

unsaturated fatty acids, and relatively low antioxidant capac-

ity.23,24 Compromised mitochondrial function can disrupt

neuronal oxidative metabolism. This may alter neurotrans-

mission and neuronal growth, 2 highly energy-dependent

processes, producing symptoms of psychosis and altered

mood.15,25

Complex I is the first structure of the ETC that catalyzes

the transfer of electrons from NADH to ubiquinone26 and is

also the major site of ROS generation in the ETC.27,28 Dys-

function of mitochondrial complex I is a commonly

observed phenomenon in BD and SCZ. A recent review of

microarray studies found a consistent downregulation of

genes encoding subunits of complex I, including NDUFV1,

NDUFS1, NDUFS8, and NDUFS7, in postmortem frontal

cortex (PFC) and hippocampus samples of subjects with

BD.4 The subunits that were found to be downregulated in

BD formed the catalytic core of complex I involved specif-

ically in electron transfer from NADH to ubiquinone,29 sug-

gesting that patients with BD may be susceptible to electron

leakage through complex I. In contrast, patients with SCZ

presented with inconsistent alterations, which included

increased and decreased gene expression levels of both

structural and catalytic subunits.4 In agreement with these

findings, a previous study demonstrated decreased NDUFS7

protein levels in the PFC of subjects with BD but not SCZ,

which were associated with decreased complex I activity.30

Interestingly, the mood stabilizer Liþ was found to increase

expression of complex I subunits in postmortem brains and

activity level in vivo of subjects with BD.31,32 These findings

suggests that while complex I dysfunction is present in both

disorders, impairments in electron transfer may be more

specific to BD (Table 1).

A major consequence of complex I dysfunction is the

generation of ROS, leading to oxidative damage to macro-

molecules. A number of studies have identified increased

oxidative damage markers to protein, lipid, and DNA in

BD and SCZ.30,33-38 ROS-induced oxidative damage to

lipids, for instance, results in lipid hydroperoxides (LPH),

which are unstable and react with other lipids to form
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Figure 1. (A) Mitochondrial dynamic: fusion process is important for mitochondrial function by diffusion of metabolites and enzymes
between mitochondria, as well as dilution of damaged proteins and DNA. The fusion mediators are Mfn1 and Mfn2, which is present on the
outer mitochondrial membrane, and Opa1, which is located in the inner mitochondria membrane. Fission process can isolate injured
mitochondria, contributing to mitochondrial quality control. The fission mediators are Fis1 and Drp1. Fis1 recruits Drp1 to mitochondria,
and it permits the development of fission process. (B) Normal mitochondrial function: mitochondrial and electron transport chain (ETC)
assembly and function are dependent on nuclear DNA (nDNA) and mitochondrial DNA DNA (mtDNA)–encoded proteins. nDNA-
encoded proteins regulate mitochondrial replication, transcription, and repair, allowing for crosstalk between nDNA and mtDNA. Mito-
chondria take up Ca2þ primarily through mitochondrial Ca2þ uniporter (MCU). Ca2þ is then extruded from mitochondria through ion
exchangers that are coupled to adenosine triphosphate (ATP) production. Mitochondria are localized close to sites of Ca2þ entry, such as
the endoplasmic reticulum (ER) and membrane channels, allowing them to buffer cytosolic Ca2þ concentrations. (C) Mitochondrial
dysfunction: ETC impairment increases the amount of electrons leakage, resulting in increased reactive oxygen species (ROS) production.
High levels of ROS coupled with low antioxidant defenses disrupt redox homeostasis, leading to cellular oxidative stress. Antioxidant
defenses include superoxide dismutase (SOD) and glutathione peroxidase (GPx). If these high levels of ROS are not sufficiently detoxified by
these antioxidant enzymes, it can cause oxidative damage to proteins, lipids, and nucleic acids.
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products such as 8-isoprostanes (8-ISO), malondialdehyde

