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Summary

Clinical trials often collect multiple outcomes on each patient, as the treatment may be expected to 

affect the patient on many dimensions. For example, a treatment for a neurological disease such as 

ALS is intended to impact several dimensions of neurological function as well as survival. The 

assessment of treatment on the basis of multiple outcomes is challenging, both in terms of 

selecting a test and interpreting the results. Several global tests have been proposed, and we 

provide a general approach to selecting and executing a global test. The tests require minimal 

parametric assumptions, are flexible about weighting of the various outcomes, and are appropriate 

even when some or all of the outcomes are censored. The test we propose is based on a simple 

scoring mechanism applied to each pair of subjects for each endpoint. The pairwise scores are then 

reduced to a summary score, and a rank-sum test is applied to the summary scores. This can be 

seen as a generalization of previously proposed nonparametric global tests (e.g. O'Brien 1984). We 

discuss the choice of optimal weighting schemes based on power and relative importance of the 

outcomes. As the optimal weights are generally unknown in practice, we also propose an adaptive 

weighting scheme and evaluate its performance in simulations. We apply the methods to analyze 

the impact of a treatment on neurological function and death in an ALS trial.
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1. Introduction

Many clinical trials are conducted to compare treatments with respect to a single primary 

measure, such as time to death. A single outcome, however, does not always adequately 

capture the entire effect of a therapy, which can impact patients in many dimensions. For 

example, new treatments for amyotrophic lateral sclerosis (ALS) target both mortality and 

different aspects of neurological function, which are measured using the ALS Functional 

Rating Scale (ALSFRS-R) (Cedarbaum et al., 1999). In such cases, it is useful to test the 
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efficacy of a treatment with respect to all relevant outcomes simultaneously. The design, 

analysis, and interpretation of studies in the presence of multiple outcomes like these can be 

difficult, especially when some of the outcomes are subject to censoring. We propose 

flexible nonparametric global tests to summarize a treatment effect across multiple 

endpoints.

Several methods for combining multiple endpoints have previously been proposed. Pocock, 

Geller, and Tsiatis (1987) provide a global test statistic that can be used to combine any set 

of asymptotically normal test statistics. Many authors have also proposed nonparametric 

tests based only on composite ranks of a set of outcomes. O'Brien's (1984) nonparametric 

rank-sum method sums the ranks for each outcome, and makes inference on the combined 

ranks. Wei and Johnson (1985) combined Wilcoxon statistics for incomplete repeated 

measurement data using U-statistics. Finkelstein and Schoenfeld's joint rank test (1999) is a 

method that compares each pair of subjects with respect to mortality and a secondary 

endpoint jointly, an extension of similar joint tests proposed by Moyé et al. (1992; 2011). 

Wittkowski (2004) proposed a test for multivariate ordinal data using U-statistics based on a 

product ordering of outcomes, an idea also explored by Rosenbaum in depth (1991 (1994). 

Häberle, Pfahlberg, and Geffeler (2009) defined the ranking methods of many of the above 

referenced tests in terms of different types of partial orders.

These combined tests have increasingly attracted clinical interest for complex diseases 

where treatment is expected to affect multiple dimensions. Felker and Maisel (2010) 

suggested using global rank approaches for trials of acute heart failure, with death, dyspnea 

improvement, and other biomarkers as outcomes. Sun et al. (2012) assessed the performance 

of various global approaches using simulations based on phase II trials for acute heart 

failure. Healy and Schoenfeld (2012) also examined through simulation how a global test 

performs relative to other methods of analyzing a longitudinal and survival outcome jointly. 

Berry et al. (2013) proposed using a global test for ALS trials, and retrospectively applied 

the Finkelstein-Schoenfeld test to a phase II trial for ALS.

We propose a generalization of the aforementioned global nonparametric rank tests using U-

statistics. The class of tests can be applied to settings that involve continuous, ordinal, and 

censored endpoints. While some of the tests that we consider in this paper have been 

proposed and examined in the literature, we will generalize the expression for rank-based 

tests of combined endpoints. The advantage of a broader generalization of these tests is that 

the properties of any particular test can be readily developed using the infrastructure we 

provide. This allows investigators the flexibility to choose an existing test (e.g. O'Brien), a 

weighted or modified version of an existing test, or even create a new test that may be more 

suitable to a different notion of treatment efficacy within a particular study. Additionally, we 

determine the optimal outcome weights for certain tests, and propose a novel adaptive 

weighting method that can be used to improve power over the ordinary global tests.

In section 2, we will describe the general test statistic and its properties under the null 

hypothesis. Section 3 will focus on the choice of optimal outcome weights for specific tests, 

including a description of the adaptive procedure for estimating weights. We will present 

simulation results in section 4, and an example analysis of an ALS clinical trial in section 5. 
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We will close by discussing the merits and drawbacks of such combined tests, and the 

implications in interpreting results.

