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Both BMP4 and serum have significant roles
in differentiation of embryonic stem cells to primitive
and definitive endoderm
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Abstract Differentiation of embryonic stem (ES)

cells is a heterogeneous process which is influenced by

different parameters, including growth and differen-

tiation factors. The aim of the present study was to

investigate the effect of bone morphogenetic protein-4

(BMP4) signaling on differentiation of mouse ES cells

to endodermal lineages. For this purpose, differen-

tiation of the ES cells was induced by embryoid body

(EB) formation through hanging drop method. During

the suspension stage, EBs were treated with BMP4 in a

medium containing either fetal bovine serum (FBS) or

knockout serum replacement (KoSR). After plating,

EBs showed differentiation to a heterogeneous

population of specialized cell types. Two weeks after

plating, all the experimental groups expressed three

germ layer markers and some primitive and definitive

endoderm-specific genes. Quantitative real-time PCR

analysis showed higher expression levels of Sox17,

Pdx1, Cdx2 and Villin mRNAs in the KoSR plus

BMP4 condition and higher Gata4 and Afp expression

levels in the FBS plus BMP4 condition. Formation of

visceral endoderm and derivatives of definitive endo-

derm was detected in the BMP4 treated EBs. In

conclusion, we demonstrated that both BMP4 signal-

ing and serum composition have significant roles in

differentiation of mouse ES cells towards endodermal

lineages.
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Introduction

Embryonic stem (ES) cells are derived from the inner

cell mass of blastocyst-stage embryos. They can be

propagated in an undifferentiated state in vitro. How-

ever, when allowed to be differentiated in suspension

or in hanging drops, they aggregate to form embryoid

bodies (EBs). Spontaneous differentiation of EBs

in vitro mimics many key aspects of early mouse

embryonic development, including differentiation of

ectodermal, mesodermal and endodermal lineages and

cavitation (Martin et al. 1977; Coucouvanis and

Martin 1995). Differentiation of EBs is a heteroge-

neous process. Nevertheless, desired lineages can be

enriched using various strategies (Liu et al. 2006),

including application of growth and differentiation

factors and extracellular matrix (ECM) proteins.
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Although several studies have addressed these topics,

more fundamental studies are required in order to

explore the precise role of different factors and culture

conditions in ES cell differentiation.

Bone morphogenetic protein-4 (BMP4) is a mem-

ber of transforming growth factor-b (TGF-b) super-
family. BMPs are involved in most of the

morphogenetic processes during development (Hogan

1996). BMP signaling has critical roles in endodermal

morphogenesis and ectodermal patterning (Davis et al.

2004). Treatment of ES cells with BMP4 in a serum-

free chemically defined medium triggers a process

similar to primitive streak formation (Wiles and

Johansson 1999). BMP4 signaling has a pivotal role

in mesodermal and epidermal differentiation of ES

cells (Aberdam et al. 2007; Kennedy et al. 2007;

Hansson et al. 2009). Moreover, BMP4 has been

identified as a inducer for visceral and definitive

endoderm (Conley et al. 2007; Gouon-Evans et al.

2006; Zorn and Wells 2009; Mathew et al. 2012;

Sudheer et al. 2012). In several studies, the effect of

BMP4 on ES cell differentiation to endodermal

lineages has been investigated in combination with

the other factors. Moreover, some investigators have

claimed that BMP4 alone can induce differentiation of

human and mouse ES cells to trophoblastic lineages

(Amita et al. 2013; Hayashi et al. 2010; Xu et al.

2002). In the present study, we investigated the role of

BMP4 signaling in differentiation of mouse ES cells to

primitive and definitive endoderm.

Materials and methods

Mouse ES cells culture and differentiation

The mouse ES cell line Royan B1 (Royan Stem Cell

Bank, Royan Institute, RSCB0001) was used in the

present study. The ES cells were cultured on top of a

feeder layer of mitomycin C-treated mouse embryonic

fibroblasts (MEF) and in the presence of leukemia

inhibitory factor (LIF, Chemicon, ES-GRO, Boronia,

Victoria, Australia), as described previously (Taha

et al. 2007). To initiate differentiation, the ES cells

were dissociated from the MEF feeder layer, and

embryoid bodies (EBs) were generated using hanging

drop method (Taha et al. 2007). Differentiation

medium consisted of 0.1 mM b-mercaptoethanol

(Sigma-Aldrich Chemie GmbH, Schnelldorf,

Germany), 1 mM L-glutamine, 1 % nonessential

amino acid stock and 1 % penicillin–streptomycin in

KnockoutTM Dulbecco’s Modified Eagle’s Medium,

supplemented with 15 % fetal bovine serum (FBS, ES

qualified) (all materials from Gibco, Grand Island,

NY, USA). Medium of the suspension stage contained

15 % FBS or 15 % KnockoutTM serum replacement

(KoSR, Gibco) and 10 ng/ml BMP4 (Sigma). Un-

treated EBs were included as the control group.