(MDA), 4-hydroxy-2-nonenal (4-HNE), and acrolein.39,40

MDA has been frequently found to be elevated in both BD

and SCZ41-43 and was negatively correlated with complex I

activity.42 Oxidative damage to fatty acids, which make up

myelin, may cause degeneration of white matter tracts and

produce abnormalities in neural circuits.40 Indeed, elevated

levels of 4-HNE have been found in myelin fractions from

patients with BD and SCZ, with elevated levels of 8-ISO in

BD.36 It is also important to note that many other markers are

specific to particular disease states. For example, increased

GPx levels were found in SCZ but not BD,43 while protein

carbonylation was elevated in BD but not in SCZ.30 Overall,

these findings support the hypothesis that mitochondrial dys-

function and oxidative imbalance contribute to the patho-

physiology of BD and SCZ. Next, we explore upstream

processes involved in controlling mitochondrial and ETC

function in the context of BD and SCZ, including mitochon-

drial and nuclear genomics, mitochondrial dynamics and

quality control, and Ca2þ homeostasis.

Mitochondrial and Nuclear Genomics

As BD and SCZ show a high degree of heritability,45,46

studying where genetic mutations occur may provide

insight into possible pathways that are dysregulated in these

diseases. While genetic alterations related to countless cel-

lular processes have been reported in BD and SCZ,47,48 we

focus on those directly related to ETC function. While

mitochondria contain their own DNA, this is not sufficient

for function of the ETC.49 Both mitochondrial DNA

(mtDNA) and nuclear DNA (nDNA)–encoded proteins are

essential for ETC assembly (Figure 1B). For example, com-

plex I is composed of 37 nDNA-encoded and 7 mtDNA-

encoded subunits. Importantly, a number of nDNA-

encoded assembly factors or chaperones are required for

the stability and proper assembly of ETC complexes.50

nDNA-encoded proteins also regulate the replication, tran-

scription, and repair of mtDNA.51,52 Therefore, mutations

in either nDNA or mtDNA have the potential to directly

affect mitochondrial function.

mtDNA mutations likely contribute to BD and SCZ.

mtDNA mutations (Table 1) are commonly associated with

BD and SCZ. Furthermore, these disorders have higher rates

of maternal inheritance than paternal inheritance, which

aligns with the fact that mtDNA is inherited exclusively

from the mother.45,53 Dozens of mtDNA single-nucleotide

polymorphisms (SNPs) in genes encoding ETC proteins

have been associated with BD and SCZ.54-56 These SNPs

have the potential to affect ETC function. For example, the

Table 1. Summary of Pertinent Findings Discussed of Mitochondrial-Related Alterations in Patients with BD and SCZ.

Markers BD SCZ Sample Type References

Mitochondrial complex I NDUFV1 # — Postmortem prefrontal cortex and
hippocampus

Scola et al.,4 Andreazza et al.30

NDUFS1 # —
NDUFS8 # —
NDUFS7 # —

mtDNA polymorphisms A10398G (ND3) R NA Peripheral blood Kato et al.54

T12027C (ND4) NA R Postmortem brain Marchbanks et al.57

T3644TC (ND1) R NA Transmitochondrial cybrids Munakata et al.58

nDNA polymorphisms �796C>G (NDUFV2
at 18p11)

R NA Lymphoblastoid cells Washizuka et al.,60 Washizuka et al.61

�795T>G (NDUFV2
at 18p11)

R NA

�602G>A (NDUFV2
at 18p11)

R NA

�233T>C (NDUFV2
at 18p11)

R NA

nDNA-mtDNA
crosstalk

DNA polymerase
subunit g

# — Lymphoblastoid cells, peripheral blood
mononuclear cells

Kato et al.,66 Munkholm et al.67

Lipid peroxidation Malondialdeyhyde " " Peripheral blood Gonzalez-Liencres et al.,38 Kunz
et al.,41 Gubert et al.42