2. Methods

Suppose we have two groups of patients on different treatments, and we are interested in 

testing a hypothesis about the efficacy of one treatment versus the other when there are 

multiple outcomes that have been recorded for each patient. First, we will score all pairs of 

patients between groups with respect to each outcome, with a score between -1 and 1. For 

example, if we are comparing patients i and j on survival and a quantitative outcome (e.g. 

ALSFRS-R score), for the pair (i,j) we may assign a score of -1 for survival if subject i 
failed before patient j (1 if j failed before i). For ALSFRS-R, we would assign a score of 1 if 

i had a higher score than patient j at their last common follow-up time (-1 if i had a lower 

score). Generally, for each outcome, indexed by k, we have a function rk that takes data from 

both subjects and assigns a score of -1, 0, or 1. This function should indicate which patient 

did better with respect to the kth outcome, with a value of 1 indicating a better outcome for 

subject i over j, -1 a worse outcome, and 0 the same. We will call this a pairwise rank. Note 

that in this example we compare i and j on ALSFRS-R at their last common follow-up time, 

but in reality we may want to use a different measure that accounts for some pre-treatment 

baseline measurement of ALSFRS-R, such as percent change or slope. The main idea is that 

due to censoring and death, we can only validly compare patients up to their last common 

follow-up time; the measure that we use should make sense within the context of the illness.

In general, let xik, yjk represent observed data on subjects i and j for outcome k, where xik, 

yjk can possibly be vectors, i indexes subjects on treatment (i = 1, …, n), j indexes control 

subjects (j = 1, …, m), and k indexes the outcomes (k = 1, …, p). We assume that the 

complete vetor of outcome random variables Xi, and Yj are i.i.d. with respective distribution 

functions FX(x1, x2, …, xp) and FY (y1, y2, …, yp).

Suppose, for example, that xik, yjk are scalar observed outcomes where a larger value is 

favorable; then we would write the ranking function for that outcome as rk(xik, yjk) = I(xik > 

yjk) – I(xik < yjk). In the case of a failure time, we will use the Gehan scoring function 

(1965) to score pairs. For example, let  and  denote the follow-up time random 

variables for subjects i and j on outcome k (i.e. , where Xik, Ci are the 

failure and censoring time random variables for subject i;  analogously), 

and let δik, δjk be the indicator variables that a failure was observed. Then we have 

. This will be equal to 1 if 

subject i is known to have survived longer than subject j, -1 if i is known to fail before j, and 

0 if tied or it is indeterminate who survived longer. We will denote E[rk(x, y)] = θk. This θk 

can be thought of as a marginal treatment effect for outcome k, where a positive value favors 

the treated group. Note that in the expression rk(x, y), x and y may be vectors of data, as in 

the Gehan scoring function.

Now define rij = (r1(xi1, yj1), r2(xi2, yj2), …, rp(xip, yjp)). This is the vector of the scores 

comparing subject i to subject j on each of the p outcomes. The vector rij = (−1, 1, 0), for 
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example, would indicate subject i did worse than j on the first outcome, better on the second 

outcome, and the same or indeterminate on the third.

Once we have the vector rij for each pair i and j between different groups, we map it to a 

one-dimensional score, and then construct a test statistic based on the univariate scores for 

each pair of subjects. That is, we will have a function ϕ(r1, .., rp) that maps the vector of 

pairwise outcome scores to a single summary score. The univariate score resulting from 

ϕ(rij) is interpreted as a summary measure of the differences in outcomes between subjects i 
and j. A positive score favors subject i, a negative score subject j, and 0 favors neither.

The test statistic is given by the sum of the composite pairwise scores between the two 

groups:

(1)

This is simply a two-sample U-statistic that estimates the parameter θϕ = E[ϕ(r1(X1, Y1), …, 

rp(Xp, Yp))]. Borrowing terminology from Huang (Huang, Woolson, and O'Brien, 2008), we 

can think of θϕ as a global treatment effect. It is the expectation of the composite of 

outcome-specific pairwise ranks, where each pairwise rank is a scaled probability between 

-1 and 1 that i did better than j on that outcome. Thus, it can be interpreted as something like 

a scaled probability of doing “better” on treatment, “better” being defined by how we 

summarize pairs with the function ϕ. Note that in this paper we construct the statistic so that 

θϕ = 0 under the null hypothesis H0.

2.1 Some Examples for ϕ

Below we will give examples for composite functions ϕ for some tests previously proposed 

in the literature. For ease of notation, we will denote the outcome-specific rank scores rk(xik, 

yik) = rk.

