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Abstract

In recent years, the availability of infectious disease counts in time and space has increased, and 

consequently there has been renewed interest in model formulation for such data. In this paper, we 

describe a model that was motivated by the need to analyze hand, foot and mouth disease (HFMD) 

surveillance data in China. The data are aggregated by geographical areas and by week, with the 

aims of the analysis being to gain insight into the space-time dynamics and to make short-term 

prediction to implement public health campaigns in those areas with a large predicted disease 

burden. The model we develop decomposes disease risk into marginal spatial and temporal 

components, and a space-time interaction piece. The latter is the crucial element, and we use a 

tensor product spline model with a Markov random field prior on the coefficients of the basis 

functions. The model can be formulated as a Gaussian Markov random field and so fast 

computation can be carried out using the integrated nested Laplace approximation (INLA) 

approach. A simulation study shows that the model can pick up complex space-time structure and 

our analysis of HFMD data in the central north region of China provides new insights into the 

dynamics of the disease.
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 1. Introduction

In recent years, the modeling of infectious disease data in space and time has gained 

increasing popularity. The aims of such modeling are many fold but gaining insights into 

space-time dynamics, which may give etiological insights, is a common objective. Modeling 

may also allow one to predict the potential effects of health interventions such as the 
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introduction of vaccination. Many examples of such infectious disease data arise from 

government disease surveillance systems, and in many situations are in the form of spatially 

and temporally aggregated disease counts. In this paper, the motivating example was hand, 

foot and mouth disease (HFMD) surveillance data collected and monitored by the Chinese 

Center for Disease Control and Prevention. The dataset comprises weekly number of HFMD 

cases in 341 prefectures between 2009 and 2010. In this paper we develop a Bayesian space-

time modeling framework for infectious disease count data, and achieve significant 

computational savings using the integrated nested Laplace approximation (INLA) technique. 

The goals of such modeling are to utilize the surveillance data to understand the space-time 

dynamics of the infectious disease outbreaks, and to provide predictions of future disease 

counts to aid in policy formation.

The literature on space-time models is ample, with many proposals based on disease 

mapping models. For example, in (1) and (2) the risk evolution over time is assumed to take 

a parametric form. A different approach is taken by (3) and (4), where the risks for every 

time period are modeled as time-independent spatial random effects with a time-specific 

precision parameter for the spatial variability. In the context of modeling multiple diseases, 

(5) proposes a temporally independent multivariate conditional autoregressive (MCAR) 

model for lung cancer mortality, with data on both males and females being studied. In (6), 

the authors propose a shared compartment model where the underlying risk for each disease 

is separated into a shared and a disease-specific component. Many of these space-time 

models were developed for non-infectious diseases such as cancers.

Disease mapping models developed for non-infectious diseases have been used, often for 

descriptive purposes, for infectious disease data, see for example, (7) for flu and (8) for 

meningococcal disease. In a series of papers (9; 10; 11; 12) a framework for the analysis of 

infectious disease surveillance counts has been developed. In its simplest form, the models 

can be viewed as Poisson branching process models with immigration, with mean risk being 

decomposed into an endemic component and an epidemic component. These models have 

been applied to a variety of diseases and have also used vaccination coverage as a covariate 

(13; 14). (15) modeled weekly counts of HFMD in prefectures of China using a similar 

negative binomial model with epidemic and endemic components. In a different approach, 

time series susceptible-infected-recovered (SIR) models have been developed (16; 17). The 

fitting of SIR models (and their variants) is challenging unless the populations under 

consideration are small, however, since the number of individuals in each of the 

compartments is imputed under the above Bayesian approach to inference (18). A variety of 

alternative approaches have been suggested for situations in which populations are not small, 

but all are computationally expensive (19; 20). Approximate Bayesian Computation (ABC) 

methods have been proposed as an alternative (21; 22).

In recent years, spline models have become increasingly popular in the space-time disease 

mapping setting, see for example (23). However, such models have mostly been applied to 

provide a flexible way of modeling the temporal trend, see for example (24). A notable 

exception is (25) who describes a broader class of regression spline models with spatial-

temporal relative risks being modeled as spatially varying or randomly varying regression B-

splines. (26) and (27) both consider space-time splines models, though do not include 
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Markov random field (MRF) prior penalty terms, which is the cornerstone of the approach 

we describe in this paper. (28) compares a traditional space-time conditional autoregressive 

(CAR) model and a CAR-Pspline model in the context of small area predictions, with 

inference made using penalized quasi-likelihood (PQL).

