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Abstract

PM10-2.5 mass and trace element concentrations were measured in Winston-Salem, Chicago, and 

St. Paul at up to 60 sites per city during two different seasons in 2010. Positive Matrix 

Factorization (PMF) was used to explore the underlying sources of variability. Information on 

previously reported PM10-2.5 tire and brake wear profiles was used to constrain these features in 

PMF by prior specification of selected species ratios. We also modified PMF to allow for 

combining the measurements from all three cities into a single model while preserving city-

specific soil features. Relatively minor differences were observed between model predictions with 

and without the prior ratio constraints, increasing confidence in our ability to identify separate 

brake wear and tire wear features. Brake wear, tire wear, fertilized soil, and re-suspended soil were 

found to be important sources of copper, zinc, phosphorus, and silicon respectively across all three 

urban areas.
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 1. Introduction

There is ample evidence that long-term exposure to fine airborne particles (PM2.5) is 

detrimental to human health (Pope & Dockery 2006; U.S. EPA 2009). In contrast, our 

understanding of the long-term effects of the coarse particle fraction (PM10-2.5) is more 
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limited (Dockery et al. 1993; Pope et al. 2002; Brunekreef & Forsberg 2005; Weuve et al. 

2012; Puett et al. 2009; Lippmann and Chen, 2009). One major challenge for chronic 

epidemiological studies is in accurately describing the long-term spatial gradients in coarse 

mode mass and species concentrations within urban areas. Recent work has focused on 

characterizing PM10-2.5 spatial concentration gradients (Hwang et al. 2008; Godoy et al., 

2009; Thornburg et al. 2009; Moore et al. 2010; Cheung et al. 2011; Eeftens et al., 2012, 

2012a; Clements et al. 2012; Strak et al. 2011) and developing models to allow spatial 

interpolation (Yanosky et al. 2009; Peltier et al. 2011; Eeftens, et al. 2012a). Another 

challenge is to characterize the sources that influence these gradients as well as the species 

that are associated with these sources.

Prior source apportionment studies of PM10-2.5 have relied on either fully constrained 

models such as chemical mass balance (CMB), principal component analysis (PCA) and 

mass closure, (Paode et al. 1999; Manoli et al. 2002; Almeida et al. 2006; Stone et al. 2010; 

Daher et al. 2012; Oliveira et al. 2010; Waheed et al. 2012; Pakbin et al. 2011; Cheung et al. 

2011), partially constrained models such as the constrained physical receptor model 

(COPREM) (Wahlin et al. 2006; Schauer et al, 2006), or relatively unconstrained models 

such as factor analysis or positive matrix factorization (PMF) (Wang and Shooter, 2005; 

Gietl and Klemm 2009; Begum et al. 2011; Begum 2010; Kertész et al. 2010; J. S. Han et al. 

2006; Oh, 2011; Tecer et al. 2012; Mazzei et al., 2007; Chan et al., 2008; Hwang et al., 

2008; Godoy et al., 2009). Several of these studies have employed multiple sites within a 

city to capture spatial as well as temporal variability in the source contributions (Stone et al. 

2010; Mazzei et al. 2007; Cheung et al. 2011; Chan et al. 2008; Hwang et al. 2008; Godoy et 

al. 2009; Pakbin et al. 2011).

While there has been a number of near-roadway studies examining the sources and 

components of non-exhaust PM10-2.5 (Thorpe and Harrison 2008; Harrison et al., 2012; 

Apeagyei et al., 2011; Schauer et al. 2006; S. Han et al. 2011; Kennedy & Gadd, 2000; Garg 

et al. 2000; Iijima et al. 2008; Gietl et al., 2010; Grieshop et al., 2006; Bukowiecki et al., 

2009; von Uexküll et al., 2005; Sternbeck, 2002; Adachi and Tainosho, 2004; Johansson et 

al., 2009; Amato et al., 2011; Wahlström et al., 2009; Bukowiecki et al., 2010), only a few of 

the urban-scale source apportionment studies cited earlier have attempted to separate “road 

dust” into its separate components, including brake wear and tire wear (Wahlström et al., 

2009; Amato et al., 2011; Schauer et al, 2006; Bukowiecki et al., 2010; Harrison et al. 

