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Abstract

Colormaps are a vital method for users to gain insights into data in a visualization. With a good 

choice of colormaps, users are able to acquire information in the data more effectively and 

efficiently. In this survey, we attempt to provide readers with a comprehensive review of colormap 

generation techniques and provide readers a taxonomy which is helpful for finding appropriate 

techniques to use for their data and applications. Specifically, we first briefly introduce the basics 

of color spaces including color appearance models. In the core of our paper, we survey colormap 

generation techniques, including the latest advances in the field by grouping these techniques into 

four classes: procedural methods, user-study based methods, rule-based methods, and data-driven 

methods; we also include a section on methods that are beyond pure data comprehension purposes. 

We then classify colormapping techniques into a taxonomy for readers to quickly identify the 

appropriate techniques they might use. Furthermore, a representative set of visualization 

techniques that explicitly discuss the use of colormaps is reviewed and classified based on the 

nature of the data in these applications. Our paper is also intended to be a reference of colormap 

choices for readers when they are faced with similar data and/or tasks.

Index Terms
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 1 Introduction

COLOR vision is an important and fast channel for humans to acquire information. A 

colormap is a mapping from data values to colors that generates visual structures for the data 

[27]. Colormaps are commonly used in many domains in computer sciences, e.g., computer 

graphics, visualization, computer vision and image processing. In this paper, we focus on 

colormap generation techniques and applications in the visualization domain.

Colormaps play an important role in visualization as they are able to improve the efficiency 

and effectiveness of data perception and therefore allow more insights into the data. For 

example, colormaps are used in volume visualization as part of transfer functions [4]. 

However, to represent features of interest in a dataset, colormaps must be properly generated 

to allow correct and efficient comprehension. An ill-designed colormap may not provide 
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insight into the data. Whereas a good colormap can provide the user with better 

understanding and identification of features in their data. Colormaps are not just data 

dependent but also depend on the undertaken task. Therefore, it is crucial for visualization 

designers and users to understand colormap generation techniques as well as the general 

rules for choosing appropriate colormaps for specific data.

Silva et al. [89] provide an excellent review of the topic of colormapping in visualization, in 

which they briefly review colormap papers and provide guidelines for using those 

techniques. An extended survey [90] from Silva et al. is more comprehensive. They 

summarize factors to be considered in colormapping, e.g., data types, tasks, spatial 

frequency, and audience, and survey techniques indicating different design guidelines. 

Furthermore, they introduce existing colormapping tools that help the design of colormaps. 

Reviews of colormapping techniques can also be found in the book by Ware [109], in which 

color theories, perception issues are discussed, and colormapping techniques are introduced 

as applications of these theories. Telea [93] introduces colormapping techniques from a data 

point-of-view. Likewise, Munzner [77] reviews and discusses general colormapping 

techniques including some recent advances. However, these book chapters are not 

comprehensive surveys and are intended for introducing visualization concepts. In contrast, 

we strive to provide readers a more comprehensive survey, a clear taxonomy that can be used 

for choosing the appropriate techniques for specific data and tasks as well as visualization 

application examples that explicitly discuss colormapping. Bergman et al. [10] made design 

rules to generate specific colormaps. We group colormapping techniques in the taxonomy 

which is similar to theirs, however, the intention is different, as our taxonomy is meant to 

map the surveyed publications. The contributions of our paper are as follows:

• First, we provide a comprehensive review of colormap generation 

techniques including the latest advances.

• Second, a taxonomy is created for these colormap generation papers. The 

taxonomy is intended to help readers quickly choose the right techniques 

and specific papers to refer to based on the type of data and tasks they are 

working on.

• Third, we classify representative visualization techniques that explicitly 

discuss the use of colormaps. Readers are encouraged to fit their 

applications into the classification and apply colormaps similar to those 

described in the cited application papers.

The remainder of the paper is arranged as follows: in Section 2, the basics of color spaces 

and color perceptual issues are briefly covered. Section 3 reviews techniques of colormap 

generation and summarizes these techniques in a taxonomy. Visualization applications that 

explicitly discuss the design of colormaps are reviewed in Section 4. Finally, conclusions are 

drawn in Section 6.
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 2 Color Spaces

Color spaces are used to quantitatively represent actual colors. Numerous color spaces are 

proposed, and in this section we briefly introduce the most commonly used spaces to 

provide some background knowledge.

 2.1 Basic Color Spaces

Display devices utilize the combination of three channelsred, blue and green-to represent 

any color in an additive fashion [92]. Therefore, the combination naturally leads to the RGB 

color space, which is a cube where the coordinates represent the amount of red, green and 

blue channels, respectively. The cyan, magenta, yellow and black (CMYK) color space is 

used for printing devices due to the subtractive color nature of pigments [92].

However, these device-oriented color spaces are not easy to use. Ease of use is enhanced 

with cylindrical color spaces such as hue, saturation and value (HSV) and hue, saturation 

and lightness (HSL). Due to their convenience, HSV/HSL are utilized in color selection 

tools contained in many image editing tools (e.g., Adobe Photoshop, Microsoft Paint, etc.) 

as well as visualization applications (e.g., VisIt [30], Seg3D [33], etc.).

 2.2 Perceptual Color Spaces

The basic color spaces may be easier to understand and interact with, but they have no 

connections with human color perception. Humans have two types of color receptors in the 

retina: cones and rods. The cones are sensitive to normal light levels and rods are sensitive to 

low light levels. The trichromacy theory states that humans perceive colors through three 

types of cones-S, M and L-named after their sensitivity to different wave lengths [111].

The commission internationale de l’Eclairage (CIE) proposes the first quantitative 

perceptual color space: CIEXYZ [91] in 1931. The CIEXYZ space is based on the CIE 1931 
standard colorimetric observer and three color-matching functions x̄(λ), ȳ(λ) and z̄(λ), 

which are defined to approximate the three type of cones in the human retina for wavelength 

λ. These color-matching functions measure the chromatic response of the observer for 

different wavelengths. In practice, the transformed color space CIExyY is used for 

specifying colors. A projection of the CIExyY space onto the xy plane is called the CIE (x, 
y) chromaticity diagram, which is often utilized to visualize colors.

A major issue with the 1931 CIEXYZ color space is that it is not perceptually uniform. 

MacAdam [64] conducts color matching experiments for 25 locations in the CIE 1931 (x, y) 

chromaticity diagram to identify the color region around each location that cannot be 

distinguished by humans. The results are anisotropic ellipses (MacAdam ellipses [64]) of 

various radii for different regions in the color space. Colors inside each ellipse are perceived 

the same as the color at the center of the ellipse, and the contour of the ellipse shows the just 

noticeable differences (JND) in the color space. To make MacAdam ellipses more like 

circles, perceptually uniform color spaces are required.

The first perceptually uniform color space is proposed by Munsell [76]. Munsell forms an 

irregularly shaped discrete color space using three independent dimensions: hue, value and 
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chroma. Munsell’s color space is created by experiments and measurements of human 

perception to figure out perceptually uniform colors. This color space is later 

commercialized [75] and is still very popular. However, this color space is discrete and the 

colors inside the space are quite limited.

CIE proposes two perceptually uniform color spaces, CIEL*a*b* (CIELab) and CIEL*u*v* 

(CIELuv), in 1976. Both color spaces are transformed from the CIEXYZ space to achieve 

perceptual uniformity. The CIELuv space is calculated from the CIEXYZ with a different 

transformation [34]. An important feature of both color spaces is that the distance between 

colors can be measured [34] since the color spaces are roughly uniform.

 2.3 Human Color Perception Issues and Color Appearance Models

Color changes appearance under different viewing conditions and the color models 

discussed above cannot capture these changes. For example, simultaneous contrast effect, 

the background in which a stimulus is presented influences the apparent color of the 

stimulus (e.g., a gray stimulus appears brighter with a black background than with a white 

background [42]). With the Hunt effect, the perceived colorfulness for a constant chroma 

increases with luminance [42].

Researchers realize that color appearances cannot be modeled by only three variables. 

Therefore, color appearance models are proposed. Fairchild [42] provides a good 

comprehensive book on the topic. These models extend basic colorimetry (XYZ) to predict 

the appearance of stimuli (e.g., lightness, chroma, hue, etc.) in a variety of viewing 

conditions. Early works on the color appearance models include Hunt’s model [52], the 

model of Nayatani et al. [78] and RLAB [41]. These works converge as CIE takes the best of 

these models and proposes a simpler color appearance model CIECAM97s [35]. The 

CIECAM02 [74] model improves upon CIECAM97s and has become an industry standard 

for a color appearance model. The CIECAM02 model includes a chromatic adaption 

transform CIECAT02 and equations for computing appearance correlates of six terms: 

brightness, lightness, colorfulness, chroma, hue and saturation.