In this paper, the approach we take to modeling the space-time spread of infectious disease 

data is to decompose the relative risk of disease into three components: a large-scale 

temporal trend, a large-scale spatial trend and a space-time interaction. The latter is the 

crucial element, and we use a tensor product B-spline model with a Markov random field 

(MRF) prior on the coefficients of the basis function. Such a model formulation allows the 

computation to be carried out using the integrated nested Laplace approximation (INLA) 

technique, resulting in significant computational savings when compared to a classical 

MCMC approach. Our approach therefore has the advantage of fast computation and easy 

implementation using R and existing packages.

The outline of this paper is as follows. We begin with a motivating example that concerns 

the China hand-foot-mouth (HFMD) surveillance data in Section 2. In Section 3 we describe 

the Bayesian spatial-temporal models that we propose. In Section 4, we demonstrate the 

performance of our proposed models via a simulation study. The simulated data is designed 

to mimic the epidemic center movements in space and time typically observed in infectious 

disease surveillance data. We return to the HFMD data in Section 5 and describe the results 

after applying the models to the dataset. We conclude the paper with a discussion in Section 

6. The supplementary materials contain more technical details and additional supporting 

information.

 2. Motivating Example

In this section, we provide details of the China HFMD surveillance data analyzed in this 

paper. HFMD is an acute contagious viral infection that has caused large-scale outbreaks in 

Asia during the past decade (29). It is caused by enterovirus pathogens and usually involves 

mild or moderate symptoms such as fever, oral ulcer or rashes on the hand and foot. HFMD 

is a disease often seen in children and in a small fraction of cases there is severe illness with 

neurological problems, and even death. Little is known about the etiology of the enterovirus, 

the factors associated with its spread, or an effective means of public health intervention. 

Therefore understanding the dynamics of HFMD patterns of spread can greatly benefit 

authorities charged with policy making to control this infectious disease.

Enterovirus-related HFMD, with the first large-scale epidemic outbreak in 2008 in China, 

has been included as one of the 39 notifiable infectious diseases in the Chinese Center for 

Disease Control and Prevention (CCDC) disease surveillance system. Each reported case 

from the CCDC surveillance system includes information on the person’s current home 

address, gender, age and the symptom onset date. Therefore, the disease surveillance system 

from China provides an extensive data resource for space-time modeling. More information 

about these data can be found in (15).
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In this paper, we analyze data from the central north region of China from 2009 and 2010; 

this region is shown in relation to the whole of China in the supplementary materials. The 

central north region consists of 59 prefectures spread in five provinces and one direct-

controlled municipality (i.e., Tianjin, Hebei, Henan, Shandong, Shanxi and Beijing). The 

total population in the region is estimated to be 318,022,505 in 2009/2010. Within the 

region, 418,949 and 478,238 HFMD cases were reported in 2009 and 2010, respectively. 

Here we aggregate the number of HFMD cases by week and by prefecture, see Figure 1(a). 

The temporal trend is clear: the epidemic starts around March, reaches its peak in May/June 

and gradually dies down towards the winter. This is the same pattern observed in both years, 

though the time that the epidemic reaches its peak seems to be later in 2010 than in 2009.

Based on the population composition in each prefecture, we calculate weekly expected 

numbers of counts adjusting for age (with age bands 0–0.9, 1–2.9, 3–5.9, 6–9.9 and ≥10 

years) and gender, using internal standardization (30). These expected numbers are shown in 

Figure 1(b), with a wide range from 18 to 364.We then calculate the marginal standardized 

morbidity ratios (SMRs) across time. These SMRs are the ratios of the total counts to the 

expected counts (adjusted for the confounders age and gender) over 2009–2010. A thematic 

map of the resulting SMRs is presented in Figure 1(c). Though subject to sampling 

variability, the spatial variation in the SMR is clearly seen in the map (an animation of the 

weekly log SMRs can be found at http://www.stat.brown.edu/cbauer/). However, the 

temporal pattern in the SMRs is unclear apart from a general south-to-north movement of 

the area with high SMRs. These initial examinations clearly suggest a model with spatial 

and temporal components is needed for analyzing the China HFMD data.