2012). The studies which did not separate road dust into its components commonly 

identified the dominant source of PM10-2.5 as resuspended road dust for sites near roadways 

and as crustal material for non-roadway sites.

Here we use a partially constrained version of PMF (Amato et. al. 2009; Reche et. al. 2012; 

Brown et. al. 2012) in order to examine the sources of PM10-2.5 collected simultaneously at 

multiple sites in three urban areas during two-week periods in two different seasons. We use 

PMF with constraints imposed by prior knowledge of several important, ubiquitous source 

profiles, namely brake and tire wear. We furthermore impose additional constraints on the 

source contributions in order to combine all measurements into a single model. To our 

knowledge, this is the first application of a combined-cities PMF modeling approach with 

profile-constraints to identify contributions of brake and tire wear in PM10-2.5 across 
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multiple urban areas. This work is part of a larger effort to examine the chronic health 

effects of PM10-2.5 and selected species in these same cities under the auspices of the Multi-

Ethnic Study of Atherosclerosis and Coarse Particulate Matter (MESA Coarse), an ancillary 

study of the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air).

 2. Materials and Methods

 2.1 Filter sampling and analysis

The MESA Air study leveraged the National Heart, Lung, and Blood Institute’s Multi-

Ethinic Study of Atherosclerosis (MESA) cohort to provide data for assessing the 

relationship between long-term exposures to fine ambient particulates and related health 

effects. The MESA cohort (Kaufman et al. 2012) was comprised of 6,814 white, black, 

Hispanic, and Chinese participants located in six U.S. cities. As an ancillary study to MESA 

Air, MESA Coarse assesses the health implications associated with coarse mode particulate 

exposure in three of the MESA cohort cities, namely Chicago, Illinois, St. Paul, Minnesota, 

and Winston-Salem, North Carolina.

Paired, two-week average PM10 and PM2.5 Teflon filter samples were simultaneously 

collected over two different two-week periods, in the winter and summer of 2009, in 

Chicago, IL, St. Paul, MN, and Winston-Salem, NC. The monitoring sites in each city (see 

Figure 1) were residential locations of the existing MESA cohort selected to maximize 

variability in geographic features expected to influence coarse particles including land use, 

roadways, and vegetation as well as representative community monitoring sites. PM10-2.5 

mass concentrations were computed by the difference in collocated PM10 and PM2.5 

measurements. This “difference method” has been shown to be a reliable approach in 

estimating PM10-2.5 in urban areas by the U.S. Environmental Protection Agency (Chen et 

al. 2011). At affiliated field centers in each sampled city, the Teflon filters were loaded into 

Harvard personal environmental monitors (HPEMs, Harvard School of Public Health, 

Boston, MA). These monitors were connected to a Medo VP0125 (MEDO USA, Inc., 

Roselle, IL) vacuum pump drawing 1.8 L/min air sample and equipped with a timer valve 

system that obtained a 50% duty cycle sample, where the flow alternated between the PM10 

and PM2.5 filter every 5 minutes to avoid filter overload.

PM10 and PM2.5 mass concentrations were gravimetrically determined from weighing of 

Teflon filters at the University of Washington in a temperature and humidity controlled 

environment (Allen et al, 2001), and from the total volumetric flow of air sampled through 

the HPEMs. A Mettler-Toledo UMT-2 balance was used to determine sample mass 

following standard filter weighing procedures. Overall, the precision of duplicate PM10, 

PM2.5 and PM10-2.5 samples as measured by the average Relative Percent Difference was 

2%, 10% and 18%, respectively. The filter samples were analyzed for a suite of 48 elements 

by X-Ray Fluorescence (XRF) at Cooper Environmental Services (Portland, OR). Method 

sensitivity was defined by a set of acceptable detection levels for a subset of 21 key elements 

from the Method IO-3.3 analyte list. The quality assurance and quality control data are 

provided in Tables A7 and A8.
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 2.2 PMF Model Inputs

Measurement uncertainty for coarse mode species j, σj, was calculated by combining the 

uncertainties of the PM10 and PM2.5 measurements using standard error propagation as 

follows.