Fairchild and Johnson [43] extend the CIECAM02 model to the image color appearance 

model (iCAM). The iCAM framework is a robust image processing tool for color 

appearance, spatial vision effects (e.g., the simultaneous contrast effect), image differences 

and temporal effects. For technique details and the practical usages of the iCAM framework, 

readers are referred to [43], [70].

 3 Color Map Design

In this section, major colormap design techniques are reviewed. Based on characteristics of 

these techniques, we divide them into four categories. The four categories are colormap 

generation techniques specifically focused on addressing data perception problems, namely 

procedural methods (Section 3.1), user-study-based methods (Section 3.2), rule-based 

methods (Section 3.3) and data-driven methods (Section 3.4. In addition, as seen in Section 

3.5, we survey methods with focuses other than (or more than) data comprehension in which 

Zhou and Hansen Page 4

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



colormapping problems involved with aesthetics, energy saving and semantics are discussed. 

Then, we summarize these techniques and build a taxonomy for them in Section 3.7.

The most commonly used colormaps are 1D colormaps. 2D colormaps have been proposed 

for visualizing bivariate or multivariate data although they have to be used carefully as they 

can be difficult to interpret [24], [77]. An excellent survey of 2D static colormaps for 

multivariate data visualization is presented by Bernard et al. [11]. Examples of 2D 

colormaps can be found in [9], [18], [22], [24], [60], [81]. Here, our focus is on 1D 

colormap design techniques.

 3.1 Procedural Colormap Generation

Numerous techniques have been proposed for the generation of a default colormap as an 

attempt to aid our understanding of most datasets. Robertson and O’Callaghan [82] use 

Trumbo’s [100] order and separation rules as rules to construct perceptual univariate and 

bivariate colormaps. They emphasize the importance of perceptual uniformity of colormaps 

and propose to utilize perceptually uniform color spaces, e.g. CIELab and CIELuv, to build 

colormaps. Specifically, they utilize the CIELuv space and strive to make uniform spacing 

between colors, e.g., they avoid high curvature turns in the color space to avoid distant 

colors on the color path to have very close distance in the color space. Both 1D and 2D 

colormaps are proposed in their work; however, there are no examples of data using 

colormaps.

Levkowitz and Herman [61] introduce their standards for a good colormap, namely order, 
colors should have perceptual orders in a colormap; uniformity and representative distance 
in which perceived color distances should match actual differences between the data they 

represent; and boundaries where colors should not create false perceived boundaries in data. 

Based on these standards, they propose a linear optimal colormap by maximizing the just 

noticeable differences JNDs between colors in the colormap. Specifically, they measure the 

sum of JNDs between neighboring colors in a black to white colormap in the CIELuv space. 

Next, the summed JNDs are maximized and linearized to make the distances of colors in the 

CIELuv as equal as possible. In an evaluation using medical scan images, they find that 

observers perform better with the linear optimal color scale than the previously advocated 

heated-object colormap, but both colormaps are inferior to a linearized grayscale colormap. 

They provide a twofold explanation of their results: first, perceived color changes due to a 

color’s surround are not taken into account and second, the CIELuv space is not adequate 

for modeling perceived uniformity. As such, they realize that depending on different 

circumstances, different colormaps are superior to others and therefore several candidate 

colormaps should be provided to the user. Some of the methods in Section 3.3 are based on 

this result. Pham [79] proposes a method that utilizes B-spline curves and surfaces to 

generate univariate, bivariate and trivariate colormaps. The author examines existing 

colormaps and argues that these methods rely on simple geometry in color spaces that 

restrain predefined color paths and are not good for perceptual reasons. Instead, the author 

proposes to use cubic B-spline curves and surfaces in the CIELuv space to design more 

flexible and perceptual colormaps.
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Ware [108], [109] points out that the nonuniformity of colormaps is a minor source of error 

compared to other human perceptual issues (Fig. 1).

He proposes two goals for 1D colormaps: metric reading (metric comprehension), which 

enables users to accurately read absolute values in data, and form reading (form 

comprehension), which enables users to correctly perceive the shape. Further, he expects 

that a spectrum approximation colormap (rainbow) should be good for metric 

comprehension because humans can distinguish the multiple hues in such a map easily 

whereas a gray-scale colormap would be bad because of the simultaneous contrast effect. 

For form comprehension, Ware suggests that the opposite holds where a rainbow colormap 

is bad because it creates false color gradients that may be misleading whereas a gray scale 

colormap would be ideal because luminance is the most effective channel for shape 

perception. To test these hypotheses, Ware conducts user studies to confirm his assumptions. 

He also realizes it is possible for humans to switch their attention back and forth between 

hues and luminance. Therefore, he creates a lightness increasing spectrum approximation 

colormap, which makes a good trade-off between the metric comprehension task and the 

form comprehension task. This colormap is suggested as a good default colormap.

More recently, Moreland [73] proposes a diverging colormap that is a good compromise 

between metric comprehension and form comprehension and suggests it as a default 

colormap for scientific visualization. The diverging colormap is generated by interpolating a 

light blue color in the beginning with a color close to white in the center and a light red color 

at the end. The interpolation takes place in a so-called Msh color space, which is a spherical 

representation of the CIELab color space to make the color changes smoother. Examples 

comparing this new colormap to other colormaps, e.g., gray-scale, rainbow, heated body and 

isoluminant on both 2D images and 3D surfaces, show that the proposed colormap performs 

well in the example circumstances. This specific colormap is included in the visualization 

package ParaView [48] and has seen extensive use in visualization applications, as will be 

seen in Section 4, as the default mapping.

 3.2 User-Study-based Colormap Generation

Some methods in the previous section utilize user studies to evaluate the effectiveness of 

proposed colormaps. Other methods, however, directly conduct user studies and learn 

colormaps from users.

Healey [45] proposes a systematic method for choosing effective colors that provide good 

discrimination between data values in discrete colormaps. The method first computes the 

maximum inscribed circle from an isoluminant slice in the CIELuv space and then chooses 

colors that are equally spaced around the circle, to ensure equal color distances between a 

color’s two nearest neighbors and a constant linear separation from other colors. Healey then 

conducts user studies to test the maximum number of colors that still provide good 

separation. Specifically, the author designs four user studies that test the response time for 

finding a target color with the presence of three, five, seven and nine colors, respectively. In 

each test, every color in the chosen colors is tested as a target and the response times for 

various sizes of stimuli with the absence and appearance of that color are recorded. From 

these studies, it can be shown that users have no difficulty with three and five colors but have 
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significant difficulty with seven and nine colors. Healey also realizes color distance and 

linear separation are not enough to define colors that constantly produce good target 

identification. As such, he takes color category into account and segments the circumference 

of the maximum inscribed circle into 10 color categories identified by a previous method 

[46] rather than equally placed. To derive a maximum numbered color scheme, Healey 

studies one particular seven-color scheme that yields good response time. Based on further 

user studies of color similarities and response times, the seven-color scheme is optimized 

and a color selection scheme for these seven colors is proposed. The resulting colormap is 

then evaluated on a medical CT image where a small feature can be better perceived with the 

improved seven-color map compared to the original col-ormap as well as a gray-scale 

colormap.

With a properly designed user study, humans can easily determine the correct colors and 

luminance. Rogowitz et al. [83] propose a so-called the “Which Blair Project”, which is a 

user-study-based method to evaluate perceptual (increasing) luminance monotonicity of 

colormaps. It is desirable to have luminance monotonicity in a colormap as it preserves the 

perceptual ordering of data, and the higher the contrast in luminance in a colormap, the 

better that colormap represents absolute values in data. Rogowitz et al. let observers rate the 

naturalness of a gray-scale human face stimulus colored with a sequence of small segments 

of colors from eight commonly used colormaps. The rationale behind this test is that if a 

segment of colors preserves the relative brightness variation in the original face image, then 

this segment of colors is luminance monotonic. If all segments of colors in a colormap 

preserve the correct relative brightness variation, then this colormap is said to have 

luminance monotonicity. The user study results confirm the authors’ assumption of a 

positive correlation between the luminance monotonicity of colors and the naturalness of 

pseudo-colored face images. Also, in these tests, the degree of distortion from the natural 

looking image appears to be proportional to the distortion from luminance monotonicity. 

This work is successful because humans are very sensitive to luminance variations in human 

faces.