 3. Methods

In this section, we describe the Bayesian spatial-temporal models that we propose. We start 

by describing the overall model framework, followed by details on each of the model 

components.

 3.1. The Poisson Likelihood

Let Yit denote the observed disease counts and Eit the expected counts, which account for 

the known confounders such as age and gender, in area i and in week t, i = 1, …, I; t = 1, …, 

T. In the HFMD example, the population is treated as constant at each time point so that Eit 

= Ei. The constant population is based on the assumption that the changes in population size 

over time are relatively small and so can be ignored. The expected count Ei is calculated 

using internal standardization, which takes into account of the differences in age-gender 

populations between areas.

The data model is a Poisson distribution with relative risk μit

(1)

Our overall strategy is to decompose the relative risk into the following components
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(2)

where α is the intercept, zit is a vector of area-level covariates, and xi = (x1i, x2i) is the 

centroid of area i. In this formulation, fS(xi) is the spatial trend, fT(t) is the temporal trend 

and fST(xi, t) is the spatial-temporal interaction. In a Bayesian framework, the spatial and 

temporal dependency is incorporated into the model through the prior. We now describe the 

priors used for the spatial trend, the temporal trend, and the spatial-temporal interaction in 

(2) respectively.

 3.1.1. Temporal trend—The temporal component is modeled as the sum of a large-

scale component, and noise terms with and without temporal structure

The large-scale component  can be modeled using parametric or semi-parametric 

models, which we have assumed can be represented via a linear basis. A popular example of 

the latter are spline models, see (24) and (25). As an alternative, seasonal variability in the 

data can be modeled via frequency domain models. For example, we can include a set of 

harmonic functions

(3)

where S is the number of harmonics, δ = {as, bs, s = 1, …, S} and ωs are the Fourier 

frequencies with ωs = 2πs/52 for weekly data. The row vector xt is of length 2S with the sth 

pair of entries consisting of [sin(ωst), cos(ωst)]. The unstructured temporal term may be 

modeled as  while γt, which picks up short-term temporal structure, may be 

given a conditional autoregressive prior. In this paper we use a second-order random walk 

prior denoted as RW2. This model is a local stochastic smoothing model and may be 

represented as

where the T × T matrix AT is of rank T − 2 and has the form
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(4)

with the blank spaces corresponding to zeros. We use τ through out the paper for the 

precision parameter, which is the inverse of the variance. The subscript of τ indicates the 

random variable with which the precision parameter is associated. Further technical details 

on this model, including the conditional mean and variance, are provided in the 

supplementary materials.

 3.1.2. Spatial trend—The spatial trend is modeled as

(5)

The covariates x1i and x2i represent the latitude and longitude of the centroid of area i and β1 

and β2 are the associated coefficients. The unstructured spatial terms υi is assigned a 

 prior, and the structured spatial term ui is assigned an intrinsic conditional 

autoregressive (ICAR) prior. Hence, we are using the classic (31) convolution model. The 

joint distribution of the structured spatial term ui is

(6)

where AS has entries

(7)

with i ~ j indicating that areas i and j are neighbors defined as areas sharing the same 

boundary, and mi the number of neighbors for area i. Further details of the ICAR model are 

relegated to the supplementary materials.

 3.1.3. Spatial-temporal interaction—Models with only spatial and temporal trends 

are usually insufficient for modeling the variation in temporal dynamics between regions, 

particularly for infectious diseases. Hence, the spatial-temporal interaction term we define is 
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crucial, as this term captures the space-time dynamics of the infectious disease spread. In a 

disease mapping context, for example, (32) and (33), it has been suggested that a space-time 

interaction term could be constructed by combining the spatial random effects u and the 

temporal random effects γ. However, such a form contains a large number of random effects, 

IT to be exact, which is not a parsimonious representation. In addition, the interaction term 

adds great complexity to the model and makes the implementation for Bayesian inference, 

usually via Markov chain Monte Carlo (MCMC), very difficult for data with many areas 

and/or time points.

Motivated by (33), we propose an alternative approach to constructing the interaction term. 