4-Hydroxy-2-
nonenal

" " Postmortem anterior cingulate and
prefrontal cortex

Wang et al.,34 Andreazza et al.36

8-Isoprostanes " — Postmortem prefrontal cortex Andreazza et al.36

Antioxidant enzyme Glutathione
peroxidase

— " Serum Kuloglu et al.43

Protein alterations Carbonyl content " — Postmortem prefrontal cortex Andreazza et al.,30 Andreazza et al.36

3-Nitrotyrosine
content

" " Postmortem prefrontal cortex,
peripheral blood

Andreazza et al.,30 Andreazza et al.35

RNA damage 8-Hydroxyguanosine " " Postmortem hippocampus Che et al.44

", increased; #, decreased; —, no specific or significant alteration; R, risk factor; NA, not applicable; BD, bipolar disorder; mtDNA, mitochondrial DNA;
nDNA, nuclear DNA; SCZ, schizophrenia.
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mtDNA SNP 12027T>C, encoding the ND4 subunit of com-

plex I, is associated with SCZ and with greater production of

SOD, suggesting a compensatory response to increased ROS

production.57 mtDNA SNPs occurring in the ND1 and ND3

subunits of complex I are associated with BD and lead to

impaired mitochondrial function in mtDNA cybrids.54,58

Many other mtDNA SNPs have been associated with BD

and SCZ, but the functional consequences of most of these

have not been explored. Based on current evidence, it is

likely that variants in genes encoding ETC proteins can

directly affect mitochondrial function.

Mutations in nDNA are also involved in mitochondrial

dysfunction. nDNA-encoded genes are important for the

architecture, assembly, and catalytic functions of mitochon-

drial ETC.49 Mutations in nDNA encoding complex I cata-

lytic subunits have been shown to impair mitochondrial

function.59 Indeed, the complex I subunit NDUFV2 has been

identified as a possible risk factor for BD; its gene is found at

a well-replicated susceptibility locus for BD (18p11), and

SNPs in this gene have been associated with BD.60 One

particular SNP (–602G>A) is associated with BD and results

in decreased promoter activity.61 Altered NDUFV2 expres-

sion levels have been reported in samples of both BD60,62

and SCZ.63 Downregulation of NDUFS7 has also been

reported in BD,30,31 which was correlated with reduced

activity of complex I and increased protein oxidation.30

nDNA-encoded proteins not only make up the majority of

the ETC64,65 but are also required for the stability of the

ETC50 and the replication, transcription, and repair of

mtDNA.51,52 For example, DNA polymerase subunit gamma

(Polg), which is responsible for the replication of mtDNA, is

downregulated in peripheral cells of patients with BD.66,67

Interestingly, transgenic mice expressing neuron-specific

mutant Polg accumulate mtDNA mutations and demonstrate

mood disorder–like behavior that is worsened by tricyclic

antidepressants and improved by Liþ.68 The association

between genes and symptoms in psychiatric disorders is

often complex, but identifying risk genes may help shed light

on potential mechanisms and therapeutic targets for these

disorders.55,69,70

Mitochondrial Dynamics and Trafficking

Mitochondria are dynamic organelles that undergo changes

in morphology and localization; these changes affect cellular

processes such as ATP production, mitosis, and mito-

phagy.71-73 Mitophagy is a quality control process in which

damaged mitochondria are degraded in lysosomes. Altera-

tions in mitochondrial dynamics have been implicated in

neurodegenerative diseases.74 Initial investigations in psy-

chiatric illnesses have suggested a role for altered mitochon-

drial dynamics in SCZ. However, these processes have not

been thoroughly investigated in either SCZ or BD. Future

research may help to answer these questions.