(1)

The measured coarse mode species concentrations were pre-processed to remove frequently 

below detection species and species with a signal to noise (Norris and Vedantham 2008), 

S/N, <10. In addition, pre-processing included removal of sulfur samples identified as 

outliers (exceeding 2 standard deviations from the mean). Four samples were removed based 

on this criterion. The S/N cutoff choice was motivated by the consistently high signal to 

noise ratios of a subset of species and relatively low and variable ratios for some species 

depending upon city. Enrichment of the coarse mode for certain elements is not unexpected 

and has been documented in other literature (Amato et. al., 2011b; Tecer et. al, 2012; 

Carvalho et. al., 2011). The S/N criteria eliminated the following species: Ag, As, Au, Cd, 

Ce, Co, Cs, Eu, Ga, Hf, Hg, In, Ir, La, Mo, Nb, Rb, S, Sc, Se, Sm, Sn, Ta, Tb, V, W, and Y 

(see Table A1 in Appendix A). Although Sb had S/N < 10, we chose to include it in the 

models because of its value as a brake wear constraint variable described in the next section. 

We retained PM10-2.5 mass but increased its uncertainty by a factor of 30 to avoid 

redundancy with all other measured species. The retention of coarse mass allows for the 

production of feature profiles in a gram per gram PM10-2.5 basis. There were no missing 

species measurements. We also ran the models including all species with S/N > 2 without 

any significant difference in our final results.

 3. Theory/calculation

We implemented the Positive Matrix Factorization (PMF) receptor model using the 

Multilinear Engine version 2 (ME-2) (Paatero, 1999). The PMF model solves the basic mass 

balance equation (Equation 2) for source contributions, gik, source profiles, fkj, and model 

error, eij, for i=1,n samples, j=1,m species, and k=1,p sources. Species concentrations, xij, 

corresponding uncertainties, σij, and the user-defined number of sources, p, serve as the 

model input.

(2)

and the gik are normalized by their average value across all samples such that

(3)
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where δ = 0.01 in this case.

Equations 2 and 3 comprise the basic PMF model. To add prior source profile constraints, 

we have added an additional set of equations that are solved simultaneously with equations 2 

and 3. In this case we have added equations representing each of t=1,v species constraints 

using prior knowledge of two sources: brake wear (k=1) and tire wear (k=2). The tth 

constraint is shown in equation 4.

(4)

where the kth source profile (k =1 or 2) is constrained using the rth and qth species, and λt 

represents the value of the species ratio for that source profile, fkq/fkr. The constraints were 

developed from a literature review of brake wear and tire wear source profiles (Table 1). The 

median values for each reported ratio were used.

We present, in equation 4, ratio constraints in the form of a difference with a target of zero. 

However, within the code of ME-2 we define sub-expressions to invert the denominator 

element for each ratio constraint and then define an auxiliary equation to represent the ratio. 

Thus, the ratio is constrained to the target value, λt, not zero. Due to the construct within 

ME-2 we applied error mode −12. The alternative, error mode −5, is limited to special cases 

where the target is zero (Paatero 2009). Through the use of error mode −12 and our ratio 

constraints we are able to control the order of the constrained model results. This approach 

differs from other similar studies which model the data unconstrained, identify source-like 

features, and then pull up or down (error mode −22) to a desired target.

In ME-2, equations 2 through 4 are solved by minimizing an object function, Q, through the 

use of a preconditioned conjugate gradient algorithm. The object function (equation 5) 

includes a penalty, qt, associated with the applied constraints.

(5)

We implement this in ME-2 by specifying auxiliary equations for qt using error mode −12 

and penalty values of 0.1. For constraint t in equation 4, these penalty values define the 

maximum allowable error from the defined constraint. The penalty values associated with a 

given constraint are shown in Table 1.