1. O'Brien (1984). O'Brien's proposed nonparametric procedure for 

comparing multiple outcomes was based on an overall rank for each 

subject that is obtained by summing their outcome-specific ranks, and 

using a rank-sum or ANOVA test based on the overall ranks. A function ϕ 
that would yield a test similar to O'Brien's is ϕ(r1, …, rp) = r1+r2 +⋯+rp. 

More generally, we could weight the outcomes differently, and have ϕ(r1, 

…rp) = w1r1 + w2r2 + ⋯ + wprp, with wk ≥ 0 for all k.

2. Finkelstein-Schoenfeld Test (FS) (1999). This test compares a mortality 

outcome and a longitudinal outcome in a hierarchy, where subjects are 

first compared pairwise on survival, and then on the longitudinal marker if 

it is indeterminate who survived longer. Here r1 is the Gehan scoring 

function, and r2 ranks pairs of subjects on their longitudinal outcome at 

their last common follow-up time. In our framework, the function ϕ is 

given by ϕ(r1, r2) = r1 + I(r1 = 0)r2. For p outcomes arranged in a hierarchy 
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(Buyse, 2010), we would have ϕ(r1, r2, …, rp) = r1 + I(r1 = 0)r2 + … + I(r1 

= ⋯ = rp–1 = 0)rp. We could also assign a different weight to each outcome 

with ϕ(r1, r2, …, rp) = w1r1 + I(r1 = 0)w2r2 + … + I(ri = ⋯ = rp–1 = 0)wprp, 

with wk ≥ 0 for all k. With censored data, when there is only 

administrative censoring at the end of the study period, but no dropout 

during the study period, this is equivalent to using “worst-rank” scores 

(Wittes, Lakatos, and Probstfield, 1989).

3. Wittkowski (2004). Wittkowski's proposal compares subjects pairwise 

with respect to several ordinal measures. When all of the outcomes for 

subject i are at least as favorable as that of the subject j, and at least one of 

subject i's outcomes is more favorable, a score of 1 is assigned for the pair 

(-1 if subject j does better). If some outcomes are better and some are 

worse in the pairwise comparison, the score is 0. For ϕ, we can write ϕ(r1, 

…, rp) = I(maxk{rk : k = 1, …, p} > 0) – I(mink{rk : k = 1, …, p} < 0). 

This could be modified to score a 1 if subject 1 has more favorable 

outcomes than subject 2: (ϕ(r1, …, rp) = I(Σkrk > 0) – I(Σkrk < 0). This can 

further be modified with weights: (ϕ(r1, …, rm) = I(Σkwkrk > 0) – I(Σkwkrk 

< 0), with wk > 0 for all k.

4. Combination of different tests: To illustrate the flexibility of the test, we 

can also use a combination of other tests. For example, a ϕ function that 

combines elements of the O'Brien and FS tests could be 

. This function gives a 

composite score based on the the first outcome, but if the first outcome is 

tied, the composite score is an average of the scores for all other outcomes.

We will mainly focus on the O'Brien and FS tests in this paper, but the large-sample 

properties of the test hold for any appropriate function ϕ.

2.2 The Null Hypothesis and Restrictions on ϕ

The null hypothesis with which we are working is that the global treatment effect θϕ = 0, 

and whenever this is the case, the test statistic will have mean 0 and should reject the null at 

the nominal α level. For each test described above, θϕ = 0 holds under the strongest null 

hypothesis that the joint distributions in each group are the same, but it can also hold under 

weaker conditions. For example, with uncensored data using O'Brien's test, θϕ = 0 when 

. This is essentially equivalent to the null hypothesis for the 

modification of O'Brien's test proposed by Huang et al. (2005).

The following conditions on ϕ will always ensure a valid test under the strong null that the 

joint distributions of the outcomes are equal between both groups.

1. ϕ(0) = 0.

2. ϕ is an odd function, i.e. ϕ(rij) = −ϕ(rji). Then ϕ(rij) + ϕ(rji) = 0

3. E[ϕ2(r1(X1, Y1), …, rp(Xp, Yp))] < ∞
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The first two conditions ensure that the composite scores will only differ by sign if we flip 

the arguments of the rk(·, ·). By symmetry, θϕ = E[ϕ(rij)] = 0 under the strong null, and the 

test statistic will have mean 0 when this is the case. Let N = n + m be the total sample size. 

Under H0, when the third condition holds and  as N → ∞, it follows that √NU → 
N(0, σ2), where

(2)

This follows from standard asymptotic theory on U-statistics (Van der Vaart, 2000). The 

asymptotic variance is not distribution free under H0, as it will generally depend on the 

correlation between the scores among different outcomes, but can be consistently estimated 

from the data with:

(3)

(see Web Appendix A for details).

If we have stratified data, a stratified test statistic is given by , where S is 

the total number of strata, and for the sth stratum Ns is the total sample size, Us is calculated 

as in (1), and  is estimated as in (3). T has an asymptotic standard normal distribution, but 

note that the asymptotic distribution is based on the asymptotic normality of the within-

strata U-statistics, which may not hold if some of the strata have very small sample sizes per 

treatment group.