Kindlmann et al. [55] propose that the idea of Rogowitz et al. [83] can be further extended to 

create a perceptual colormap (Fig. 2). They propose to use a double face stimuli, which is a 

binary black and white face image and its black with white reversed copy placed side-by-

side. Human brains can easily judge the “positive” face from the two faces. To match 

luminance, the authors replace the black with a certain shade of gray and the white with a 

certain color. Here, the users are given a series of double face stimuli of evenly increasing 

luminance in six major hues: red, cyan, magenta, yellow, green and blue. The users are 

asked to identify the luminance when the “positive” face turns from left to right for each 

hue. From this user study, the optimal luminance of each hue can be determined and used to 

create perceptual colormaps. Two colormaps are designed by interpolating the colors found 

in the user study: a perceptual isoluminant rainbow colormap and a monotonically 

luminance increasing colormap. A 2D image example is utilized to show the isoluminant 

colormap is helpful to aid data value comprehension. Thanks to the perceptual power of 

humans, the luminance matching is done very efficiently and accurately under the user study 

designed by the authors.
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 3.3 Rule-Based Colormap Selection

Many accepted rules of human perception of colors are to be found in the field of 

psychology. These rules raise conflicting goals for colormaps [108], [109] and therefore 

researchers conclude that an attempt to find a default colormap that would work for all 

datasets may be infeasible. Instead, researchers utilize these rules to propose rule-based 

methods to generate colormaps for different data and tasks.

Trumbo [100] proposes four rules for color mapping bivariate statistical maps, namely, R1. 

order, R2. separation, R3. rows and columns and R4 diagonal. The first two rules apply to 

general colormapping problems and have become important principles for colormap 

research. According to R1. order, colors chosen to represent statistical variables should be 

perceived as preserving the order. R2. separation states that colors for important differences 

in statistical variables should be perceived as different. Rules R3 and R4 specifically deal 

with bivariate colormapping cases. Trumbo also provides examples of 1D and 2D colormaps 

that meet the rules he proposed.

Pizer and Zimmerman [80] argue that the gray scale colormaps have three weaknesses: 1) 

the eye is not sensitive to many distinct gray levels, 2) the eye has relatively low sensitivity 

to gray scale contrasts, which makes it difficult to visualize changes, and 3) the gray scale is 

1D and cannot be used for encoding multivariate data. They claim that color has advantages 

for all these objectives, and describe four rules for colormapping: 1) sensitivity, the color has 

to be distinct, 2) naturalness of the color order, 3) the associability of nearby colors in the 

colormap, and 4) perceptual linearity. The authors then go on to evaluate colormaps applied 

to ultrasound imaging via user studies. From the study result, they conclude that the heated-

object colormap is the map of choice for medical imaging, whereas grayscale colormap has 

poor sensitivity, the margenta colormap is somewhat garish, and the rainbow colormap is 

unnatural.

Bernard et al. [11] present a survey and task-based quality assessment of static 2D 

colormaps. The authors reimplement 2D colormaps in over 50 related works. Then, the 2D 

colormaps are grouped into two classes: static 2D colormaps and 2D colormaps intended for 

bivariate data-sets. The focus is on static 2D colormaps, and therefore, the authors exclude 

colormaps for bivariate datasets. A set of rules are formed where quality assessment 

measures are mapped on seven different analysis tasks. The authors calculate detailed 

quality information of every static 2D colormap across all quality assessment measures. 

From these results, suggestions, depending on the task, for the choice of 2D colormaps are 

included in the survey.

Bergman et al. [10] study the tasks of visualizations that utilize colormapping and build a 

taxonomy for colormaps for different tasks and data types. They follow the commonly 

accepted classification of data into four classes: nominal, discrete data that has nonordered 

tags; ordinal, discrete data with ordered tags; interval, continuous data where the differences 

between values are meaningful; and ratio, continuous data with all the properties of interval 

data and has absolute zero. In this paper [10], the authors specifically study the interval and 

ratio data and in an extended web-based version, they expand their rules to all four classes of 

data. They identify three tasks for colormaps in visualization: isomorphic, to faithfully 
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represent form in data; segmentation, to show features in discrete colors; and highlighting, 

which focuses on certain areas with colors. Also, they emphasis the importance of spatial 

frequency in colormap design and classify data into low and high spatial frequency. For each 

combination of data type, visualization task and data spatial frequency, the authors make 

colormap design suggestions. Examples of colormaps designed following these rules are 

applied to both 2D and 3D data and compared against colormaps that do not follow these 

rules. Based on this taxonomy, a system called PRAVDA is implemented to aid visualization 

users. The PRAVDA system guides users to appropriate colormaps for given data types, 

tasks and spatial frequencies, and the system further allows users to interactively edit 

colormaps to better visualize their data. In a related paper, Rogowitz et al. [85] provide a 

more detailed explanation of their taxonomy and explain how a rainbow colormap can be 

misleading in visualizations. They summarize by stating that the rainbow colormap creates 

perceived contours that may not exist in the data, and that structures that fall within such 

false contours would not be represented. Finally, the yellow areas capture attention because 

of their high brightness and not because they are important.

The rainbow colormap provides excellent metric comprehension ability [108], [109] and 

creates aesthetically pleasing visualizations, and, more importantly, is accepted as the 

standard colormap by many domain users. As such, it is widely adopted by many 

visualization applications as the default colormap. However, the rainbow colormap has 

several important flaws that may lead to misinterpretation of the data. Although the 

shortcomings of the rainbow colormap have been studied and well documented in a number 

of papers (e.g., Ware [108], Rogowitz et al. [85]), visualization designers and users are 

generally not well aware of them. To raise the awareness of visualization researchers and 

users on this issue, papers specifically discussing how rainbow colormaps can be misleading 

have been published. Rogowitz and Treinish [84] illustrate the downsides of the rainbow 

colormap through examples of 2D and 3D data. They find that the rainbow colormap can 

hide small details in data and create artificial boundaries, which can greatly bias the 

perception of structures in data and further lead to misinterpretation of data. Their solution is 

to build perceptual colormaps with a focus on visualization tasks and the spatial frequency 

of the data. The PRAVDA system is recommended by the authors to achieve such 

colormaps, which are better than the rainbow colormap.

Borland and Taylor [16] list three aspects of how a rainbow colormap can be misleading 

using 2D synthetic data examples: has no perceptual order, hides details and creates sharp 

boundaries that are not in the data. Some suggestions are provided to create colormaps for 

different data types such as using a heated body colormap for high frequency ordinal data, 

isoluminant colormaps for 3D surface visualization and colors with equal bands along with 

iso-contours for continuous data visualization. The authors admit that there is not a single 

best default colormap, but several colormaps should be provided to users from which to 

choose. To educate readers about how widely the rainbow colormap is used in visualization 

despite studies repeatedly reporting its shortcomings, the authors further give the statistics of 

the appearance of the rainbow colormap in papers of visualization conferences from the 

years 2002 through 2007. The authors find an increasing number of studies using the 

rainbow colormap. Fortunately, visualization researchers have become aware of the choice 

of colormaps, and the visualization community has made significant improvements in 
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carefully choosing appropriate colormaps according to the data and tasks, as will be seen in 

Section 4.

More comprehensive task-based colormap generation has been studied by researchers. 

Rheingans [81] realizes that there is no best colormap for all datasets. She summarizes 

existing univariate and bivariate colormaps and then proposes rules for choosing colormaps 

by considering several factors: the goals, the nature of the data, the intended audience, the 

whole visualization and cultural connotations. Tominski et al. [96] propose a more 

sophisticated and systematic task-driven colormapping technique considering the 

characteristics of the data, tasks and goals as well as the user (Fig. 3). Based on a formal 

hierarchical task typology [3], Tominski et al. choose different colormaps according to four 

tasks: lookup, comparison, identification and localization, and data characteristics. 

Histogram equalization and Box-Whisker plot adaption have been proposed to better adapt 

colormaps to data. Furthermore, interactive refinement methods for colormaps are provided 

to allow users to generate colormaps that better fit their own needs.

Brewer [22], [23], [24] proposes a set of perceptual discrete colormaps that can be grouped 

into four categories: qualitative, binary, sequential and diverging. The colormaps are 

carefully designed in a perceptual color space, namely HVC (Hue, Value and Chroma) color 

space, which is a Munsell-like [75] color space. Unlike the CIELab or CIE-Luv spaces, the 

HVC color space is a discrete colormap that can be easily converted into the RGB or the 

CMYK color spaces used by digital devices. In an earlier work, Brewer labels the Munsell 

color space with CMYK value combinations and utilizes the tagged color space to design 

quantitative colormaps [21]. In [23], Brewer proposes a systematic approach to generate all 

four categories of colormaps.