In order to increase the number of measurements used in the model, we combined all 

samples into one larger combined-city model. We hypothesize that the brake and tire wear 

profiles are universally applicable across all three cities. However, we assume that the soil 

profiles differ by geographic region of the country and therefore differ by city. To address 

this issue, we modified the model to allow three separate soil profiles, one for each city, 

while keeping all other features in common across cities. For the three soil sources (k=3 to 

5), we allowed only one unique source in each of the three cities (c=1 to 3) as follows:
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(6)

We did this by enforcing hard constraints in the form of additional auxiliary equations with a 

target of zero and a tolerance for error of 1e-5 ug/m3 on the contributions from the soil 

sources of two of the three cities. We also included additional upward pulling of Si on the 

sources to ensure the features were soil related (see Table 1); the pulling was limited by a 

maximum change in Q of 400. In addition, to insure that it is the soil profile that we are 

restricting with equation 6, we add additional profile constraints for k = 3 to 5 (see Table 1) 

based on prior knowledge of the soil-derived PM10-2.5 from the literature as well as from the 

individual city model predictions.

(7)

For an initial user-specified value of p, multiple model runs were conducted at 20 different 

starting points chosen randomly, and the chosen p-source baseline model was the one with 

the minimum value of Q (= Qmin). Separate model runs were then made assuming a range of 

values of p. The final value of p was chosen based on the following criteria: the ratio as a 

function of p between Qmin and Qtheoretical = n*ms +n*mw/3 –n*p, where ms is number of 

strong species and mw is the number of weak species; changes in Q as a function of p 

(Comero, Capitani, and Gawlik, 2009), the relationship between each fkj and prior 

knowledge of source profiles; the known source types within the modeled region; and user 

judgment. The values of Q/Qtheoretical, degrees of freedom, and the selected number factors 

for each model are presented in Table A9 and plots of Q/Qtheoretical for various p are 

provided in Figure A1.

Blocked bootstrapping (Norris & Vedantham, 2008) was then applied to the baseline model 

results, providing an estimate of the confidence limits of the fkj and the average values of gik 

by city. Given that the 2-week samples were collected simultaneously over space in each city 

only twice and only a fraction were re-sampled in both seasons, a sample block size of 5 was 

defined to contain samples within a season for a given city. Profile matching was done on 

the predicted contributions of Ba, Br, Cl, Cu, Fe, Mg, Na, Ni, P, Pb, Si, Zn and Zr, with an 

acceptable match defined as an R2 > 0.6 across all contributions for a given model run.

To assess the effect of the prior profile constraints, the model was run with and without these 

constraints. In the latter case, qt = 0. We also ran the constrained and unconstrained models 

for each city separately (in this case equations 6 and 7 were not used).
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 4. Results

In addition to the brake wear, tire wear, and city-specific soil features, the combined cities 

model was able to identify three additional source-related features: fertilized soil, road salt, 

and a feature enriched in Pb. For individual city models, the features in addition to brake and 

tire wear and soil were: fertilized soil in all cities, a metals-rich feature in Chicago, and a 

road salt feature in St. Paul. The source-related profiles are shown in Figures 2 to 5. The gik 

are normalized in such a way (equation 3) that the fkj (vertical bars in each figure) represent 

the average species concentrations contributed by a given feature across all samples. Table 

A2 in Appendix A summarizes model performance statistics. Table A6 shows the estimated 

average PM10-2.5 contributions percentages by feature, model and city. Table A3 provides 

the estimated average PM10-2.5 contributions and associated bootstrapped errors. Table A4 

shows the estimated contribution of selected species and Table A5 provides the correlations 

between the contributions of each feature. Table 2 summarizes the average ratio of tire wear 

to brake wear contributions to PM10-2.5 by model and city. Finally, Table 3 shows the 

pairwise correlation coefficients between the gik and measured concentrations of selected 

species.