We model the space-time interaction surface with a bivariate spline, and place a GMRF prior 

on the coefficients associated with the basis functions. Specifically, we assume

(8)

where Bik is a tensor product of two univariate cubic B-spline functions, one in each spatial 

dimension, so that Bik is a function of xi. For notational convenience we index the bivariate 

basis functions by k. The number of basis functions K will typically be far less than the 

number of areas I, and so the number of latent random effects is reduced. Because these 

basis functions are constructed as a tensor product, they can be visualized as being laid out 

on a rectangular grid. Figure 2(b) presents such visualization using a simulated data set, for a 

total of 36 basis functions (6 for each spatial coordinate). The advantages of choosing a 

cubic B-spline include the computation efficiency and the relative insensitivity to the choice 

of basis numbers and locations (34; 35). More details of the tensor product basis functions 

can be found in the supplementary materials.

The spatial-temporal structure of the interaction is imposed through the prior on the basis 

coefficients and can take one of the following four types, as with the disease mapping 

approach of (33)

Type I: A product of independent normal priors so that there is no spatial or temporal 

structure in the spline coefficients

This type of interaction assumes that, after accounting for spatial and temporal main effects, 

the residuals do not have structure in space and time. This model is the easiest to implement 

but the least appealing in a biological sense.

Type II: A second-order random walk (RW2) prior on the temporal structure with no spatial 

structure, so that we have a product of K temporal smoothing priors

Bauer et al. Page 7

Stat Med. Author manuscript; available in PMC 2016 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hence, the interactions have temporal structure but the bases are independent across space.

Type III: An ICAR prior in space but with no temporal structure, so that we have a product 

of T independent spatial models

The notation k ~ k′ indicates that bases k and k′ are first order neighbors, hence each interior 

basis has four neighbors. This model assumes that at time t, the bases that are close to each 

other are more likely to be similar, but across time the T sets are independent.

Type IV: A Kronecker product of RW2 and ICAR priors

This model assumes that the basis coefficient bkt at location xk and at time t depends on 

those from the two previous time periods bk,t−1 and bk,t−2, as well as those from the 

neighboring basis xk′, k′ ~ k. In addition, bkt depends on those coefficients in the 

neighboring bases in the two previous time points, i.e. bk′,t−1 and bk′,t−2, for k′ ~ k. Therefore 

estimation of the coefficients borrows information in both space and time.

In addition to reducing the dimension of random effects, our proposed method has the 

advantage that, even with complicated structures, after writing (b11, …, bK1, b12, …, bK2, 

…, b1T, …, bKT)′ as b, all four types of interactions have a unified representation as GMRF 

models with the general form

The structure matrix AST of the spline coefficients is then the Kronecker product of the 

structure matrix for the space AS and the temporal structure matrix AT, i.e. AST = AS ⊗ AT. 

The supplementary materials give details on the form of AST for each interaction model. 

Such a representation also brings a flexibility to the modeling, as one can select different 

spatial and temporal structures, depending on the application.

One other advantage of our proposed models is in the computation. The GMRFs 

presentation of the spatial-temporal dynamics makes the computation far more convenient. 

In particular, this model can be fitted using the fast and flexible integrated nested Laplace 

Bauer et al. Page 8

Stat Med. Author manuscript; available in PMC 2016 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



approximation (INLA) technique (36). INLA has been demonstrated to provide accurate 

inference in a number of applications (36; 37; 38; 39; 40) and, compared to the more 

traditional MCMC method, is orders of magnitude faster for the model described above. In 

the supplementary materials we provide the WinBUGS code to implement our proposed 

models using MCMC, as well as the code that uses the R package INLA. We also show in the 

supplementary materials a numerical comparison between MCMC and INLA.

 4. Simulation Study

 4.1. Data Generation

In this section we describe a simulation study to investigate the performance of our proposed 

models. The key novelty of our proposed models lies upon the spatial-temporal interaction 

so we focus on assessing this aspect and fit the Poisson model (1), with the relative risk

(9)

where fST is described by (8).