Analysis of gene expression by RT-PCR

and quantitative real-time PCR

Total RNA was extracted using High Pure RNA

Isolation Kit (Roche Applied Science, Mannheim,

Germany). 1 lg of total RNA was reverse transcribed

to cDNA using cDNA Synthesis Kit (Thermo Scien-

tific, Karlsruhe, Germany). PCR was performed using

specific primers described in Table 1.

Quantitative assessment of gene expression by real-

time PCR (qPCR) was performed using RealQ PCR

Master (Ampliqon A/S, Odense, Denmark) with Green

dye on a Rotor-GeneTM 6000 (Corbett Research,

Qiagen, Hilden, Germany) real-time analyzer. Com-

parative quantification were performed using REST

2009 (Relative Expression Software Tool, Qiagen)

based on Pair Wise Fixed Reallocation Randomization

Test� (Pfaffl et al. 2002). At least, three biologic

replicates of each group were included in the qPCR

experiments, and b-tubulin 5 (Tubb5) and eukaryotic

elongation factor 2 (Eef2) were used as the housekeep-

ing genes for normalization of the quantitative data.

Transmission and scanning electron microscopy

(TEM and SEM)

For TEM study, mechanically dissected areas were

fixed using 2.5 % glutaraldehyde, post-fixed using

1 % osmium tetroxide (OsO4), dehydrated in graded

degrees of ethanol and embedded in Araldite 6005

(Sigma). Semithin sections were stained with tolu-

idine-blue for light microscopy. Ultrathin (50–70 nm)

sections were double-stained with uranyl acetate and

lead citrate and were used for ultrastructural eval-

uation by a transmission electron microscope (EM900,

Zeiss, Oberkochen, Germany).

For SEM study, samples were fixed using 4 %

glutaraldehyde and post-fixed with 1 % OsO4. After

dehydration with the graded series of ethanol, the
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samples were freeze dried, coated in a sputter-coater

with a layer of gold and observed under a scanning

electron microscope (SEM360, Cambridge, UK).

Results

Morphological analysis

Differentiation of mouse ES cells was initiated by

formation of EBs using hanging drop method. At the

end of suspension stage, the EBs which were cultured

in the FBS ? BMP4 condition showed the maximum

size, while the EBs cultured in KoSR condition

without BMP4 treatment demonstrated the minimum

size (Fig. 1a–d).

Differentiation of ES cells yielded a heterogenous

cell population. Within the first week after plating,

numerous cells with different morphologies drifted out

of the EBs. Some tubule-like structures were also

detectable in the outgrowths of BMP4 treated EBs.

These structures were mechanically dissected for

TEM analysis.

Gene expression analysis by RT-PCR and qPCR

Two-week differentiated EBs in all the experimental

groups expressed Paired box gene 6 (Pax6) and

Brachyury genes which determine the formation of

neuroectoderm and mesoderm layers, respectively.

Alpha fetoprotein (Afp) and Goosecoid (Gsc) genes

were also expressed in the differentiated EBs. Afp is a

hepatocyte-specific marker, but it is also expressed in

the extraembryonic visceral endoderm (Dziadek and

Adamson 1978). Gsc expression shows generation of a

bi-potent mesendodermal population which can give

rise to both mesoderm and definitive endoderm (Tada

et al. 2005). Differentiated EBs expressed GATA

binding protein 4 (Gata4) and SRY-box containing

gene 17 (Sox17) transcription factors. Gata4 is

expressed in the primitive endoderm and its deriva-

tives, visceral and parietal endoderm. It is also

expressed in the definitive endoderm and in the

mesoderm of early mouse embryo (Kuo et al. 1997;

Molkentin et al. 1997). Sox17 is expressed in both

visceral and definitive endoderms (Kanai-Azuma et al.