2.3 Power and Sample Size Considerations

For a given function ϕ, probability of type 1 and type 2 errors α and β respectively, and 

global treatment effect θϕ > 0 under the alternative hypothesis H1, the power of the test can 

be approximated by , where Φ is the standard normal σ 
cumulative distribution function, z1–α/2 is the minimum upper tail value for which we would 

reject H0, and σ is the standard deviation of the U-statistic as given in (2). Then for a given 

power 1 – β, an estimated total sample size is given by . It follows 

that n = λN and m = (1 – λ)N. Note that to find candidate values for θϕ and σ, we would 

need to make some distributional assumptions on the data, and obtain the parameters 

analytically or by simulation. As Huang, Woolson, and O'Brien note (2008), this has no 

bearing on the test statistic itself, for which we do not make any parametric assumptions.
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In the next section, we will show that we can write the O'Brien and Finkelstein-Schoenfeld 

tests as a sum of outcome-specific U-statistics, U1, …, Up. Then we can construct a 

weighted global test of the form w′U where w is a vector of weights. For these weighted 

tests, we can rewrite the power function in terms of the weighted component U-statistics. Let 

U = (U1, …, Up)′ be the vector of outcome-specific U-statistics, Λ = cov(U), θϕ = (θϕ1, …, 

θϕp)′ = E(U) under H1, and w = (w1, …, wp)′ be a fixed weighting vector. Without loss of 

generality, assume θϕ ≥ 0 in all components. We assume this because we are only interested 

in alternatives where the treatment is favorable on at least some outcomes, and not 

unfavorable on any outcomes (equivalently, we can assume θϕ ≤ 0). Then the power of the 

test is given by . For optimal weights, it follows that 

maximizing power corresponds to maximizing w′θϕ(w′Λw)−1/2 with respect to w. Note that 

if we assumed θϕ ≤ 0, maximizing power corresponds to minimizing this quantity. The total 

sample size for given β is then .

As a guide to choosing a particular test, one can compute the estimated power for different 

tests under a range of distributional assumptions and alternative hypotheses.

3. Weights

Incorporating outcome weights allows the relative importance of the outcomes to be 

reflected in the test. For example, in some cases the treatment may be most targeted to 

improving mortality, while in other cases death may be a competing risk. Weights would 

allow us to easily cast our statistic in terms of these different settings.

One method for choosing weights would be to base it on the importance of outcomes. These 

utility weights are completely determined by the investigator prior to the study. For example, 

in a study of ALS and survival, the rank on survival may get a larger weight than the rank on 

ALSFRS-R score because survival is more important. One problem with utility weights is 

that utility of certain outcomes may be different for different subjects, and can be arbitrarily 

chosen based on investigator belief. On the other hand, this may be attractive when there is a 

clear subset of outcomes that should dominate the statistic.

An alternative method would be to construct optimal weights by maximizing the power of of 

our test statistic under a particular alternative hypothesis. We can do this for both the 

O'Brien and the Finkelstein-Schoenfeld tests, which we describe below.

3.1 O'Brien

For O'Brien's test, note that ϕ is a linear function of the individual outcome scores, so we can 

write the test a sum of U-statistics for each outcome, as described by Li et al. (2009). First, 

let , the U-statistic for the kth outcome. The weighted O'Brien 

statistic is then given by w′U where w is a weighting vector. Since , it 

follows that √NΣkUk → N(0, Λ), where Λ = cov(U). Then √Nw′U → N(0, w′Λw). As 
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noted earlier, maximizing power is equivalent to maximizing |w′θ|(w′Λw)−1/2, where θ = 

(θ1, …, θp)′ = (E[U1], …, E[Up])′. The solution to this equation is w = Λ−1θ (see Web 

Appendix B). We would need to choose θ a priori under a specific alternative hypothesis we 

have in mind. We will assume that θk > 0 (or θk < 0) for all k, since these are the alternative 

hypotheses in which we are interested. For any distribution functions we assume on the data, 

we can always approximate the desired θ by simulation, and in many cases we can solve for 

it analytically. For the purpose of selecting weights a priori, the covariance matrix Λ should 

also be obtained using a combination of historical data and hypothesized treatment effects. If 

there were no historical data available, we would have to make some distributional 

assumptions on the data, and then arrive at the covariance matrix analytically or through 

simulation. By simulation, we can calculate each of the outcome-specific U-statistics several 

times under specific distributional assumptions, and compute the empirical covariance 

matrix of the U-statistic vectors as Λ. This can easily be done for a variety of assumptions to 

get a better idea of reasonable candidates for Λ.