The study region is a unit square and we select two equal-distance inner knots in each spatial 

dimension to construct the tensor product cubic B-splines bases, so that K = 62 = 36.We 

assume T = 24 discrete observation times. The simulation is constructed to mimic the 

movements of epidemic centers over time. We first obtain fixed values of the spline basis 

coefficients bkt, using gamma functions and one sine function of time t, and then use these 

bkt to construct the underlying risk surface. The functions for obtaining the values of bkt are 

treated as unknown at the analysis. Figure 2(a) plots these coefficients versus time with the 

curves being color coded by their locations, which are shown in panel (b). The values of the 

coefficients are chosen so that higher values are given to those in the bottom left corner at 

early weeks of the observation period, those in the top left corner at middle weeks, and those 

in the top right corner at later weeks. We choose the expected number of cases Ei to be 

between 5 and 50 and assume they are constant over the study period. The observed counts 

Yit are then simulated at I = 150 randomly selected locations, which are indicated by the 

points in Figure 2(b). These point locations are used to represent areal centroids. The MRF 

prior is with respect to the bases, and so for the interaction term this is the only place that 

requires specification of a neighborhood structure. The simulated weekly counts Yit range 

from 0 to 1063. In Figures 2(c) and (d) the number of cases over space and time are 

displayed. The aggregated counts in panel (c) show large spatial variation, ranging from 

2148 to 9541. The weekly observed counts aggregated over space in panel (d) show two 

peaks, which is similar to that observed in the China HFMD data. The supplementary 

materials include more details on the simulation, such as the map of the realized Ei, and the 

bubble plots of the simulated number of cases at selected time points which give more 

details on how epidemic centers move over time.
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 4.2. Results of the simulation study

We fit the spatial-temporal interaction model (9) with the four interaction priors described in 

Section 3.1.3. A Gamma(1, 0.98) distribution is used as the prior for the precision parameter 

τb. Results of the parameter estimates are given in the supplementary materials, along with a 

sensitivity analysis with different priors for the precision parameter. Time series plots of the 

estimated basis coefficients are shown in Figure 3, with one for each interaction type. The 

true values of the coefficients are superimposed in the graph using the color scheme of 

Figure 2, and the grey lines denote the posterior median estimates. In the Type I interaction 

model where the coefficients have no spatial or temporal structure, the grey lines are very 

jagged and substantially deviate from the truth. In the Type II model where a RW2 model is 

used for the temporal structure in the interaction, the estimated coefficients are much 

smoother over time and closer to the truth. In the Type III model, the estimates are similar to 

those observed in the Type I model. Because the majority of the variation in the simulated 

data is temporal, smoothing across space alone cannot improve the estimation greatly. 

Finally, the Type IV model improves on the Type III fit and provides the estimates that are 

the closest to the true values. We now assess the model fits more formally.

The overall measure of the model fit may be assessed using the conditional predictive 

ordinate (CPO) (41; 42) which represents a particular form of cross-validation measure. The 

CPO of observation it is

where y−it represent the data with observation yit removed. We may calculate 

 and models with larger values are preferred. (43) discuss how CPO 

values may be calculated efficiently with INLA, without the need to fit the model I × T 
times. For the simulated data, the sum of the log CPO values under the four types of 

interactions (scaled by the maximum, which is the Type II model) are: −429, 0, −106 and 

−20. The CPO values from the Type II and IV models are considerably higher than those 

from the Type I and III models, so that the former are preferred to the latter, which is not 

surprising given the strong temporal structure in the data.

Examining the change of the spline coefficients provides some knowledge of the temporal 

trend in the risk. However, we would also like to obtain the estimated log relative risks at the 

observed locations. We select four areas with different expected numbers (E = 5, 15, 30, 50) 

and examine the model fits. In Figure 4(a) we give the true log relative risk for these four 

areas while in panel (b), we plot the log SMRs. It is clear that areas with lower expected 

numbers have larger variability in the log SMRs. In panels (c)–(f) we show the fits from the 

four types of interaction models. In these plots the estimated log relative risks using our 

models are clearly more accurate than the log SMRs. Informally comparing the four types of 

interaction models using these figures, the fits from the Type II and IV interaction models 

are closest to the truth.
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Finally we examine the prediction performance of our proposed models. We take the data 

until time T⋆ and predict the number of cases within q week ahead, i.e., yit for t = T⋆ + 1, 

…, T* + q. The prediction performance is evaluated using the mean squared error of 

prediction (MSEP) given by

(10)

The results for q = 1 and q = 2, i.e. predicting 1 and 2 time periods ahead, are given in Table 