The specific color paths in the HVC color space are also proposed in [23]. In [22], Brewer 

proposes guidelines for colormaps for different datasets. Based on map data with different 

sociological statistics laid over it, the author summarizes good colormaps for different data 

and emphasizes that users should apply their knowledge of data to the colormapping 

process. She gives detailed hue, lightness and saturation usage advice for colormaps in 

different situations for univariate and bivariate maps. Specifically, she discusses qualitative, 

binary, sequential and diverging schemes for the univariate cases, whereas qualitative/ 

binary, qualitative/sequential, sequential/sequential, diverging/sequential, diverging/

diverging and diverging/ binary are discussed for bivariate maps. Colormaps generated by 

Brewer may be better candidates for default colormaps compared to a rainbow colormap or a 

gray-scale colormap as Brewer pays much attention to reducing the simultaneous contrast 

effect for metric comprehension and enables good form comprehension at the same time. 

The method has been implemented in an online tool by Har-rower and Brewer [44] to 

facilitate colormap users (Fig. 4).

The tool suggests appropriate colormaps for a given number of data classes. The user can 

compare these colormaps on a US census data. Further, appropriate colormaps for CRT 

monitors, LCD displays, color printing and colorblindness are also suggested by the tool. 

Finally, the user can easily export colormaps and use them in their own applications either in 

their original discrete form or as interpolation nodes for continuous colormaps [73]. Because 
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of the carefully designed colormaps and the easily accessible colormap tool, Brewer’s 

colormaps are now very popular in the visualization field as will be seen in Section 4.

Wijffelaars et al. [110] realize that the number of colormaps designed by Brewer is large but 

finite and the colormaps lack flexibility as they are manually designed. The authors therefore 

propose a more automated colormap generation method for single-hue and multihue 

sequential and diverging colormaps by Brewer’s definition. The method automatically 

generates paths from a set of intuitive parameters in a simplified displayable CIELuv color 

space with a customized distance function. An intuitive user interface is proposed that 

enables users to design colormaps that are similar to ones designed by experts. A user study 

has been conducted that shows the effectiveness of the method. Results from this method are 

close to those generated by Brewer.

The work of Zeileis et al. [112] is also inspired by the ColorBrewer tool [24], [44]. Here 

[112], the authors propose that colormaps fall into the three types suggested by Brewer, 

namely qualitative, sequential and diverging, for statistical maps. Instead of predefined 

discrete colormaps as in ColorBrewer, Zeileis et al. propose more general principles for 

constructing colormaps with paths in the perceptual HCL color space, which is derived from 

the CIELuv space. The authors show examples using the proposed colormaps and also 

discuss the implementation in statistical computing environments.

Some researchers study more specific rules of colormaps used in certain circumstances. 

Wang et al. [106] study the discrete colormap design for illustrative visualization. They 

summarize effective usage of colors from previous research and identify eight goals for 

colors in illustrative visualization. An equal-lightness path and an equal-hue path are 

computed in the hue, saturation and lightness space derived from the CIELab color space. 

They then propose methods to meet the eight rules based on the importance of objects 

determined by the user. Moreover, they study and propose methods to improve perception 

and to reduce false hues generated from color blending. Examples of both 2D and 3D 

visualizations are shown to demonstrate the effectiveness of their methods. Wang et al. 

further conduct a user study to evaluate the usefulness of their methods.

The methods above introduce rules for general colormap design. Borland and Huber [15] 

further discuss guidelines for designing effective colormaps for specific data and questions. 

They describe a collaborative process between a visualization designer and a domain expert 

designing highly tailored colormaps for three 2D scalar fields extracted from a unstructured 

3D vector data each to answer a specific question that interests the domain expert. 

Interestingly, the colormaps they design are quite unorthodox and somewhat violate 

colormapping rules in visualization (e.g., not following perceptual ordering), but they 

adequately match the needs of domain experts. The important lesson here is that generic 

colormapping solutions are useful for providing first impressions to domain users but to 

achieve truly effective visualization, colormap design should be driven by the data and 

domain users’ knowledge of the data.

Real-world applications may require a combination of several tasks for colormaps. 

Mittelstädt et al. [71] propose a series of suggestions for combined tasks of colormapping. 
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The authors point out that previous colormapping methods usually support only a single 

task, and exclude the visualization expert from the loop. The authors define requirements for 

analysis tasks and their combinations, form quality metrics for 1D colormaps to support 

these requirements, and also provide color-blind safe colormaps for each task combination. 

An interactive system, ColorCAT, is implemented to realize these rules. More importantly, 

this system integrates the visualization expert in the design of colormaps, and the authors 

argue that such complex combined tasks forbid automatic methods and interactivity is the 

key to address this issue.

 3.4 Data-Driven Colormap Generation and Optimization

Most of above works discuss the generation of colormaps regardless of underlying data, 

although some works (e.g., [16], [85]) mention the importance of designing colormaps for 

specific data and [85], [96] provide interactive tools for that purpose. These general rules are 

problematic in many cases as interesting features are given inappropriate color ranges, and 

makes them hard to perceive and may interfere the first impression of the data, making 

further exploration and analysis difficult. In this section, automated methods that generate or 

optimize colormaps based on underlying data are surveyed.

 3.4.1 Colormap Transformations—Schulze-Wollgast et al. [88] propose to extract 

statistical metadata from a dataset and automatically generate colormaps that map color 

ranges to the population of the data using linear, exponential or logarithmic mapping 

function. Eisemann et al. [40] introduce a simple interpolation scheme for colormap design 

that emphasizes outliers on 2D map visualizations. The authors compute the projection of 

data onto a diagonal axis spanned by the smallest and largest elements found in the data and 

use this projected value along with a user specified angle to interpolate nodes in colormaps. 

With a higher angle value, outliers are emphasized at the cost of reduced differences for 

other regions, whereas a lower angle value leads to better discrimination but loses absolute 

scale information.

Thompson et al. [95] propose a technique to generate colormaps that essentially match the 

slope of colormaps to the underlying data by sampling volumetric data (Fig. 5). A proof is 

provided to show that the method gives a sufficient number of samples to capture important 

features in the volume. The key observation is that without matching the slope of the 

colormap to the data, small features are hard to perceive as they are surrounded by regions of 

a similar color, i.e., the simultaneous contrast effect. Both works extend the idea of Tominski 

et al. [96] in which they emphasize the importance of transforming the colormap to enhance 

the comprehension of forms in the data.

A more in-depth and general analysis of colormap transformations is discussed in Bertini et 

al. [12]. The authors analyze shortcomings of previous density mapping techniques for 

continuous colormaps: 1) linear mapping, 2) density function mapping, and 3) histogram 

equalization. Two drawbacks are found with these techniques: increasing the number of 

density collisions and reducing the number and range of used color tones. The authors then 

propose a two-step mapping procedure that first splits the frequency distribution into 

intervals, and then assigns each interval a color scale value. Examples of 2D datasets 

Zhou and Hansen Page 12

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



demonstrate that the proposed method is able to show more density variations compared to 

previous methods. Furthermore, qualitative metrics, which are calculated in a case study, 

demonstrate the effectiveness of the method.

 3.4.2 Discrete Colormaps for Particular Data Types—Wang and Kaufman [105] 

propose an importance-driven automatic colormap design technique for direct volume 

rendering. The user is able to specify the importance of each classified object in a volume 

rendered image and then an objective function is set up based on user-selected importance to 

assign colors to the objects to convey their importance. The objective function measures a 

rendered image, and takes object importance, separability, attentiveness of colors and 

distances of object colors as well as color harmony into consideration. An optimized 

objective function for colormapping along with an importance-based opacity mapping yields 

rendered images that improve the perception of important objects, as a user study shows.

Tennekes and de Jonge [94] propose a novel method for coloring tree-structured data. The 

method assigns each node in a tree with colors from the HCL (hue-chroma-luminance) color 

space. The colors satisfy three criteria for effective color perception: 1) all colors are unique, 

2) the colors reflect the parent-child relationship, and 3) the colors encode the hierarchical 

depth. The method also allows parameter tuning to achieve better visualizations for specific 

datasets. A formal user study with 98 participants is conducted, and the study result 

demonstrates that Tree Colors enhances the understanding of hierarchical data visualization.