Mitochondrial dynamics involve changes in mitochon-

drial morphology through fusion and fission, as well as

movement through the cells via microtubule motor proteins

(Figure 1A).71,75,76 Fusion promotes diffusion of contents

between mitochondria, spreading metabolites and

enzymes,77 diluting damaged proteins and DNA, and

increasing communications with the endoplasmic reticu-

lum.74,78 On the other hand, fission is necessary for cell

division and for maintaining mitochondrial quality control;

damaged mitochondria are isolated by fission and subject to

mitophagy.77 Thus, both fission and fusion are necessary for

optimal mitochondrial and cell function.

The fusion process is mediated by Mitofusin 1 (Mfn1),

Mitofusin 2 (Mfn2),75,79 and optic atrophy 1 (Opa1) pro-

tein.74 Mfn2 is also crucial for mitochondrial tethering to

ER membranes, forming mitochondria-associated ER mem-

branes (MAMs).80 MAMs allow for the transport of Ca2þ

and lipids from the ER to mitochondria and are important for

mitophagy.80,81 Knockout of Mfn2 in cells leads to fragmen-

tation of mitochondria, disrupted MAMs,80 and impaired

mitophagy.82 The role of fusion in psychiatric illnesses has

not been established yet, but one analysis of postmortem

prefrontal cortex samples revealed decreased levels of Opa1

in SCZ specimens.83

Mitochondrial fission is essential for cell proliferation

and mitophagy.84,85 The main mediators of fission are mito-

chondrial fission 1 protein (Fis1) and dynamin-related pro-

tein 1 (Drp1).74,86 However, few studies to date have

established the role for Fis1 and Drp1 in BD and SCZ; these

represent potential targets for future investigation.83 An

interesting mechanism for altered mitochondrial dynamics

in SCZ is through G72. G72 has previously been identified

as a candidate gene for SCZ,87 and levels of G72 protein

appear to be substantially higher in the plasma of both medi-

cated and unmedicated patients with SCZ.88 While origi-

nally thought to modulate NMDA signaling, a recent

investigation demonstrated that transfection of G72 into pri-

mary neurons induces mitochondrial fragmentation and

increases dendritic branching.89 Cells expressing a loss-of-

function Drp1 mutant, which have impaired fission, exhibit

drastically reduced fragmentation in response to G72.89

Overexpression of G72 may promote mitochondrial fission

and lead to altered neural connectivity. G72 is not only a

promising peripheral biomarker but may also contribute to

mitochondrial dysfunction in SCZ.

Mitochondrial dynamics involve not only the processes of

fission and fusion but also movement of mitochondria

through the cell.71 The trafficking and localization of mito-

chondria in neurons are influenced by ATP and Caþ2 con-

centration.90 High levels of ATP increase mitochondrial

motility in dendrites to areas of high energy demand91; in

contrast, high levels of ADP and Ca2þ inhibit movement.91-

93 Because localization of mitochondria is important for

Ca2þ homeostasis10 and ATP provision,94 impairment in

mitochondrial trafficking can produce alterations in neuro-

transmitter release and synaptic function.90,95 A key protein

involved in mitochondrial trafficking is disrupted in schizo-

phrenia (Disc1).71,96 Disc1 associates with kinesin-1, which
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is necessary for the anterograde movement of mitochon-

dria.94 In yeast, decreased Disc1 function results in

decreased complex I activity and ATP production, as well

as perturbed Ca2þ buffering.97 The Disc1 SNP R37 W

decreases Disc1 expression98 and impairs anterograde move-

ment of mitochondria.94 Other Disc1 SNPs are associated

with SCZ and BD, although the functional consequences are

unknown.94,99,100 Currently available research suggests that

mitochondrial dynamics are impaired in SCZ, but it is

unknown if mitochondrial dynamics are involved in other

psychiatric illnesses.