2002). Pancreatic and duodenal homeobox 1 (Pdx1),

Caudal-type homeobox transcription factor 2 (Cdx2)

and Villin genes were also expressed in 2-week

differentiated EBs. The expression of Pdx1 determines

the pancreatic buds and portions of stomach and

duodenum (Offield et al. 1996). Cdx2 is expressed in

the endoderm of entire postgastric epithelium (Beck

et al. 1995; Silberg et al. 2000), and Villin is found in

many absorptive epithelia. In mouse embryo, Villin is

first expressed in the primitive endoderm and then in

the visceral endoderm. During development of defini-

tive endoderm and in adults, Villin is expressed in the

intestinal epithelium (Maunoury et al. 1992, 1988). Plf

gene, which is exclusively transcribed in the tro-

Table 1 Primers used for RT-PCR and qPCR

Genes Forward primers Reverse primers Size (bp) Accession number

Tubb5 50-GGAACATAGCCGTAAACTGC-30 50-TCACTGTGCCTGAACTTACC-3 317 NM-011655

Pax6 50-TGCCCTTCCATCTTTGCTTG-30 50-TCTGCCCGTTCAACATCCTTAG-30 178 NM_001244200

Brachyury 50-ATGCCAAAGAAAGAAACGAC-30 50-AGAGGCTGTAGAACATGATT-30 835 NM_009309

Afp 50-TCGTATTCCAACAGGAGG-30 50-AGGCTTTTGCTTCACCAG-30 174 NM_007423

Gsc 50-GCTGGCCAGGAAGGTGCACC-30 50-CGGCGAGGCTTTTGAGGACGT-30 148 NM_010351

Gata4 50-TCTCACTATGGGCACAGCAG-30 50-GCGATGTCTGAGTGACAGGA-30 133 NM_013633

Sox17 50-GGCACAGCAGAACCCAGAT-30 50-TTGTAGTTGGGGTGGTCCTG-30 150 NM_011441

Pdx1 50-GAAATCCACCAAAGCTCACGC-30 50-ATTCCTTCTCCAGCTCCAGCA-30 128 NM_008814

Cdx2 50-TAGGAAGCCAAGTGAAAACCAG-30 50-CTTGGCTCTGCGGTTCTGA-30 191 NM_007673

Villin 50-CTTCTTCGATGGTGACTGCTAT-30 50-AAGTCTCGCTCTCGTTGCCT-30 203 NM_009509

Plf 50- CCAGGCTCACACACTATTCA-30 50- CTGTGGCTTTGGAGATGATTAT-30 138 NM_031191
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phoblastic giant cells (Lee et al. 1988), was also

expressed in all the experimental groups (Fig. 2).

Octamer-binding transcription factor 4 (Oct4/

Pou5f1) gene was not expressed in the differentiated

EBs. Nanog mRNA was weakly expressed in the EBs

which were differentiated in the absence of BMP4

(Fig. 2). Undifferentiated mouse ES cells expressed

the pluripotency markers but not the other genes

related to endodermal specification (Fig. 2).

Based on the qPCR analysis, the expression levels

of Afp, Gata4, Sox17, Pdx1, Cdx2 and Villin mRNAs

in the FBS ? BMP4 group were 2.767, 2.642, 1.65,

4.57, 2 and 2.66 fold higher than in the FBS group and

in the KoSR ? BMP4 group were 2.16, 2.87, 3.96,

4.25, 3.7 and 4.5 fold higher than in the KoSR group,

respectively (Fig. 3).

The expression levels of Sox17, Pdx1 and Cdx2

mRNAs in the KoSR ? BMP4 group were 3.49, 2

and 5.63 fold higher than in the FBS ? BMP4

group, respectively. Gata4 expression in the

KoSR ? BMP4 group was about one-third of that

in the FBS ? BMP4 group. The expression levels of

Afp and Villin mRNAs were not significantly

different between the KoSR ? BMP4 and FBS ?

BMP4 groups (Fig. 3).

Fine structural study

Primitive and visceral endoderm specification

In the absence of BMP4, the superficial layer of EBs in

both the FBS and KoSR conditions was specified as a

monolayer of cells with flat morphology (Fig. 4a, b).

However, in the EBs treated with 10 ng/ml BMP4, a

layer of cuboidal cells was formed on the surface of

EBs (Fig. 4c, d).