For computation of the test statistic, the covariance matrix Λ has entries σk,l = cov(Uk, Ul), 

which can be estimated with:

Note that this variance estimate, based on the current trial, should only be used for 

computation of the test statistic, not for obtaining optimal weights.

3.2 Finkelstein-Schoenfeld (FS)

To find optimal weights for the FS test, we will again write the test a sum of dependent U-

statistics. Suppose that the first, and most important outcome is a failure time. Let Xi1, Yj1 

denote the follow-up times on this outcome for subjects i (group 1) and j (group 2). Let δi1, 

δj1 be the indicator that a failure was observed for i and j respectively. Let rij1 = I(Xi1 > 

Yj1)δj1 – I(Xi1 < Yj1)δi1 be the pairwise Gehan rank for the first outcome, and in general let 

rijk = I(Xik > Yik) – I(Xik < Yik) be the pairwise rank for subject i vs. subject j on outcome k. 

Note that these ranks can also be Gehan ranks on failure and censoring times with their own 

δ values, but we suppress the notation for generality. Also, the non-survival outcome(s) will 

not be able to be measured on a subject after he or she fails or is censored, so subjects can be 

compared on the other outcomes based on their last common follow-up time. Now, define 

eij1 = 1 and eijk = I(rij1 = 0, rij2 = 0, …, rij,k–1 = 0) for k ≥ 2. Then the test statistic is given by 

, where 

As before √Nw′U → N(0, w′Λw). Let θ = (θ1, …, θp)′ = (E[U1], …, E[Up])′. The optimal 

weight is given by w = Λ−1θ. As described in the previous section, θ and Λ should be 

determined a priori for the purpose of selecting weights. For computing the test statistic, the 

estimate Λ̂ for Λ has entries
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3.3 Optimal Weighting and Constrained Optimization

The optimal solution for O'Brien's test and the FS test can yield undesirable weights from a 

clinical standpoint, particularly the case where some weights are positive and others 

negative. At the most basic level, we want all of our weights to be positive, but we may also 

want to restrict certain outcomes to have some fixed, minimum, or maximum weight. This 

can be achieved fairly easily using a constrained optimization. Ultimately, to maximize 

power, we want to maximize the quantity δ = |w′θϕ(w′Λw)−1/2 with respect to the vector w. 

This quantity can be maximized using the optim function in R (R Core Team, 2014), and 

box-constraints can be put on each element of the vector w when using the “L-BFGS-B” 

method of optimization (Byrd et al., 1995). The box-constraints are simply lower and upper 

bounds specified for each element of the vector (which can be ∞ or − ∞ for upper and 

lower bounds, respectively). If we want any outcomes to have some fixed weight, we can do 

that as well. Suppose we want to fix the first outcome weight to be 1; we could still optimize 

the same quantity δ, but in the function simply set w1 = 1, and maximize the quantity with 

respect to the vector of weights (w2, …, wp). The investigator should use their discretion to 

determine whether selected weights are sensible given the nature of the illness, outcomes, 

and treatment under study.

3.4 Adaptive Weighting

The biggest issue with attempting to use optimal weights as described above is that we need 

to have an idea of the parameter values θ and Λ under the alternative hypothesis for the 

weights to be useful in improving power. This may be viable if we have previous studies for 

which we can estimate those parameters, but in general they are unknown. An adaptive 

weighting method can be used to avoid guessing weights prior to the study when we have 

multiple strata. Natural strata are frequently present in medical studies, e.g. different 

enrollment periods and/or centers in clinical trials. In such settings, we propose using data 

from “previous” strata to estimate weights for “upcoming” strata. Fisher (1998) describes 

the general idea, and shows that adapting weights in this manner maintains the significance 

level of the trial. An adaptive weighting scheme can be constructed as follows.

1. Suppose we have p outcomes and S strata. Order the strata 1, …, S. This 

could be a natural ordering based on the design of the study (e.g. 

enrollment period), or a random ordering. Let Usk denote the kth 

component U-statistic for the sth stratum.

2. In the first stratum, calculate the outcome specific test statistics U1k, k = 1, 

…, p as described in section 3.1 or 3.2 for the appropriate test. U1k is then 

an estimate of θk = E[Usk] for the subsequent strata, and U1 = (U11, …, 

U1p)′ is an estimate of θ = (θ1, …, θp)′. Estimate the covariance matrix 

for the first stratum, Λ̂
1.
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3. Estimate the optimal weights for the second stratum with  (or, 

if this yields negative weights, numerically optimize with constraints). 

Scale the weights w2 such that its components sum to 1, i.e. . 

Then the numerator of the statistic for the second stratum is , and the 

variance is .