 4.1 Brake Wear

The brake wear profiles for all models are shown in Figure 2. As expected, the Cu/Fe, Cu/Sb 

and Cu/Ba ratios are consistent with the prior constraints in all four constrained model-

derived profiles (ad). An additional “Metals-rich” factor (e) was identified in the Chicago 

individual model that contributes significantly to both Cu and Ba, but not to Sb. The 

contribution to Zn is low in all profiles except the Chicago individual profile (b). The 

predicted average contributions of brake wear to PM10-2.5 are generally higher for the 

individual city models than for the combined city model (see Table A6).

The effect of the prior brake wear profile constraints on the final brake wear profiles is 

relatively minor for the combined cities model (a) with the exception of Sb which is pulled 

to a larger value in the constrained case. The effect of the prior constraints on this profile is 

also small for the individual city models, with the exception of increasing the P 

concentration in Winston Salem (d). Comparing the constrained combined cities brake wear 

profile with its individual city counterparts, the differences are again small except for the 

absence on Al in the combined profile (a).

The brake wear contributions of Al, Ca, Fe, and Si are similar to the soil profiles across the 

individual city models. Within the combined model, the source contributions of these 

elements decreases and the bootstrapped variability of the contributions become 

significantly wider. The “Metals-rich” factor found in the Chicago individual model also 

contains these elements along with others found in the brake wear profile, but differentiates 

itself from brake wear due, not only to the differences in Sb mentioned above, but also due 

to a lack of Zn and the addition of P.
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 4.2 Tire Wear

The tire wear profiles are shown in Figure 3. The percent contribution to Zn is high in all tire 

wear profiles (a–d). The Pb to Zn ratio is consistent with prior constraints except for the 

Chicago individual model (b), where Pb/Zn is larger than specified by the soft constraint. In 

contrast, an additional “Pb-rich” factor is present in the combined model (e) that is distinctly 

separate from the accompanying tire wear profile (a). The effect of the prior profile 

constraints on other species is small for all models with the exception of Ca which is smaller 

in the constrained case for all profiles (a to d) and K which is smaller in St. Paul and 

Winston Salem (c and d). The predicted average contributions of tire wear to PM10-2.5 are 

shown in Table A3. The confidence intervals for PM10-2.5 from tire wear are generally 

smaller for the constrained, combined city model compared with the other models.

 4.3 Soil

The soil profiles are shown in Figure 4. The effect of prior tire and brake wear constraints on 

the soil profile is small in all models. In addition, the combined versus individual city model 

profiles are similar with the exception of P in Chicago (a vs. b), and Mg and P and Pb in St 

Paul (c vs. d). Predicted average PM10-2.5 contributions and their associated confidence 

intervals by city are generally lower for the individual city models than for the combined 

cities model (Tables A4 and A6)

 4.4 Fertilized Soil

The fertilized soil profiles are shown in Figure 5. All four profiles (a–d) indicate that 

fertilized soil is a major contributor to P, Mg and K concentrations. The effect of prior tire 

and brake wear constraints on the fertilized soil feature is small in all models. Compared 

with the combined model (a), Ba is slightly enriched in the Chicago and St. Paul features (b 

and c) and Mg is enriched in St. Paul. The contribution of this feature to PM10-2.5 is 

generally larger in the individual city models than the combined city model.

 4.5 Other features

The road salt profiles are shown in Figure 5. The road salt feature is similar to that reported 

by Schauer and coworkers (2006) and contributed substantially to both Na and Cl levels. Its 

contributions were only observed in St. Paul during the winter sampling period but not in the 

summer nor in the other two cities. This city makes extensive use of NaCl as a road deicing 

agent during snowfall events (Sander et al. 2007). Such events occurred during our winter 

sampling campaign in St. Paul, but not during winter sampling campaigns in either Chicago 

or Winston-Salem. The effect of the tire and brake wear constraints is small. For the road 

salt model, the difference between the combined and individual cities model is also small. 

This is consistent with the fact that the predicted road salt contributions are negligible in 

Chicago and Winston Salem.