1. We choose T* = 6 to give a minimum that has sufficient observed data for prediction. For 

each T⋆ and q, the MSEP is reported for the Type I–IV models, with the smallest MSEP 

indicated in bold. Type II model predominately outperform the other types by giving the 

smaller MSEP, with 15 out of 18 weeks for q = 1 and 11 out of 17 weeks for q = 2. The Type 

IV model gives the smallest MSEP in all other weeks for q = 1 and three of the remaining 

weeks for q = 2. The predictions become worse for all models in weeks 19–22, which is the 

period in which the second epidemic peak occurs. This is somewhat unsurprising: without 

additional information of the disease etiology or drivers of the outbreaks, prediction of the 

time when an epidemic “kicks off” is generally very difficult in infectious diseases, 

particularly based on the surveillance data alone. Nevertheless, when the surveillance data is 

the only source to understand the space-time dynamics of the infectious disease process, 

including the temporal component is more crucial than the spatial one, which is emphasized 

by the better performance of the Type II and Type IV models.

 5. Application to HFMD Data in China

We now return to the HFMD data in the central north region of China over years 2009–2010. 

We assume the Poisson model (1) with μit given by (2). The study region is rescaled to a [0, 

1] × [0, 1] square but retain the ratio [max(xi2) − min(xi2)]/[max(xi1) − min(xi1)]. We 

include the population density per square kilometer as a covariate, denoted as zi, with this 

variable being normalized to have mean 0 and standard deviation 1. We manually remove 

those basis functions that lie outside of the study region. The locations of K = 16 bases used 

in the analysis are shown in Figure 1(d).

The model is implemented using INLA, and parameter point and interval estimates are 

presented in Table 2. The running time for the four models are 307, 501, 289 and 429 

seconds, respectively, on a MacBook Pro with 2.6 GHz Intel Core i7 processor. In the Type I 

and III models, we find that population density has a significant positive association, which 

is consistent with the fecal-oral transmission route of HFMD since areas in which children 

are in closer proximity are likely to have greater rates of infection. Estimates of the 

structured and unstructured temporal components γt and εt are very similar in the four 

models, and therefore we only show the results from the Type IV interaction model in Figure 

5. The overall temporal pattern that is common to all areas is captured in the structured 

temporal random effect γ and is shown in Figure 5(a). The unstructured temporal random 

effects εt, shown in Figure 5(b), reflects the residual temporal variability after accounting for 

the structured RW2 temporal effect γt. No clear pattern is observed and the range of the 
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estimated εt is narrow (between −0.10 and 0.075). The estimated structured spatial random 

effect ui ranges from −0.067 to 0.085, and the unstructured spatial random effect υi ranges 

from −1.1 to 0.95 so that the latter dominates. Maps of the median estimates are shown in 

Figure 5(c) and (d). These random effects are log relative risks of disease and so the spatial 

terms are not of great epidemiological significance. The sum of the log CPO values, again 

scaled by the Type II model, are: −7672, 0, −8075 and −3894, strongly suggesting the Type 

II model is most appropriate for the HFMD data.

An animation of the term  can be found at http://www.stat.brown.edu/

cbauer/, which provides insight into the broad-scale space-time dynamics of HFMD. 

Compared to the log SMR maps, the movement of the epidemic center is much clearer as the 

regions with elevated relative risks are easier to identify. We see two local epidemics that 

start, respectively, in the north and south-west areas around week 22, and gradually move 

towards each other. This movement is not evident in the log SMR maps.

Next we take the first T⋆ weeks of HFMD surveillance data and perform the q-week ahead 

prediction of total HFMD counts, by area. The performance of the prediction is again 

assessed via the MSEP in (10). For comparison the prediction is also carried out using the 

epidemic/endemic model of (9) implemented within the R surveillance package. 