 3.4.3 Perceptually-Based Optimization—Lee et al. [58] propose an automated 

optimization method to improve categorical data perception on 2D map datasets (Fig. 6). 

Color appearance changes with different spatial context. This issue has been studied 

extensively as shown in Section 2. However, previous studies have not taken spatial 

information into account and therefore cannot address the color appearance issue. In [58], 

the authors define a point saliency measurement that computes the difference between the 

color of a pixel and the averaged color of its neighborhood in the CIELCH color space, 

which is a cylindrical representation of the CIELab space. Next, a class visibility metric is 

calculated as a weighted sum of point saliences of all pixels that belong to this class. Then, 

class visibilities of all classes are optimized in order to highlight classes that have smaller 

regions embedded in other classes. Specifically, an energy function that measures the sum of 

differences between the visibility of each class against the mean visibility of all classes is 

formulated and minimized using a GPU-based conjugate gradient method.

Mittelstädt et al. [70] study the simultaneous contrast effect and propose methods for 

compensating such an effect. The idea is that, simultaneous contrast makes regions of the 

same color look different but by setting these regions with different colors, it is possible to 

make their perceived colors the same or very close. The methods they propose first compute 

the perceived image based on predictions of the simultaneous contrast effect using a 

customized color appearance model. Cost functions are set up to measure the differences 

between the perceived image and the original image. Cost functions are then optimized to 

minimize the differences between the perceived image and the original image. To better 

measure the color appearance, the authors extend the iCAM color appearance model [43] by 

modifying parameters. The authors identify two tasks for colormapping on 2D images, 
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namely, the elementary task and the synoptic task, and formulate different cost functions to 

handle these tasks. They then utilize a weighted sum of cost functions to form a uniform cost 

function for different tasks. A heuristics-based approximation approach is designed for the 

optimization of cost functions. To examine the effectiveness of the method, the authors 

conduct two user studies. The study results suggest that the proposed compensation methods 

could improve the accuracy of metric comprehension in 1D colormapped data. Furthermore, 

applications on real data are examined and demonstrate the effectiveness of the method. 

Images are perceived significantly different by users. Therefore, Mittelstädt and Keim [72] 

further improve the performance of contrast compensation by introducing a personalized 

perception model. The method also improves over the original method in runtime, such that 

it runs interactively.

 3.5 Beyond Data Comprehension

Researchers also focus on colormap design techniques for purposes beyond pure data 

comprehension.

 3.5.1 Aesthetics—How to choose natural and visually pleasing color schemes for 

images is an important topic in computer graphics ( e.g., [36], [103]). It is also important in 

visualization as humans look at visually pleasing representations with more care, which may 

lead to more insights gained from a visualization.

One application already being used in visualization is color harmonization proposed by 

Cohen Or et al. [36]. Cohen Or et al. [36] study the color harmonization theory and propose 

an optimization method to harmonize the colors used in an image. The resulting method is 

able to recolor an image into a harmonic scheme that looks natural and realistic. Wang and 

Muller [107] extend the work of [36] to preserve lightness in the harmonization scheme and 

apply it on volume visualization (Fig. 7). They propose to compute iso-lightness curves for 

hue slices in an HSV (hue, saturation and vividness) color space, which is transformed from 

the CIELab space. The colors change only on their corresponding iso-lightness curves when 

transformed into harmonic schemes. The lightness-preserved harmonic schemes allow better 

contrast for highlighting features that are important in the volume visualization. Wang and 

Kaufman [105] utilize color harmonization for assigning colors to 3D structures based on 

their importance. The aforementioned work of Wang et al. [106] also takes aesthetics into 

account in the design of discrete colormaps for categorical data. For example, they utilize 

vivid colors to focus attention on specific structures, and they use high-saturated colors for 

interior structures, whereas low-saturated colors for outside structures to make the interior 

structures stand out. Moreover, they study the color blending schemes to avoid opposing 

colors canceling each other, and propose optimization approaches to better preserve the 

ordering of overlapping structures.

 3.5.2 Energy Awareness—Energy consumption is an increasingly important topic in 

computer science as a result of the demands for longer battery life for mobile devices, the 

lower energy cost of desktop computers as well as the increased environmental awareness of 

the whole society. For visualization, the need for lightweight methods to examine 

visualization results (e.g., physicians would like to use mobile devices to quickly check a 
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patient’s CT scan) is growing and with the increasing computational power of mobile 

devices, many computationally intense visualization techniques have gone mobile [31], 

[113]. The display system of an electronic device is a major consumer of electricity, 

especially for the smart phones whose display is the biggest consumer of battery power [28]. 

Older displays (e.g., CRTs and LCDs) consume approximately constant energy for 

displaying any color. Emerging display techniques (e.g., OLED) allow variable energy 

consumption for different colors and researchers therefore have been striving for color 

mapping techniques that consume less energy without sacrificing the quality of perceived 

colors. Chuang et al. [32] propose two energy-aware colormap design techniques based on 

the CIELab space to reduce energy consumption of screen space variant energy displays for 

visualization applications. The first technique is based on the optimization of a set of 

discrete hues that is easily distinguishable as suggested by Healey [45]. The energy 

consumption of these colors are analyzed and an optimal scheme for minimizing energy is 

calculated. A second approach is based on constrained continuous optimization of color 

energy for lower overall color energy consumption. The authors compare their techniques to 

traditional color schemes (Color-Brewer [44] for 2D example) and typically achieve a 40 

percent energy savings. Wang et al. [104] introduce energy-saving color schemes 

specifically for sequential data visualization on OLED screens. Color schemes are found by 

a multi-objective optimization approach that minimizes the power consumption of the whole 

display and maximizes a color perception distance term which measures the distance 

between the starting color and the ending color in the sequential colormap proposed by 

Wijffelaars et al. [110] in the CIELCH space. Experiments are performed to measure the 

energy consumptions of their proposed approach on colormaps from [44], applying a 

treemap visualization that results in a reduction of 17.2 percent of energy.

 3.5.3 Semantics—Humans associate colors with semantics. If the visualization 

correctly matches the cultural background of visualization users, the resonance of colors and 

their semantics allow humans to gain insights more efficiently. In contrast, contrasting 

textual and color cues (e.g., use red color for the word ‘green’) greatly hampers 

understanding and humans take longer to understand; such an effect is called the Stroop 

effect [67]. Lin et al. [62] propose a method to select semantically resonant colors for data 

visualization. The idea is that given a set of colors and a set of categorical values, the 

method is able to assign the optimal color for each categorical value. Specifically, they first 

conduct web searches for categorical values (key words) in the data and compute an 

aggregate color histogram for each search result for analysis. A color probability for each 

color is then calculated based on the color histogram by measuring the conditional 

probability and the entropy. The color is then assigned for a categorical value based on an 

affinity score computed from the color probability. To validate the method, formal user 

studies are conducted and the results show that, first, with the resonant color, users are able 

to identify a category faster and, second, the color assignment result is close to crowd-

sourced assignment results.

 3.6 Color Vision Deficiency

Color vision deficiency (CVD) is the inability to distinguish certain shades of color or in 

more severe cases, see colors at all. The spectral response of each type of cone (S, M, and L) 
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in the eye is defined by the specific type of photopigment it contains [66]. If a given 

photopigment changes its spectral response, it is called anomalous trichromacy. Dichromacy 
is caused by the absence of one of the photopigments. It can be further classified, for 

anomalous trichromacy and dichromacy respectively, into protanomaly, protanopia, or red-

green weakness/blindness (less sensitive to red), which is caused by L cones, deuteranomaly, 
deuteranopia, or the second type of red-green weakness/blindness(less sensitive to green), 

which is caused by M cones, and tritanomaly, tritanopia, or blue-yellow weakness/blindness 

(S cones). Monochromacy, a much rarer deficiency, results from the existence of only a 

single kind of photopigment or no photopigment at all.

Approximately 7.9 percent of Caucasian men, 4.2 percent Asian men, and 2.6 percent 

African men, and 0.42 percent of Caucasian women, 0.58 percent Asian women, and 0.54 

percent African women are affected with color vision deficiency of some kind, and their 

ability to carry out visualization tasks with colors may be compromised [66].

To improve visualization experience for people with CVD, Brettel et al. [20] propose a 

method to first simulate color perception dichromats for observers with normal vision. The 

method treats colors as vectors in a long-wavelength, middle-wavelength, and short-

wavelength (LMS) space, and transforms color vectors from normal-vision gamut into 

gamut of color-vision deficiency based on previous physiological studies. The model is able 

to handle three types of vision deficiencies, protanopic, deuteranopic and tritanopic vision. 