The Role of Calcium Homeostasis
in Mitochondrial Dysfunction

Among other functions, Ca2þ influences cell metabolism,

death/survival, and neurotransmission through regulation

of the mitochondria. The primary uptake mechanism for

Ca2þ by mitochondria is through the mitochondrial Ca2þ

uniporter (MCU).101,102 While the affinity of the MCU for

Ca2þ is low, localization of mitochondria to regions of cyto-

solic Ca2þ influx, such as the ER and membrane channels,

allows them to buffer the cell from large spikes in Ca2þ

concentration.10,102 Mitochondrial Ca2þ is extruded into the

cytosol through exchangers that are coupled to the ETC

(Figure 1 B).9,102 Uptake of Ca2þ into mitochondria

enhances respiration by activating several dehydrogenases

in the citric acid cycle.103 The subsequent accumulation of

NADH leads to an increased production of ATP, which is

required to pump Ca2þ out of mitochondria.9,104 While Ca2þ

is a positive effector of mitochondrial function, Ca2þ over-

load causes uncoupling of the ETC and depolarization of the

mitochondrial membrane.105,106 Ca2þ overload therefore

decreases the mitochondrion’s capacity to generate ATP and

remove Ca2þ,9 inducing ROS production104 and potentially

leading to apoptosis. As mitochondrial ATP production and

Ca2þ buffering are essential for neurotransmission and cell

survival, dysfunction may alter neural plasticity.10,107

Intracellular Ca2þ dyshomeostasis has long been impli-

cated in BD and SCZ. For example, elevated Ca2þ are fre-

quently observed in stimulated platelets from patients with

untreated SCZ and BD.108-112 Such findings are indicative of

altered intracellular Ca2þ signaling but do not offer specific

evidence of the processes involved. The ER is a likely source

of Ca2þ dysfunction in BD and SCZ. Because the ER is a

major source of intracellular Ca2þ and closely associated

with mitochondria through MAMs, dysfunctions in ER-

mediated release of Ca2þ affect Ca2þ homeostasis within

mitochondria.102,104

The ER releases Ca2þ largely through inositol tripho-

sphate receptors (IP3 R). IP3 R is an ER membrane Ca2þ

channel that is activated by IP3. Dysregulation of Ca2þ

influx through IP3Rs disrupts mitochondrial function

through Ca2þ overload.104 In neurons, such events alter nor-

mal neurotransmitter release and synaptic plasticity.10 Sev-

eral lines of evidence suggest a role for IP3Rs in Ca2þ

dyshomeostasis in BD and SCZ. Neuronal Ca2þ sensor-1

(NCS-1) protein levels are elevated in the dorsolateral PFC

of patients with SCZ and BD but not depression.113,114 NCS-

1 increases cytosolic Ca2þ levels by enhancing IP3 R activ-

ity; this process is blocked by therapeutic levels of

Liþ.115,116 Furthermore, Liþ and valproate inhibit enzymes

in the IP cycle involved in the generation of IP3, decreasing

IP3 R activity.117,118 As well, both typical and atypical anti-

psychotics inhibit IP3-induced Ca2þ release. Patients with

untreated BD or SCZ may have altered sensitivity to Ca2þ-

releasing stimuli in part due to overexpression of NCS-1.119

The antiapoptotic protein Bcl-2 also inhibits IP3-mediated

IP3 R Ca2þ release,120 thereby protecting mitochondria against

Ca2þ overload.9 Decreased levels of Bcl-2 protein have been

reported in the frontal cortex of patients with BD121 and the

temporal cortex of patients with SCZ.122,123 Bcl-2 SNPs in

patients with BD are associated with lower levels of Bcl-2

messenger RNA and protein, elevated basal Ca2þ, and

enhanced IP3R-mediated Ca2þ release.124,125 Liþ has been

shown to increase Bcl-2 expression in the central nervous sys-

tem126 and restores Ca2þ homeostasis in Bcl-2 variants, further

supporting a role for Bcl-2 in BD.124 Bcl-2 not only reduces

IP3R-mediated Ca2þ release120 but also modulates membrane

L-type Ca2þ channels.127 Cells with decreased levels of Bcl-2,

such as in BD and SCZ, are therefore at greater risk of mito-

chondrial Ca2þ overload. Ca2þ dysregulation observed in BD

and SCZ may be in part due to altered IP3 R activity, leading to

enhanced influx of Ca2þ from the ER to closely associated

mitochondria. Ca2þ overload can depolarize the mitochondrial

membrane and impair its other functions.105,106

It is important also to consider that mitochondrial func-

tion is crucial in the regulation of intracellular Ca2þ levels.