The Pb-rich profile is shown in Figure 3. The effect of tire and brake wear constraints on this 

profile is small. The Pb-rich profile was not identified in any of the individual cities models.
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 5. Discussion

 5.1 Effect of constraints

A comparison of the constrained versus unconstrained brake wear and tire wear profiles and 

their bootstrapped confidence intervals from either the individual or combined city models 

shows that the application of species ratio constraints had a relatively minor impact. The 

constraints impact was minimal not only on the specified species values, but also on those 

species in the profile that were not explicitly specified in the constraints. The ratio 

constraints are “soft” constraints in that they are limited by a maximum increase in Q rather 

than “hard” constraints that are forced specifically to their target values without 

consideration of the effect on Q. Yet both the brake wear and tire wear constrained profiles 

achieved their target ratios specified by the constraints. In other words, these profiles were 

robust to the application of prior information about their presumed sources, providing strong 

evidence that these two derived features were strongly influenced by tire and brake wear and 

thus appropriately named.

In contrast to the soft ratio constraints, we applied hard constraints on the soil contributions 

in the combined cities model in order to increase the number of observations while also 

deriving independent soil features for each city (equations 6 and 7). A comparison of the 

combined-city versus the individual-city models reveal that these hard constraints appear to 

have had a more significant effect on the derived tire and brake wear profiles than the soft 

constraints mentioned earlier, although these same hard constraints did not significantly alter 

the city- specific soil profiles compared to those derived from the individual city models. 

One major difference was the ability to separate Zn from Pb using the combined-city model, 

resulting in separate tire wear and Pb-rich profiles. This latter source’s contributions to 

PM10-2.5 are small but similar in magnitude to those from tire wear (see Table A3) and may 

be due in part to the abrasion of wheel weights (Root, 2000). Even though there is no 

evidence that tires themselves contain Pb, the individual-city tire wear profile in Chicago 

contained significant amounts of Pb. This may be driven by re-suspension of Pb from 

historically contaminated soil especially in southeast Chicago (Sweet et al. 1993) and the 

resuspension of soils contaminated with leaded house paint (Laidlaw et al., 2012). The larger 

number and diversity of samples in the combined-cities model allowed these Pb-rich sources 

to be separated from the Zn rich tire profile.

 5.2 Tire to Brake Wear Ratios

The ratio of the PM10-2.5 contributions from tire wear relative to brake wear as predicted by 

the models can be compared with other independent estimates of this ratio. Based on a 

combination of particle size distribution and chemical species measurements in London at a 

heavily-trafficked curbside site and an urban background site, Harrison and coworkers 

(Harrison et al. 2012) found that brake wear and tire wear contributed 55.3(+-7) percent and 

10.7(+-2.3) percent respectively to particle mass between 0.9 and 11.5 µm, corresponding to 

an average tire-to-break wear ratio of 0.19. The traffic mix at their curbside site was 

dominated by light duty vehicles (Charron & Harrison 2005). This estimate is consistent 

with our model predictions in Table 2 with the exception of those from the unconstrained, 

individual-city models. The relatively low absolute contributions of tire wear to PM10-2.5 
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(see Table A4) is also consistent with those reported elsewhere by Kumata et al. (2011) 

using molecular markers.

The results in Table 2 can also be compared with emissions derived from the EPA MOVES 

model for 2009 across all vehicle and roadway categories in the relevant counties in the 

three cities. The MOVES tire wear to brake wear emission ratio estimate is 0.29, reasonably 

consistent with our model predictions with the exception of those from the unconstrained, 

individual-city models. The corresponding ratios used in the California EMFAC model are 

0.61-0.63 depending upon vehicle category, somewhat higher than MOVES but still 

consistent with our combined-city model predictions. However, it should be noted that these 

MOVES and EMFAC emission estimates for tire wear and brake wear PM10-2.5 are 

themselves uncertain (Coordinating Research Council 2010).

 5.3 Soil Profiles

The relative proportions of Si, Fe, K, Al, Ti and Mn in the St. Paul and Chicago soil profiles 

are similar to the Minneapolis resuspended coarse particle soil profile (MPNSoil) reported 

by Watson and co-workers (Watson et al. 2008), the Chicago urban dust profile (UDUST) 

reported by Vermette and co-workers (Vermette et al. 1988), surface soil geochemistry of 

Chicago soils reported by Cannon and co-workers (Cannon & Horton 2009), and the 

surrounding surface layer geochemistry of upper Midwestern U.S. soils (mollisols and 

alfisols), (Shacklette & Boerngen 1984; USDA, 2013).