Simulation results of a mosaic image are evaluated by a protanope and a deutranopic who 

both consider the simulations are close matches to their perceptions of the original image. 

Machado et al. [66] propose a physiologically-based model for simulating color perception. 

The model unifies normal color vision, anomalous trichromacy, and dichromacy in a robust 

framework. A controlled user experiment is conducted to demonstrate that the results created 

by the model closely matches the perception of people with color-vision deficiency. 

Furthermore, the method is equivalent or superior to current models for simulating 

anomalous trichromacy and dichromacy perceptions.

Based on these simulated CVD models, researchers have proposed methods to enhance 

visualizations for people with CVD. One approach is to recolor an image to improve color 

perception. An efficient method proposed by Kuhn et al. [56] automatically recolors an 

image to highlight important visual details that are unable to be noticed by dichromats (Fig. 

8). The method preserves the naturalness of original colors as much as possible while 

increasing color contrast for better perception by dichromats. The method can be 

implemented on the GPU. The method is evaluated by paired-comparison with people with 

color-vision deficiencies and the effectiveness is validated. Machado and Oliveira [65] 

propose an automatic real-time image-recoloring technique that guarantees temporal 

coherence. The method has a computational cost that varies linearly with the number of 

image pixels. A comparison against state-of-the-art methods demonstrates that the proposed 

method has comparable quality, but is two orders of magnitude faster. Patterns are also 

utilized to encode color information for people with CVD. The method of Sajadi et al. [86] 

overlays a colormap with patterns, so that dichromats are able to better comprehend the 

values in the data, while original colors are preserved for normal trichromats. Two user 

studies are performed to validate the effectiveness of the method. From the studies, overlaid 
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patterns not only help dichromats but also aid normal trichromats as an extra cue. The 

method is implemented easily on the GPU for real-time performance.

 3.7 Summary of Methods

The colormap generation papers we have reviewed are classified into a taxonomy as shown 

in Fig. 9. In this graph, the papers are laid out in a taxonomy based on types of data and 

tasks. Visualization tasks have been systematically studied by Andrienkos [3], and more 

recently by Brehmer and Munzner [19]. Both focus on typologies that are able to describe 

complex visualization tasks using tasks decomposition and hierarchical decomposition and 

are good for design studies. However, the full task description is overly complex for our 

purpose, and therefore we specifically adopt the following tasks: localization, identification, 
comparison. These tasks have seen usage in colormapping work by Tominski et al. [96], and 

more recently by Mittelstädt et al. [71]. Mittelstädt et al. describe these three tasks: 

“localization is performed when the user wants to see where specific objects are located 

within the data. Identification is performed when the user browses or explores the data and 

reads values from color encoded objects on the screen.” A comparison task is used to 

compare multiple visual encoded objects, and to perceive and understand the relative and 

absolute differences. Ware [108], [109] refer the absolute comparison task as shape reading, 

whereas Bergman et al. [10] refer it as authenticity. Moreover, combined tasks [71] is where 

two or more of comparison, localization, or identification are used in a specific application. 

Each paper is represented by a tag whose shape and color determine the property of the 

paper. The shape of a tag indicates the class of the approach of that paper: chevron for 

procedural papers, scroll for rule-based papers, glasses with documents for survey papers, 

microscope and documents for user-study-based papers, and disk for data-driven techniques. 

The color and hatching of a tag represents the data examples: blue means that the paper 

handles both 2D and 3D data, white indicates 2D data only, black indicates 3D data only, 

dark red is used for 2D examples while others applied to 3D. Some papers do not have 

examples; nevertheless, we use green diagonal hatching to represent that the method is 

suggested for 2D data and brown horizontal hatching for methods that are suggested for both 

2D and 3D data. Furthermore, we pay special attention to methods that handle small 

features, and use a check icon on the right top corner of the paper icon to indicate.

Except for the decision rules category, all leafs of the taxonomy represent papers that 

introduce new colormaps or colormap transformation/optimization techniques. Given a 

dataset, there are a number of papers on rules ([10], [15], [16], [22], [23], [44], [71], [81], 

[84], [85], [96], [100]). for determining which colormaps should be used.

In our taxonomy, the first step is to determine whether to visualize data with a discrete or 

continuous representation. For discrete representation, it is necessary to identify if the data is 

nominal or ordinal. For nominal data, if data comprehension is the only purpose, techniques 

can be found for different tasks. Some techniques exist for purpose beyond data 

comprehension, for example, aesthetics [106], [107], semantics [62], and energy awareness 

[32], [104].
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If the data is visualized as continuous, there is usually not a distinction between interval and 

ratio data. For data comprehension purposes, combined tasks can be grouped as localization 

+ identification, localization + comparison, and identification + comparison.

Colormap transformations [12], [40], [88], [95] can be performed to improve small feature 

perception. Perceptual optimization can be performed once the initial colormap is selected.

Care should be taken for people with color vision deficiencies, and several techniques [56], 

[65], [86] exist for enhancing colormaps for CVD.

 4 Colormap Applications

The applications of colormap are numerous in a wide spectrum of various communities. 

Here, we discuss a representative set of works in the visualization community that explicitly 

discuss how colormaps are created and used for specific applications. We place applications 

into the aforementioned tasks (Section 3.7), i.e., localization, identification, comparison, 

identification + localization, identification + comparison, localization + comparison, to 

analyze colormaps in each manuscript surveyed. Images from some of the works discussed 

below are summarized in Fig. 10.

 4.1 Scientific Visualization

Scientific visualization is the subarea in the visualization community that visualizes data that 

has spatial information in a physically meaningful sense. The most commonly visualized 

data for scientific visualization are 2D and 3D scalar field, 2D and 3D vector field and 

ensemble data from many simulation runs or from sensors over time.

 4.1.1 Scalar Field Visualization—For scalar field data, there are one or more scalar 

values at a location. It is critical to set proper colormaps for the users to comprehend the 

data.

Many applications show 2D scalar field data with colormaps. Borkin et al. [14] evaluate 

different techniques on artery visualizations for heart disease diagnosis and specifically test 

the effectiveness of different colormaps, including the rainbow colormap and diverging 

colormaps from the ColorBrewer tool on 2D for the detection of low endothelial shear stress. 

The purposes of the colormaps are to localize and compare low endothelial shear stress 

regions. Malik et al. [68] design methods to visualize and compare different scalar fields of 

high-resolution industrial CT scans simultaneously with the rainbow colormap and utilize a 

black body colormap to visualize edges in the scans. They reason that the use of rainbow 

colormap is a result of the industrial convention and they customize the rainbow colormap to 

highlight small features of interest in the visualization. The rainbow colormap helps with the 

identification of multivariate data values in the multi-image view, and the black body 

colormap is utilized for the comparison of different regions in the edge view. Moreover, 

since all variables are drawn together, both colormaps are used for comparing different 

variables. Höllt et al. [49] utilize a diverging colormap to represent the magnitude of energy 

of a horizon finding algorithm on slices of seismic datasets. Such a blue-white-red colormap 

is typically used to localize regions with extreme scalar magnitudes in the petroleum 
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industry. Zhou and Hansen [114] apply a ColorBrewer’s sequential color-map to show the 

confidence of feature boundaries of one or more attributes of volumetric datasets on 2D 

slices and allow the user to crop the colormap to highlight values of interest. Comparing and 

identifying computed confidence of different regions on feature boundaries are the tasks 

associated with the colormap.

Khlebnikov et al. [54] propose a noise-based multivariate volume visualization technique 

and utilize the diverging colormap proposed by Moreland to visualize one scalar field and 

customized sequential colormaps to visualize another attribute simultaneously. The 

diverging colormap is used to localize regions of interest of the first volume, whereas 

customized sequential/diverging colormaps are designed for identifying data values of the 

second volume, and can be distinguished from Moreland’s colormap as they are rendered 

together.

van der Zwan et al. [102] utilize ColorBrewer colormaps to visualize molecular surfaces 

with continuous abstraction as spheres, balls-and-sticks as well as ribbons with illustrative 

rendering. The colormap is applied to localize and identify different chemical elements for 

molecular spheres and front or back of ribbons, and the colormap also better suits cartoon 

rendering as it has a pastel look. Meyer-Spradow et al. [69] design a combined 2D scalar and 

3D glyph visualization approach for multivariate single photon computed tomography 

(SPECT) with various multi-hue colormaps for efficient interactive detection of coronary 

artery disease. The reason to have several multihue colormaps is that values are shown on 

both surface and glyphs. All these colormaps can help with identification, while two of them 

also simultaneously fulfill the comparison task. Another color-map is designed for combined 

task of localization and identification for visualizing wall thickness.