Specifically, we use the form yit|θit ~ Poisson(θit) with

(11)

where  represents the autoregressive “self-area” component with random 

effects  is an autoregressive “neighboring area” component (defined as 

sharing a common boundary) with random effects , and

is an endemic component with the random effects  and S = 1. All the random effects are 

assumed independently and normally distributed. Results with T* starting at week 90 are 

presented in Table 3. More comprehensive experiments with T* going back as early as week 

34 can be found in the supplementary materials. We attempted analyses with T* smaller than 

34 but the epidemic/endemic model encountered convergence issues. Compared to the 

epidemic/endemic model, out of the 14 weeks our models give smaller MSEP in 8 weeks for 

q = 1 and 7 weeks for q = 2. Among the four types of interaction models, the Type II and IV 

models give smaller MSEP in all weeks. Adding spatial structure can aid the prediction, as 

seen in the smaller MSEP in the Type III model as compared to the Type I model. However, 

since most of the variation in the data comes from the temporal trend, it is the temporal 

structure components included in the Type II and IV models that are most important for 

prediction.
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In addition to the q-week ahead prediction we also investigate the performance of our 

proposed models for cumulative prediction, where we take the first T* weeks of the 

observations and predict the total HFMD counts for the remaining weeks in 2009 and 2010, 

by area. As can be seen in Table 4, in all weeks, our models give better prediction than 

epi/end model, except in the last week, where the scenario reverts to the 1-week ahead 

prediction. The results suggest that our proposed models perform as well as the epidemic/

endemic model for short-term prediction, and outperform the competing model when 

prediction is carried out over longer time period.

Residuals plots of these models can be found in the supplementary materials. There is still 

considerable variation in the residuals from all models and some systematic variability 

showing that not all of the signal is being adequately modeled.

 6. Discussion and Future Work

In this paper we have described a model for space-time infectious disease count data. The 

model bridges the gap between disease mapping models for chronic diseases and the more 

traditional SIR type models that are difficult to fit when the populations are large and 

individual-level information such as time of infection is not available. A number of aspects 

deserve further discussion.

The choice of prior distributions on the random effects variances in the interaction models is 

challenging because of the conditional interpretation, which changes across the four model 

types. An obvious approach is to use simulation, in tandem with substantive knowledge on 

the range of relative risks. For example, we may believe that the 95% range of the residual 

relative risks is [0.1, 10], which means that the range of the spline contribution is ∑k bktBik is 

[log(0.1), log(10)]. Experimentation with different prior choices via simulation can be 

carried out to achieve this aim. This is the approach that was taken to set the priors in our 

analysis, and the details can be found in the supplementary materials. From a practical point 

of view, our approach is computationally efficient since it is based on INLA. The 

improvement in computation time when compared with MCMC is considerable.

For the China central north HFMD data our model has allowed the following insights. In 

each year the epidemic moves from two centers, a major one in the south and a smaller one 

in the north. Population density is also seen to be an important aggregate level predictor, the 

credible intervals for the Type I and III models do not contain zero, but the intervals of the 

Type II and IV models contain zero, because the more flexible temporal model has absorbed 

some of the association with population density. This highlights the differences between 

models for prediction and those with which the identification of important covariates is 

sought. Without the etiology knowledge of the disease, prediction of future counts is 

difficult, in particular using the surveillance data alone. For HFMD disease, most of the 

variation in the surveillance data comes from the temporal trend. Hence, it is crucial to 

include the temporal structure in models for prediction.

The epidemic/endemic model is very appealing since it has autoregressive components, 

which allows aggregate level transmission to be estimated, and a good implementation. We 
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would not suggest that our model be used as a replacement. Rather, we think the approaches 

are complimentary. The model we have described has the appealing feature of producing a 

smoothly time-varying relative risk surface and this can greatly help in gaining insight into 

the space-time dynamics.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Summaries of the central north region of China HFMD data from 2009–2010: (a) weekly 

numbers of cases, (b) weekly expected numbers, (c) marginal (across time) SMR, (d) 

centroids of prefectures (red dots) and location of spline bases (blue crosses), after scaling 

the study region.
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Figure 2. 
Simulated Data: (a) true values of the basis functions bkt versus time; (b) locations of the 

basis coefficients, color coded as in (a); the grey dots are the locations of the observed 

counts; (c) number of cases aggregated over time (with the size of the circles being 

proportional to the number of cases); (d) number of cases, aggregated over space, plotted by 

week.
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Figure 3. 
Estimated basis coefficients with four different priors in the simulation study: true values are 

colored as in Figure 2, while the grey lines are the estimates.
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Figure 4. 
Comparison of the log relative risk in four selected areas.
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Figure 5. 
Estimated temporal component γ and ϕ, and spatial component u and υ from the Type IV 

interaction model with the China central north HFMD data.