Winston-Salem soil particles have slightly higher mass fractions of Ti compared with the 

other two cities consistent with the composition of the soils surrounding Winston Salem 

(ultisols), predominant throughout Virginia, the Carolinas, Tennessee, Georgia and Alabama 

(Shacklette & Boerngen 1984).

The phosphorus-rich fertilized soil feature contributions are consistently higher during the 

summer versus winter sampling period in all three cities (not shown). Phosphorus is added 

as a fertilizer to the soils within the urban areas as well as to those in the agricultural areas 

surrounding all three cities (IPNI 2012). Such windblown soil is a major source of airborne 

phosphorus in agricultural areas in the spring and summer (Anderson & Downing 2006).

 5.4 Sources of Selected Species

An interesting question is how well a given measured species concentration represents the 

contribution from a given source. We addressed this by examining for each feature the 

relative contributions of and pairwise correlations with selected indicator species of Cu, Zn, 

P and Si.

Our model results clearly indicate that tire wear is highly correlated with and also an 

important source of Zn. In Chicago, Zn was strongly associated with tire wear but also 

contributed to the soil and the Pb-rich features. Since Pb was present in the tire wear feature 

for the Chicago individual model but not the individual models for St. Paul and Winston-

Salem, it is logical that it would be separated from the combined model to ensure a 

ubiquitous tire wear source across cities. As a result, the Pb-rich contributions are highly 

correlated with the tire wear contributions in Chicago (Table A5).
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We also found that the brake wear feature is a major contributor to Cu in all three cities and 

that crustal soil material is highly correlated with and also an important source of Si in all 

three cities (see Table A4). The Metals-rich feature identified in the Chicago individual 

models are very similar to the brake wear profile and differs in only a few elements, 

potentially the result of artificially splitting the brake wear feature based on the subtle 

differences of brake wear composition. However, the combined model does not identify a 

Metals-rich feature. By using a multi-city approach we increase the number of samples and 

thereby improve the model’s ability to separate these ubiquitous features.

A positive correlation between brake wear, tire wear, and soil contributions implies that re-

suspension from roadways, or road dust, is involved. This idea is reinforced by the presence 

of Cu, Ba, and Sb in both the individual and combined model profiles (Figure 4). 

Interestingly, the road salt feature in St. Paul in the winter is also a major contributor to and 

also more highly correlated with the observed Cu than the brake wear feature in this season 

(Table 3). To the extent that road salt is acting as a tracer of re-suspended road particles, this 

would indicate that a measurable portion of Cu from brake wear is from re-suspended 

material, at least in St. Paul. This is consistent with the idea that some fraction of brake (and 

tire) wear dusts are deposited on or near the roadway and subsequently re-suspended, 

partially as coarse mode particles (P. Pant et al, 2013). This is suggested by the 

accompanying enrichment of Ba in the same road salt feature in both the combined and 

individual model results (Figures 5e and 5f respectively). The soil and road salt contributions 

associated with Cu could also be due to the model’s inability to separate these sources from 

a truly independent brake wear feature, but the fact that the soil and road salt features 

contain both Ba and Cu suggest that re-suspension of road dust is also playing an important 

role. This idea is reinforced by positive correlations of brake wear contributions with 

contributions from soil and road salt during the summer and winter seasons respectively 

(Table A5). Additionally tire wear and Pb-rich were slightly correlated with the Chicago soil 

feature indicating that re-suspension of road dust is playing a role in these features.

The fertilized soil feature is well correlated with P in St. Paul and Winston-Salem, however, 

Chicago exhibited elevated P contributions within the fertilized soil as well as the Pb-rich 

feature. A positive correlation of contributions between the soil and Pb-rich feature (Table 

A5) dilutes the ability of P to act as a strong indicator for fertilized soil in Chicago.