 4.1.2 Vector Field Visualization—Lipsa et al. [63] visualize both the irregular grid 

and path lines of 2D foam simulation data over multivariate 2D scalar fields with several 

diverging colormaps and a heat colormap. The diverging colormaps are utilized to help with 

localization and identification for averaged attribute values across all time steps, and for the 

path visualization of bubbles. The heat colormap, encoded by the number of time steps, is 

adopted for comparing attribute values. Noticeable is that Lipsa et al. design their colormaps 

specifically to highlight small features of interest. Bachthaler and Weiskopf [5] utilize an 

isoluminance colormap [55] with the same depth perception colors along with bump 

mapping to visualize line integral convolution on 3D surfaces. This colormap aids the 

identification of velocity magnitude values on 3D surfaces. Üffinger et al. [101] apply a 

white to green sequential colormap to show hyperbolicity of path surfaces and a white to 

blue sequential colormap for the finite-time Lyapunov exponent (FTLE) representation. 

These colormaps are used for the comparison of the vector field attributes.

 4.1.3 Ensemble Visualization—Sanyal et al. [87] propose a tool for visualizing 

ensemble uncertainty of numerical weather simulation models with color-coded ribbons and 

spaghetti plots to show variances of simulation ensembles. To avoid the use of the rainbow 

colormap, a black to green colormap is applied to the background 2D scalar field, and 

Sanyal et al. apply a discrete colormap by combining three sequential colormaps from the 

ColorBrewer tool for rendering spaghetti plots. The colormaps are adopted for the 
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comparison task within a spaghetti plots and across different simulation runs. Hummel et al. 

[51] design a 2D interactive colormap to separate the joint variance parameter space into 

similar, dissimilar and uncertain regions to visualize and explore an ensemble of 2D 

convection flows. The interactivity of the colormap enables the user to visualize specific 

values of interest. This 2D colormap is utilized for localization and identification at the same 

time. The user can localize regions of different joint variance classes(similar, dissimilar, and 

uncertain), and to identify the joint variance for each region.

 4.2 Information Visualization

Information visualization deals with the visualization and analysis of data that does not have 

a physical location information. Since the field of information visualization includes large 

amount of various visualization techniques, we discuss only important categories of work.

 4.2.1 2D Plots and Matrices—Bachthaler and Weiskopf [6] introduce the continuous 

scat-terplot with a sound mathematical model to map an n-D continuous data to an m-D 

density-based scatterplot, and an increasing luminance multihue colormap is utilized to show 

the scatterplot. The colormap is logarithmic to give more color ranges to a larger amount of 

samples. The colormap is used to identify the density value of a point in the scatterplot, and 

comparing regions of the plot. Torsney-Weir et al. [99] visualize the parameter space of 

image segmentation algorithms with sequential colormaps from the ColorBrewer tool. User 

interactions are supported for the colormaps to best visualize regions of interest. These 

colormaps aid the simultaneous localization and comparison for the matrix of scatterplots. 

Booshehrian et al. [13] propose a method for analysis of trade-offs, uncertainty and 

sensitivity in fisheries management decision-making. They design highly distinguishable 

colors for different scenarios as colored dots and plots. They also utilize discrete colormaps 

on contour plots to show isocontour interpolation for the simulation model. These discrete 

colormaps enable easy identification and localization of different scenarios. Correll et al. 

[37] explore collections of tagged text for literary scholarship using an isoluminant multihue 

colormap to show different genres (e.g., comedy, history and tragedy) for each tagged word 

in a literature, a histogram-based per-tag card view for each literature as well as a 2D 

dimensional reduced scatterplot for all literatures. To facilitate users who are familiar with 

existing tools, the rainbow colormap is also included as an option in the tool. The colormaps 

are intended for identification and localization of groups defined either by user, like genre, 

or by metadata such as composition year or author.

Lehmann et al. [59] apply a multihue colormap for scatterplot matrix and diverging 

colormaps for a set of visually abstracted scatterplots, which the authors compute from the 

original scatterplot. The diverging colormaps Lehmann et al. use are restricted to seven 

items as this is a good distinguishable color scheme suggested by Healey [45]. The multihue 

colormap is adopted for identifying items in the scatterplot matrix, whereas the diverging 

colormaps are utilized for identifying and localizing values in the visually abstracted 

scatterplots. With the help of color mapping, the proposed approach allows interactive 

navigation and selection to explore a large scatterplot matrix with more than 100 

dimensions.
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Tominski and Schumann [97] propose a visualization approach for gene combinations where 

they modify the conventional red-black-green colormap for genetics by adding saturation 

variations to represent the aggregated expression of a gene combination on matrices. With 

this colormap, the user can identify and localize gene expressions in different gene 

combinations.

 4.2.2 Graphs—Barsky et al. [8] use both traditional and colorblind-friendly 

ColorBrewer colormaps for gene expression data overlay on the layout of graphs in a 

biological context to facilitate system biologists’ exploration and analysis of a biological 

system model. One colormap is used for localizing and identifying expression values of 

nodes in multiple conditions, whereas another colormap is used for comparing the 

differences between two conditions. Brandes and Nick [17] apply diverging colormaps for 

indegree of graph nodes and popularity measurement for a matrix representation of 

gestaltlines to analyze asymmetric relations in longitudinal social networks. A combined 

identification and localization task can be performed with the colormaps for the indegree of 

nodes.

 4.2.3 High-Dimensional Visualization—Heinrich and Weiskopf [47] propose the 

continuous parallel coordinate plot, which is a density representation that reduces visual 

clutters for multivariate data, and they apply the same logarithmic increasing luminance 

multihue color-map as in [6] to visualize the fine details in the density of the plot. Dietzsch 

et al. [38] apply a multihue colormap and a diverging colormap to parallel coordinate plots 

and scatterplots to visualize and analyze high-dimensional gene expression data with 

statistics. The diverging colormap is used for localization, whereas the multihue colormap is 

intended for identification. Holten and van Wijk [50] evaluate cluster identification 

performance for different parallel coordinate plot variants and apply both a discrete multihue 

colormap and a rainbow colormap to show the cluster density values of each method. These 

colormaps are utilized for identification of density values of each cluster. Alsallakh et al. [1] 

propose a novel contingency wheel visualization colored by various types of colormaps, 

including diverging, qualitative and sequential colormaps for different metrics and 

incorporate the wheels with a star plot for visual analytics of large categorical data. The 

colormaps are applied to discrete data for a combined identification and localization task. 

Comparison can also be performed for different groups as the colors are distinct.

 4.2.4 Time Series—Byron and Wattenberg [26] apply colormaps on different categories 

of items in a stream graph to visualize a time series. These colormaps are intended for 

identifying the category of a stream, and are designed with aesthetics in mind. Chan et al. 

[29] propose a visualization method for semantic structuring of a time series of the classical 

music score. To avoid false emotions invoked by misleading colors, they design a colormap 

based on colors of instruments to represent different groups of instruments in a layer braid 

visualization and the colormap is also interactive to allow customization. With the colormap, 

identification of different instrument groups can be easily done. The authors also take 

aesthetics into account for colormap design. Bruckner and Moller [25] apply a categorical 

ColorBrewer colormap to show cluster timelines of simulation sequences. Colors in the 

colormap are distinct, and therefore, users can easily identify the cluster number of an item 
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and localize all items of a cluster. Javed et al. [53] apply a blue-white-red diverging 

colormap that is similar to Moreland’s colormap and a multihue colormap for a horizon 

graph and braided graph for visualizing multiple time series simultaneously. These 

colormaps are utilized for simultaneous identification and localization of items in horizon 

graphs or braided graphs.