Bauer et al. Page 21

Stat Med. Author manuscript; available in PMC 2016 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bauer et al. Page 22

Ta
b

le
 1

T
he

 m
od

el
 is

 f
itt

ed
 to

 th
e 

si
m

ul
at

ed
 o

bs
er

va
tio

ns
 u

p 
un

til
 T

⋆
, a

nd
 p

re
di

ct
io

ns
 a

re
 m

ad
e 

fo
r 

q 
=

 1
 a

nd
 q

 =
 2

 w
ee

ks
 a

he
ad

. F
or

 e
ac

h 
T

* 
an

d 
q,

 th
e 

m
ea

n 

sq
ua

re
d 

er
ro

r 
of

 p
re

di
ct

io
n 

(M
SE

P)
 is

 r
ep

or
te

d 
fo

r 
th

e 
Ty

pe
 I

–I
V

 m
od

el
s,

 w
ith

 th
e 

sm
al

le
st

 M
SE

P 
in

di
ca

te
d 

in
 b

ol
d.

q 
= 

1
q 

= 
2

T
⋆

T
yp

e 
I

T
yp

e 
II

T
yp

e 
II

I
T

yp
e 

IV
T

yp
e 

I
T

yp
e 

II
T

yp
e 

II
I

T
yp

e 
IV

6
85

7
68

3
91

1
68

7
50

4
80

4
52

7
81

9

7
15

3
36

14
2

43
13

5
44

10
7

67

8
11

5
35

73
45

12
8

44
83

61

9
13

5
26

90
39

13
4

42
96

64

10
13

4
31

10
0

46
19

7
45

17
3

67

11
26

0
30

24
7

36
67

5
74

69
4

10
7

12
10

88
71

11
44

75
16

49
91

17
29

78

13
22

09
78

1
23

11
66

3
26

88
64

33
28

23
54

49

14
31

70
39

5
33

31
44

3
30

86
21

40
32

63
23

64

15
29

98
33

6
31

88
36

4
26

19
12

53
28

20
13

46

16
22

37
20

1
24

44
21

0
25

78
47

3
28

08
50

3

17
29

18
82

31
63

85
42

58
14

9
45

35
14

1

18
55

95
19

3
58

95
19

8
75

01
13

91
78

31
15

10

19
94

11
36

1
97

56
33

1
10

91
7

23
14

11
27

5
21

66

20
12

42
4

42
6

12
77

9
43

5
11

45
1

27
57

11
79

2
28

25

21
10

47
4

78
4

10
79

3
79

9
88

45
24

77
91

31
25

26

22
72

16
17

3
74

60
16

7
55

82
47

1
57

93
45

8

23
39

54
12

0
41

25
12

2
-

-
-

-

Stat Med. Author manuscript; available in PMC 2016 July 25.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bauer et al. Page 23

Table 2

Parameter estimates (median and 95% interval) from four types of interaction models, using weekly central 

north HFMD data in China 2009–2010.

Parameter Type I Type II Type III Type IV

α −1.08 (−1.26, −0.88) −0.97 (−1.45, −0.48) −0.84 (−1.31, −0.37) −0.96 (−1.45, −0.46)

β 0.30 (0.14, 0.45) 0.15 (−0.12, 0.41) 0.33 (0.13, 0.52) 0.16 (−0.11, 0.42)

σγ 0.15 (0.12, 0.20) 0.17 (0.13, 0.21) 0.15 (0.12, 0.19) 0.15 (0.12, 0.19)

σϕ 0.06 (0.04, 0.09) 0.06 (0.04, 0.09) 0.06 (0.04, 0.09) 0.06 (0.04, 0.09)

σu 0.13 (0.06, 0.46) 0.19 (0.06, 1.31) 0.13 (0.06, 0.50) 0.24 (0.07, 2.50)

συ 0.51(0.43, 0.63) 0.45 (0.36, 0.57) 0.51 (0.42, 0.63) 0.44 (0.35, 0.56)

σb 4.01(3.87, 4.16) 0.50 (0.47, 0.53) 8.09 (7.78, 8.42) 0.83 (0.79, 0.89)
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