 6. Conclusions

We were able to successfully use a modified version of PMF to identify contributions from 

brake wear, tire wear, crustal material, fertilized soil and a small Pb-rich feature. Our 

modified PMF model allowed not only for inclusion of prior source profile information for 

selected species, but also for locally specific results for soil (crustal) contributions in 

addition to generally applicable results for the other features. The effect of prior source 

profile constraints on model predictions was relatively small, increasing our confidence in 

correctly identifying the tire and brake wear features. The modified model also allowed us to 

include measurements from different cities with different soil compositions. The locally 

specific soil profiles in this model were consistent with those derived from city-specific 
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models. Elements Cu, Zn, P, and Si were identified as general indicators of brake wear, tire 

wear, fertilized soil, and soil for the combined city analysis.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Receptor-oriented source apportionment using the Multilinear Engine

• Modeled coarse particles sampled spatially across three urban regions

• Applied source profile constraints using prior information

• Separated ubiquitous and city-specific sources
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Figure 1. 
Map of Sampling Locations in Chicago (a,b), St. Paul (c,d) and Winston-Salem (e,f). 

Samples were taken in the Winter or Early Spring (left panels) and in the Summer (right 

panels).
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Figure 2. 
PMF-derived features identified as brake wear (a–d). The black bars represent the average 

species contributions for the unconstrained models and the white bars represent the models 

with prior source profile constraints (see Table 1 and text). The bootstrapped 95% 

confidence limits are also shown. The circles refer to the percent of the total predicted 

concentration for a given species associated with that feature for the unconstrained (closed 

circles) and constrained (open circles) models. Also shown is an additional metals-rich 

source identified by the individual Chicago model (e) that is enriched in both Ba and Cu.
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Figure 3. 
PMF-derived features identified as tire wear (a–d). The black bars represent the average 

species contributions for the unconstrained models and the white bars represent the models 

with prior source profile constraints (see Table 1 and text). The bootstrapped 95% 

confidence limits are also shown. The circles refer to the percent of the total predicted 

concentration for a given species associated with that feature for the unconstrained (closed 

circles) and constrained (open circles) models. Also shown is an additional Pb-rich source 

identified by the combined-cities model (e).
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Figure 4. 
PMF-derived features identified as soil. The black bars represent the average species 

contributions for the unconstrained models and the white bars represent the models with 

prior source profile constraints (see Table 1 and text). The bootstrapped 95% confidence 

limits are also shown. The circles refer to the percent of the total predicted concentration for 

a given species associated with that feature for the unconstrained (closed circles) and 

constrained (open circles) models. The predictions from the combined cities model (a, c, e) 

are shown by city along with the relevant predictions from the individual city models (b,d, f)
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Figure 5. 
PMF-derived features identified as fertilized soil (a–d) and road salt (e). The black bars 

represent the average species contributions for the unconstrained models and the white bars 

represent the models with prior source profile constraints (see Table 1 and text). The 

bootstrapped 95% confidence limits are also shown. The circles refer to the percent of the 

total predicted concentration for a given species associated with that feature for the 

unconstrained (closed circles) and constrained (open circles) models.
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Table 2

Ratio of Tire Wear to Brake Wear PM10-2.5 Contributions

Model
Tire Wear to Brake Wear Median Ratio

With Profile Constraints Unconstrained

Combined Cities Model

Combined Model 0.24 (0.00,1.38)a 0.31 (0.00,1.85)

Chicago 0.30 (0.00,1.70) 0.37 (0.00,2.27)

St. Paul 0.35 (0.00,1.88) 0.48 (0.00,2.96)

Winston-Salem 0.09 (0.00,0.65) 0.11 (0.00,0.86)

Individual City Models

Chicago 0.13 (0.00,0.64) 0.48 (0.13,1.17)

St. Paul 0.17 (0.00,1.26) 0.65 (0.17,12.66)

Winston-Salem 0.03 (0.00,0.98) 1.18 (0.29,2.05)

a
( ) 95% confidence limits from bootstrapping
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