Impairments in mitochondrial function have the potential to

dysregulate Ca2þ homeostasis. For example, the mtDNA

SNP 10398G>A, found in the region encoding the complex

I subunit ND3, is associated with BD54 and with higher

mitochondrial pH and Ca2þ concentrations.128 Moreover,

SH-SY5Y cells chronically exposed to rotenone (>2 weeks),

which induces 15% to 30% decreases in complex I function,

demonstrate altered Ca2þ influx in response to stimulation,

which is dependent in part on MCU.129 This suggests that

diminished ETC function, which is commonly observed in

BD and SCZ, impairs the mitochondrion’s ability to buffer

intracellular Ca2þ. Mitochondrial ROS can also alter Ca2þ

flux by modulating redox-sensitive Ca2þ channels, such as

TRPM2.130,131 Disruptions in either mitochondrial function

or intracellular Ca2þ homeostasis have the potential to

exacerbate each other.

Concluding Remarks

We have described a role for mitochondrial dysfunction in

the pathophysiology of major psychoses and discussed

upstream pathways that may contribute to controlling mito-

chondrial function in BD and SCZ. Upstream pathways can

be summarized as mutations in mtDNA and nDNA,
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perturbed mitochondrial dynamics, and dysregulated intra-

cellular Ca2þ homeostasis. BD and SCZ are complex and

heterogeneous diseases; it is unlikely that all of these path-

ways are dysregulated in a given individual. Rather, different

individuals may present with alterations in different pro-

cesses that may converge upon mitochondrial dysfunction.

The processes involved in energy production, mitochondrial

dynamics, and Ca2þ homeostasis are interdependent. Subtle

alterations in one process may either be compensated or

exacerbated by other processes, contributing to the complex-

ity of these disorders. Despite this, the mitochondrial dys-

function present in BD appears to be distinct from that in

SCZ. While both BD and SCZ are associated with mitochon-

drial dysfunction and redox modulations, BD is associated

with decreased protein and gene expression of NDUFS7 and

NDUFS8, 2 core subunits for electron transfer in complex I.

As these subunits are mandatory for electron transfer to ubi-

quinone, patients with BD may be more susceptible to ROS

generation by electron loss through complex I compared to

those with SCZ. Altered expression of complex I subunits is

reported in SCZ, but the direction of these findings is incon-

sistent, unlike the decreased levels observed in BD.4

BD features manic and depressive episodes. Studies to

date have not been designed to address how mitochondrial

function may change in each state of the illness within the

same individual. Nevertheless, we might speculate that dur-

ing manic episodes, patients experience a general increase in

neurotransmission; this requires high levels of energy, sug-

gesting an increase in mitochondria activity resulting in

increased ATP and ROS production. Overproduction of

mitochondrial ROS leads to changes in the redox state of

certain proteins, altering their function. This may explain, in

part, the cyclical nature of BD. Redox modulations to pro-

teins may decrease mitochondrial activity, altering neuro-

transmission and producing symptoms of depression. Of

course, it should be noted that the above mechanism is spec-

ulative, and longitudinal studies examining markers of mito-

chondrial function are crucial to determine how

mitochondrial activity varies between mood states.

Understanding the upstream processes that affect mito-

chondrial function will help in identifying the different

triggers of mitochondrial dysfunction in each of the 2 psy-

chiatric illnesses. Ultimately, delineating the causes of

mitochondrial dysfunction will guide rational development

of novel therapeutics with better efficacy and fewer

adverse effects.
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