 4.2.5 Spatial-Temporal Data—Andrienko et al. [2] colorize self-organizing maps with 

ColorBrewer and customized colormaps for space-in-time and time-in-space visualizations 

to discover and explore high-level patterns of multivariate spatiotemporal data. The 

ColorBrewer colormaps are adopted for combined identification and localization task on the 

geospatial images, whereas the customized colormap is designed to identify cells of 

geospatial data and to distinguish from the ColorBrewer maps. In [7], Bak et al. use 

sequential colormaps on 2D sensor matrix and growth ring maps for analyzing 

spatiotemporal sensor logs. A sequential colormap is used for simultaneous identification 

and comparison for visualizing the sensor matrix. Multiple ColorBrewer sequential 

colormaps are adopted for identifying different ring maps. Dykes and Brunsdon [39] 

introduce geographically weighted maps and apply sequential and diverging colormaps on 

geographical views and scalograms to show statistics with spatial information to facilitate 

decision-making. These aid combined identification and localization of discrete map data for 

various statistics. Tominski et al. [98] propose a stacking-based visualization to show 

multivariate trajectory attribute data on geographical maps. Two discrete diverging 

colormaps from the ColorBrewer tool are applied to the trajectory attribute data as well as a 

star plot for analyzing trajectory behaviors. The colormaps are intended for combined 

identification and localization of a trajectory attribute, for example, speed. Lampe and 

Hauser [57] colorize their kernel density estimation-based visualizations with sequential 

colormaps similar to those from the ColorBrewer tool for visualizing streaming data of 

maritime vessel trajectories and air traffic in real-time on the GPU. The colormaps are used 

to compare different trajectory regions.

 4.3 Summaries of Application Papers

Among the 33 papers in this section, 24 papers adopt colormaps designed by methods 

already proposed, 18 papers introduce original colormaps specifically designed for the 

applications and nine papers use both existing colormaps and original colormaps. By 

analyzing tasks associated with the colormaps, many applications utilize colormaps to carry 

out multiple tasks. They use multiple colormaps to cope with these tasks, 16 papers ([1], [2], 

[7], [14], [38], [39], [53], [54], [59], [63], [68], [69], [87], [98], [99], [101]) utilize more than 

one type of colormap for different data or tasks in their visualizations. Furthermore, many 

works, for example, [6], [8], [14], [37], [59], [69], require combined tasks to be performed 

with a single colormap. Also, aesthetics is an important goal for colormaps, and at least [26], 

[29] explicitly declare these as their goals.

In all 24 works adopting existing colormaps, 16 papers ([1], [2], [7], [8], [14], [17], [25], 

[38], [39], [53], [59], [87], [99], [102], [114]) apply colormaps from the ColorBrewer tool 

[44], three papers ([49], [54], [63]) utilize the colormap designed by Moreland [73], four 

papers ([1], [38], [63], [68]) use the black body or heat colormap, i.e., the black to red to 
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yellow or white colormap, one paper [5] adopts the isoluminant multihue colormap proposed 

by Kindlmann et al. [55] and five papers utilize the rainbow colormap. For the 18 papers 

with originally designed colormaps, colormaps from [13], [101] are similar to the 

ColorBrewer colormaps, whereas [6], [47], [59], [69] utilize luminance increasing multihue 

colormaps, and [26], [29], [37], [54], [97] design multihue colormaps with the issues of 

standard rainbow colormap in mind.

Interestingly, five papers ([37], [50], [68], [69]) adopt the rainbow colormap. However, these 

are results of application domain conventions rather than arbitrary choice, e.g., Correll et al. 

[37] design a isoluminant multihue colormap but users of their tool prefer to have the option 

of the rainbow color-map as their familiarity with the colormap can contribute to gaining 

insight into their data. In another case, Borkin et al. [14] use the rainbow colormap in their 

user studies and report that the rainbow colormap reduces the time for finding features of 

interest but increases the error of misidentifying these features compared to a diverging 

colormap. Regardless, authors of these works are fully aware of the issues of rainbow 

colormaps and cite the rainbow colormap paper by Borland and Taylor [16]. Eleven papers 

([1], [2], [8], [14], [29], [51], [63], [68], [98], [99], [110], [114]) allow users to edit 

colormaps to explore or highlight regions of interest in their data. Five papers ([6], [47], 

[51], [63], [68]) utilize colormaps specifically tailored to highlight small features in data. 

Moreover, two papers ([8], [59]) include colorblind-friendly colormaps in their applications.

 5 Challenges in Colormap Research

From the taxonomy and the analysis of applications that explicitly discuss colormaps, we are 

able to identify several directions for future research of colormapping.

Perceptual issues in colormapping are very important as colors can change appearance due 

to its environment, and therefore, perceptual colormaps should take into consideration 

spatial information of the colorized data. While the simultaneous contrast effect has been 

recently studied [58], [70] many more effects need to be examined.

Multivariate colormaps are not widely used due to the limited number of colors human 

discern as well as the color appearance phenomena. However, visualizing multivariate data 

has become increasingly important with demands for high dimensional mappings which can 

highlight multivariate trends.

From a task point of view, as we can see in Section 4, most real-world visualization 

applications require multiple tasks to be conducted for different visualizations, and in many 

cases, combined tasks can utilize a single colormap. From a task point of view, as we can see 

in Section 4, most real-world visualization applications require multiple tasks to be 

conducted, and in many cases, combined tasks can utilize a single colormap. More metrics 

and tools should be proposed to fulfill other combined tasks.

There are many rules to guide users and there exist optimization methods to improve 

colormaps for the data. These methods typically require that the user has the knowledge of 

both the data and color perception principles which can be a problem for domain users who 

usually know only the former. Therefore, it is desirable to have an automatic, or semi-
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automatic, approach to intelligently determine the appropriate colormap for given data based 

on colormapping rules, and analysis of the data. Furthermore, this method should be able to 

learn from domain experts regarding what is relevant.

Aesthetics are important for all types of visualizations, but only few works have explicitly 

considered aesthetics as a goal. Aesthetics can sometimes conflict with colormapping rules 

and domain conventions. How to create aesthetically pleasing colormaps that still provide 

insight into data is an important research direction.

Semantics-driven colormapping may be able to improve the performance of users on tasks 

they carry out. Currently, only a recent work from Lin et al. [62] handles semantical nominal 

colormaps.

Several works [12], [40], [88], [95] have been proposed to utilize metadata for optimizing 

colormaps to better match color ranges to data distribution in scientific visualization. Other 

metadata could be utilized, such as spatial distribution of data values, and the connectivity of 

these spatial structures. Metadata with text information may also be used for semantic based 

colormapping.

 6 Conclusions

In this paper, we survey papers related to colormaps in visualization. We classify colormap 

generation papers as: procedural, user-study based, rule based and data-driven. Our 

classification shows that with a deeper understanding of colors and data as well as the advent 

of more powerful computation resources, methods for colormap generation have evolved 

from procedurally designing a default color-map for all data to applying rules based on the 

nature of data and tasks, and then to more intelligent data-driven approaches as the state-of-

the-art. We propose a taxonomy for the colormap generation papers as a decision tree that 

supports readers in finding papers which share similar types of data or tasks as in their 

applications. Fundamentals of color spaces including color appearance models are also 

briefly introduced in the paper.

We summarize papers that explicitly discuss the use of colormaps, and we analyze the tasks 

associated with the colormaps in these papers. Users can refer to papers which share similar 

types of data or tasks as in their applications accordingly. We identify some possible 

directions for future work. We believe our paper can be a valuable contribution to the 

visualization community and may inspire more investigations into the topic of 

colormapping.
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Fig. 1. 
Ware [108] concludes that a rainbow colormap is good for metric comprehension, while a 

grayscale colormap is good for shape comprehension. Copyright IEEE.
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Fig. 2. 
The double face image, (a), is used in the user studies by Kindlmann et al. [55]. The 

generated isoluminance colormap is shown in (b), whereas a luminance increasing colormap 

is shown in (c). Copyright IEEE.
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Fig. 3. 
A task-color-cube proposed by Tominski et al. [96]. Copyright IEEE.
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Fig. 4. 
ColorBrewer [44] (http://colorbrewer2.org/) is an online application for choosing an 

appropriate colormap.
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Fig. 5. 
A comparison of volume renderings of a simulation dataset with colormaps from (a) VisIt, 

(b) ParaView, and (c) Thompson et al. [95]. Copyright IEEE.
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Fig. 6. 
A categorical colormap, as shown in (a), results in a limited visibility of categorical 

differences on a map dataset. Lee et al. [58] propose a visibility optimization method that 

results in the colormap shown in (b), which provides much better contrasts in the data. 

Copyright IEEE.
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Fig. 7. 
The original volume rendering of a frog CT scan is shown to the left, whereas a harmonized 

version using [29] is shown to the right. Copyright IEEE.
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Fig. 8. 
A volume rendering of a flame is shown in (a). Simulated views of protanopes for (b) 

original image, (c) result by image-recoloring technique by Kuhn et al. [15], (d) exaggerated 

color-contrast approach [15]. Copyright IEEE.
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Fig. 9. 
A taxonomy of colormap generation papers.
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Fig. 10. 
Representative works in visualization that conduct good practices for colormapping. The 

works are classified based on the type of data they visualize. Copyright IEEE.
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