4. For all of the subsequent strata, we may use a weighted average of the 

requisite parameters from the previous strata, weighted by the number of 

pairwise comparisons ineach of the strata. That is, our estimate for θ and 

Λ for the sth stratum are given by , and 

, respectively. The optimal weight for the sth 

stratum is then . Note that Σ̂ is used in place of Λ̂ here to 

avoid confusion between the within stratum estimates of the covariance 

(Λ̂) and the average of those covariances across strata (Σ̂).

5. Combine the stratum-specific test statistics using a stratified statistic, as 

described insection 2.2.

This is a general outline, but there can be many variations on the above procedure. For 

example, the stratified statistic given in section 2.2 weights each of the strata equally in the 

overall test statistic, so a further modification can be to give different strata different 

weights, perhaps to upweight the strata that uses more previous information.

Alternatively, one can use Bayesian methods by setting a prior on the weights, and updating 

the weights with additional data. Minas et al. (2012) use a type of Bayesian method to 

estimate weights in the case of multivariate normal data, basing the priors on previous 

studies, and computing the posterior with a subset of pilot data taken from the main study 

data. Something similar to the above procedure can potentially fit within a group-sequential 

design framework as well.

The weights used for the first stratum can all be equal, or they can be estimated from 

historical data or simulation based on a hypothesized treatment difference between groups. 

In addition, the ordering of the strata should be pre-specified, as the value of the test statistic 

will depend on the order. A natural ordering could be based on the sample size of each 

stratum, or could be chronological if the strata are distinguished by enrollment period.

The main advantage of this procedure is that we are letting the data self-select the weights 

based on what outcomes the treatment is affecting most. A disadvantage is that we are using 

different outcome weights for different strata, so interpretation of the pooled stratified test 

becomes muddled. In addition, if we get the wrong weights we can lose power. This is more 

likely to happen when equal weights are already near optimal, causing us to estimate sub-

optimal weights due to the variability in estimation. With censored data, there is greater 
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variability in weight estimation, as the optimal weights will also depend on the censoring 

distributions. Furthermore, the above procedure assumes the same treatment effect across 

strata, and thus may give sub-optimal weights when this is not the case.

4. Simulations

We assessed the performance of the O'Brien and FS tests, and their adaptively weighted 

counterparts, under two different scenarios. In the first scenario, we generate uncensored 

data on 4 outcomes, and compare the type 1 error of O'Brien's originally proposed 

nonparametric test (denoted TO), our proposed version of O'Brien's test with equal weights 

( ), and our proposed Adaptive O'Brien test ( ). We also compare the power of these 

tests with the optimally weighted O'Brien test ( ). In the second scenario, we generate 

data based on an ALS simulation study by Healy and Schoenfeld (2012). For this scenario, 

we compare the type 1 errors of the proposed O'Brien, Adaptive O'Brien, FS ( ), and 

Adaptive FS ( ) tests. Additionally, we compare the power of these tests and the 

optimally weighted O'Brien( ) and  tests. To determine the appropriate 

covariance matrix Λ for optimal weight estimation, we did an independent simulation under 

the assumed distributions, and empirically estimated Λ from the U-Statistic vectors. In each 

setting, we generated 2 or 4 strata with no treatment by strata interaction, and used the 

stratified test statistic given in section 2.2. Note that for O'Brien's original test, there is no 

stratified statistic, so the TO statistic is based on the full sample irrespective of the strata. For 

each setting, 5000 iterations were performed.

4.1 Scenario 1: Four outcomes, uncensored

To test the performance of O'Brien's test under the null hypothesis, we generated data from a 

multivariate normal distribution with four outcomes and zero mean for all outcomes, under 

both equal and unequal variances between the groups. In the equal variances setting, all 

outcomes had variance 1, and all correlations between outcomes were set to ρ, with the 

value of ρ for each setting given in Table 1. For unequal variances, the covariance matrix for 

group 1 was equal to 1 on the diagonals, and all off-diagonal entries were 0, indicating no 

correlation between outcomes. The covariance matrix for group 2 was set to (1, 4, 9, 25) on 

the diagonal, and all off-diagonal entries were set to 1. In Table 1, we see that when the 

multivariate distributions for both groups are equal, i.e. when the within group variances are 

equal, that TO, , and  all control the type 1 error at the nominal 0.05 level, including 

under unequal sample sizes. Under unequal variances, however, the type I error for TO is 

inflated, while the type I errors for the proposed  and  statistics are still controlled 

at the nominal level. This was the same conclusion drawn by Huang et al. (2005) for 

O'Brien's original test.