At day 21 after plating, SEM analysis revealed a layer

of microvilliated cells on the surface of BMP4 treated

EBs. Some cells seemed to be flat, while the others

appeared dome-shaped and in some bulges of their apical

membrane, microvilli decreased and a secretory appear-

ance was observable. Moreover, in some areas, a ductal

arrangement of the cells was detected (Fig. 5).

Definitive endoderm specification

Two weeks after plating, gut-like structures were

developed within the EBs’ outgrowth of the

KoSR ? BMP4 group. Based on TEM analysis, these

tubular structures were composed of a lining epithe-

lium, sub-epithelial connective tissue and smooth

Fig. 1 Seven-day old EBs of FBS (a), FBS ? BMP4 (b), KoSR (c) and KoSR ? BMP4 (d) groups
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muscle cells. Epithelial cells were interconnected with

apical tight junctions, some desmosome-like junctions

and developed interdigitations. Some secretory cells

and some cells with pinocytic vesicles were also

observed in the epithelium (Fig. 6).

Discussion

EB formation by hanging drop method

In the current study, we investigated the role of BMP4 in

differentiationofmouseEScells to endodermal lineages.

For this aim, ES cells were differentiated through

hanging drop method which results in uniform-sized

EBs. EB formationmimics many key aspects of embryo

development, including pre-gastrulation and early gas-

trulation stages (Martin et al. 1977; Coucouvanis and

Martin 1995; Yamamoto et al. 2007). EB culture can be

used as a useful model to study the interplay of different

germ layers and their influence on differentiation of

various cell types (Pekkanen-Mattila et al. 2010).

Embryonic stem (ES) cell-derived EBs were treated

with 10 ng/ml BMP4 in amedium containing either FBS

or KoSR. KoSR is a commercially available synthetic

serum replacement which is completely devoid of any

undefined growth and differentiation factors (Goldsbor-

ough et al. 1998). Supplementation of the culture media

with this serum substitute induces more directed differ-

entiation of the ES cells and also may prevent negative

interactions between BMP4 and FBS constituents.

Gene expression analysis

Differentiation of ES cells results in a heterogenous

cell population. Therefore, the comparison between

Fig. 2 The expression of genes specific to pluripotency, germ

layer specification, endodermal differentiation and trophoblastic

giant cell formation in the EBs, 2 weeks after plating

Fig. 3 Quantitative real-time PCR analysis of gene expression

in the differentiated EBs, 2 weeks after plating. Tubb5 and Eef2

were used as the internal controls. *Significant differences were

indicated by P value (Pair Wise Fixed Reallocation Randomiza-

tion Test� performed by REST 2009 software)
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the control and treatment groups is based on the

quantitative gene or protein expression analyses. Here

we showed the expression of several endodermal

genes in differentiated EBs of all the experimental

groups. However, based on qPCR analysis, treatment

of the EBs with 10 ng/ml BMP4 increased the

expression of endodermal markers including Afp,

Gata4, Sox17, Pdx1, Cdx2 and Villin. BMP4 treat-

ment in KoSR condition upregulated the overall

expression of endodermal genes that may reflect better

development of visceral (Sox17 and Villin), definitive

(Sox17), foregut (Pdx1) and hindgut (Villin and Cdx2)

endoderms under this condition. However, some

immunofluorescence co-stainings can be used to

exactly determine the formation of definitive endo-

derm (SOX17/FOXA2) and extraembryonic lineages

(SOX17/SOX7). Meanwhile, it should be noted that

differentiated cells of all the experimental groups

Fig. 4 Semithin sections of the ES-cell derived EBs after toluidine blue staining. a–d 2-week differentiated EBs of the FBS,

FBS ? BMP4, KoSR and KoSR ? BMP4 groups, respectively

Fig. 5 Scanning electron micrograph of the differentiated EBs

in the KoSR ? BMP4 group. a, b Microvilliated cells which

cover the surface of 3-week differentiated EBs. Some cells

seemed to be flat, while the others appeared dome-shaped and in

some bulges of their apical membrane, a secretory appearance

was observed (arrowheads). Moreover, in some areas, a duct-

like arrangement of the cells was detected (arrow)
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expressed Plf gene which is exclusively transcribed in

the trophoblastic giant cells (Lee et al. 1988). This

finding indicates that some proportion of the ES cells

may be differentiated toward a trophoblastic phenotype.

Primitive endoderm specification

Following aggregation of ES cells, the outer layer of

EBs is specified as extraembryonic primitive endo-

derm (Doetschman et al. 1985; Hamazaki et al.