Under the alternative hypothesis, we similarly generated multivariate normal data, using the 

same covariance matrix as the “equal variances” scenario under the null hypothesis above 

for both groups. The mean for each outcome was zero in group 2, and in group 1 the means 

were (.053, .142, .286, .507), chosen so that θ = (.03, .08, .16, .28). The results are given in 
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Table 2. With no correlation between the outcomes, the adaptive test  Performs 

similarly to the unweighted tests TO and , while the optimally weighted test  has 

significantly higher power. As the correlation (ρ) between outcomes increases, we see that 

the adaptive test begins to perform better than the unweighted tests, and the optimally 

weighted tests have an even greater power increase over the unweighted tests. This is 

because when the outcomes are correlated, it becomes more optimal to lower the weight on 

the outcomes with a smaller effect size to diminish the additional variance obtained from 

adding the correlated ranks between the outcomes. As the optimal weights become further 

away from equal, the adaptive test gains significantly more power than its unweighted 

counterparts. This also illustrates that whenever two outcomes are strongly correlated, we 

may be better off dropping one of those outcomes entirely from the statistic.

4.2 Scenario 2: Survival and Neurological Function

In this scenario, we generate data based on a clinical trial where patients are monitored for 

two outcomes: survival, and ALSFRS-R scores. The ALSFRS-R is a functional rating scale 

by which physicians evaluate the degree of neurological function in ALS patients. For every 

subject, we generated ALSFRS-R data for 25 time points, (0, 1, …, 24), where each time 

can be thought of as a month. We also generated survival times, subject to equal and unequal 

censoring distributions between groups in different scenarios. For the equal censoring case, 

we used administrative censoring in both groups at time 24. Under unequal censoring, one 

group had only administrative censoring at time 24, while the other group was subject to 

administrative censoring at time 24 or random censoring before time 24, generated from a 

uniform distribution.

The simulation is nearly identical to a simulation study by Healy and Schoenfeld (2012) for 

ALS, so we refer to their paper for details, and include a description of the model in Web 

Appendix C. They generated the data from a shared parameter model, where survival was 

correlated with ALSFRS-R trajectory through patient-specific random effects. The 

parameters for their model were derived from estimation of the model for data from an ALS 

clinical trial (Cudkowicz et al., 2006), and they varied the treatment effects for ALSFRS and 

survival across simulations.

In Table 3, we present results for our version of the O'Brien and FS tests, and their adaptive 

counterparts, under no treatment effect on ALSFRS or survival. Each test controls the type I 

error at the nominal level for equal and unequal censoring distributions, including under 

unequal sample sizes. As O'Brien's originally proposed test was not constructed for censored 

data, we did not assess its performance in this scenario.

In Table 4, we present power under the alternative hypothesis for the O'Brien and FS tests, 

and their adaptive and optimally weighted counterparts. Data was generated under different 

combinations of effect sizes for mortality and ALS (none, mild, moderate, strong) under the 

shared parameter model. In general, the  test performs slightly better than  when there 

is a stronger treatment effect on mortality, while  performs better with a stronger effect on 

ALS. Additionally, the adaptive tests  and  perform better than the unweighted 

Ramchandani et al. Page 12

Biometrics. Author manuscript; available in PMC 2016 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tests when the treatment effect sizes are very different between mortality and ALS, where 

the optimal weights are far from equal. However, in cases where equal weights are already 

close to optimal (e.g. moderate effect sizes on both outcomes), the adaptive tests will do 

worse than the unweighted tests. In this scenario, the adaptive tests seem to be most useful 

as a hedge in case one of the outcomes is null or close to null, in order to minimize dilution 

of the statistic from combining noise from a null outcome with signal from another outcome.

5. Example: ALS Trial

We illustrate the proposed O'Brien and FS tests on data from a clinical trial of Ceftriaxone in 

patients with ALS (Berry et al., 2013). The 513 subjects in the trial were monitored for two 

endpoints: survival, and rate of decline in neurological function as measured by their 

ALSFRS-R scores. The scale ranges from 0-48, with a higher score indicating better 

function. ALSFRS-R was measured periodically in patients until death, drop-out, or the end 

of the study. 340 subjects were administered Ceftriaxone, and 173 placebo, with an average 

follow-up time of 1.6 years. We compared treatments using the stratified test statistic, with 

the stratum variable being site of onset (“limb-onset” or “bulbar-onset”). There were 119 

subjects with bulbar-onset and 394 with limb-onset disease. We used Gehan ranks for the 

survival outcome, and for the ALS outcome, we compared patients pairwise on the mean of 

their ALSFRS-R scores up to their last common follow-up time. The component U-statistics 

(normalized by √N) for O'Brien's test were (1.37,0.08) in the bulbar-onset stratum and (0.18, 

‒0.56) in the limb-onset stratum, where the first component refers to survival and the second 

ALSFRS-R; for the FS tests these were (1.37, ‒.04) and (0.18, ‒0.36). The estimated 

covariance matrices in each stratum for O'Brien's test were  and 

. For the FS test we had,  and 

. The normalized test statistics were 0.56 for the O'Brien test (p-value 

= .577), and 1.09 for the FS test (p-value = 0.275). Notice here that the FS test, which puts 

more emphasis on survival, is more robust to the weak treament effect in the opposite 

direction on the ALS outcome.