2004). In the present study, BMP4 treatment of the

EBs induced formation of a superficial layer of

visceral endoderm with microvilliated cells. Some

cells also showed a secretory characteristic which is

in agreement with the secretory role of visceral

endoderm. As known, visceral endoderm synthesizes

and secretes some proteins such as transferrin and

apolipoproteins (Gardner 1983). Our results are

consistent with a previous study showing that BMP

signaling is both capable of promoting and required

for the differentiation of visceral endoderm (Coucou-

vanis and Martin 1999). Moreover, Artus et al.

(2012) showed the role of BMP4 in visceral endo-

derm specification.

Fig. 6 TEM micrographs of the differentiated EBs in the

KoSR ? BMP4 group. a–d Cross section of one gut-like

structure. Ep epithelium, GC golgi complex, j junctional

complexes, Lum lumen, PV pinocytotic vesicles, SC secretory

cells, CT sub-epithelial connective tissue, SM smooth muscle

layer, TJ tight junction
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Definitive endoderm specification

So far, several investigators have demonstrated the

roles of BMPs in the differentiation of mouse and

human ES cells to definitive endoderm. As reported

previously, exposure of definitive endoderm to BMP

and FGF ligands induces generation of hepatocyte-like

cells (Mfopou et al. 2013). Treatment of the endoder-

mal progenitors with BMP4, bFGF and activin A also

results in the development of mature hepatocytes

(Gouon-Evans et al. 2006). A combination of BMP4

and activin A induces the differentiation of human ES

cells first to definitive endoderm and then to pancreatic

cells (Teo et al. 2012). In contrast to these studies,

some investigators have demonstrated that BMPs

negatively regulates the formation of endodermal

progenitors (Poulain et al. 2006; Sumi et al. 2008).

Sumi et al. (2008) showed that BMP4 treatment does

not induce the differentiation of human ES cells to

mesendoderm/mesoderm progenitors. Moreover,

Amita et al. (2013) demonstrated that trophoblast is

the predominant cell type which is derived from

human ES cells in response to 10 ng/ml BMP4. Zhang

et al. (2008) showed that long-term treatment of

human ES cells with BMP4 results in trophoblast and

extraembryonic endoderm specification, while short-

term treatment can induce differentiation of early

mesoderm.

In the current study, we demonstrated the role of

BMP4 signaling in differentiation of mouse ES cells to

some definitive endodermal genes-expressing cells.

Gsc expression shows generation of a bi-potent

mesendodermal population (Tada et al. 2005). The

expression of Sox17, Gata4, Afp, Pdx1, Cdx2 and

Villin points towards development of definitive endo-

derm derivatives. Afp is expressed in hepatoblasts

during liver development (Dziadek and Adamson

1978). Pdx1 expression determines the pancreatic

buds and portions of stomach and duodenum (Offield

et al. 1996). Cdx2 is expressed in the endoderm of

entire postgastric epithelium (Beck et al. 1995; Silberg

et al. 2000), and Villin is found in the absorptive

intestinal epithelium (Maunoury et al. 1992, 1988).

Based on the qPCR analysis, BMP4 signaling was

more effective for the expression of definitive endo-

derm-specific genes in the KoSR condition.

As revealed by TEM analysis, 2-week differentiat-

ed EBs of the KoSR condition showed formation of

well-developed tubular structures with the ultrastruc-

tural characteristics of gut. The presence of some

secretory cells and some cells with pinocytic vesicles

in the epithelium can support the functionality of these

gut-like structures. As previously described, BMPs

have an early role in development and patterning of

the endodermal anterior intestinal portal structure

(Faure et al. 2002). BMPs are involved in the normal

epithelial differentiation and homeostasis of the gut

(Howe et al. 2001) and in formation of stomach gland

(Narita et al. 2000). BMP4 is also important for

regulation of smooth muscle differentiation and for

determining the proper thickness of mesodermal

layers in the different regions of gut (Roberts et al.

1998; Smith et al. 2000).

In conclusion, both BMP4 signaling and serum

supplementation had significant roles in differen-

tiation of mouse ES cells. BMP4 treatment of the ES

cell-derived EBs induced formation of both primitive

and definitive endoderms. It is clear that understanding

these pathways has a significant value for directing the

ES cells differentiation toward a specific cell type and

enrichment of desired cells for potential clinical

applications. Also, generation of gut-like structures

is another important finding in this regard.
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