We also computed the test statistic using the adaptive method described in section 3.4. We 

first computed the statistics above, then estimated optimal weights for the “limb-onset 

stratum” using data from the “bulbar-onset” stratum. The optimal weights (restricted to be 

non-negative) for both tests were (1,0), i.e. with only weight on the survival outcome. The 

normalized adaptive test statistics were 0.96 (p-value = .340) for the O'Brien test, and 1.14 

(p-value = .256) for the FS test. Observe that because the ALSFRS-R outcome is given zero 

weight in the second stratum, the adaptive statistics, especially O'Brien's, are less diluted by 

that outcome. This could be problematic, however, if treatment is actually better in one 

outcome and worse in another, because we would not want to erroneously conclude a 

positive global treatment effect in that case. This example illustrates well how the 

decomposition of each statistic and its variance into a weighted sum of it's components gives 
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us a sense of which outcomes are contributing the most and the least to the test statistic, and 

in which direction.

6. Discussion

We have generalized previously proposed nonparametric tests that use different methods to 

rank multivariate outcomes. For both uncensored and censored data, the generalization 

creates a class of valid tests under the null hypothesis that the two groups have the same 

joint distribution of outcomes, though for some tests a weaker null will suffice. For 

uncensored data, the proposed O'Brien test and it's weighted counterparts are valid under the 

Behrens-Fisher hypothesis as described by Huang (2005). With censored outcomes, the tests 

are valid under unequal censoring distributions between groups. The tests are also valid 

under unequal sample sizes.

This unified framework allows the investigator the flexibility to choose a test that fits the 

purposes of their study without making distributional assumptions on the data. The 

generalization allows for an easily estimable variance for each method, and the ability to 

compare the global treatment effect size and variance among different methods, which have 

implications in the power and sample size of the test. We have also provided a method for 

determining optimal weights for O'Brien's test and the FS test under a specified alternative 

hypothesis. Since in practice we do not know the necessary parameters to obtain the optimal 

weights, we have proposed an adaptive weighting method that incorporates data-driven 

weights. Simulations indicate that the type I error holds in the adaptive case, and that power 

can improve significantly in settings with differing treatment effect sizes or moderate 

correlation between outcomes.

When the outcome weights for these tests are based on achieving maximal power using a 

priori assumed treatment effects, or selected adaptively, the tests may be more difficult to 

interpret. With any outcome-weighting vector (even equal weights), we are projecting the 

vector of treatment effects onto a single dimension. By restricting all of the weights to be 

positive, the summary statistic represents treatment efficacy on that one dimensional space. 

The same is true for equal weights, except in that case each outcome contributes a similar 

amount to the overall treatment effect. With adaptive weights, there is the added dimension 

of different weighting in different strata, but the statistic still constitutes a measure of 

efficacy as long as all weights are positive. And from a strictly statistical standpoint, the 

numerator of the statistic measures the global treatment effect described in section 2, the 

expected value of the composite of pairwise ranks.

Of course, with this kind of dimension reduction, we can miss important red flags if we are 

not careful. For example, suppose treatment is actually harmful on survival, but that we put 

very little weight on survival based on an a priori hypothesis. If the treatment is strongly 

beneficial in the other outcomes, we could reject the null in favor of treatment despite its 

negative effect on survival. This type of issue can be avoided. As described earlier, 

investigators could restrict a subset of outcomes to have some minimal weight or fixed 

weight if they do not want them to be overridden in the global test. In general, because of the 
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loss of information that occurs with the dimension reduction, care should be taken to ensure 

that the most important outcomes are amply contributing to the test statistic.

Further, we recommend not completely divorcing the global tests from considering each 

outcome individually, whether through providing summary statistics or additional statistical 

testing. The multiple U-statistic framework of the O'Brien and FS tests is useful for this, as 

they reveal the magnitude and direction of treatment effects for each outcome that 

contributes to the test statistic.

Investigators may be interested in some guidance concerning which tests may be most 

appropriate to use for their setting. O'Brien's test will be better powered when treatment 

favors most or all outcomes with similar effects, or when treatment is more favorable on the 

uncensored outcomes, as it uses all available pairwise comparisons on each outcome. The FS 

test is most applicable when there is a clear hierarchy of outcomes, and better powered when 

the treatment is most favorable towards the top of that hierarchy. Additionally, the FS test 

may be better powered when outcomes are very correlated, as the test removes much of the 

additional variance due to that correlation.

It is important to understand what these U-statistics are measuring. The global treatment 
effect θ ϕ that these statistics estimate are sometimes complex functions of the marginal or 

joint distributions of the data, including censoring distributions. The choice of ϕ should be 

carefully considered, and should be a reflection of what constitutes efficacy of the treatment 

within the context of the study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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