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Abstract In today’s geometric morphometrics the com-

monest multivariate statistical procedures, such as principal

component analysis or regressions of Procrustes shape

coordinates on Centroid Size, embody a tacit roster of

symmetries—axioms concerning the homogeneity of the

multiple spatial domains or descriptor vectors involved—

that do not correspond to actual biological fact. These

techniques are hence inappropriate for any application

regarding which we have a-priori biological knowledge to

the contrary (e.g., genetic/morphogenetic processes com-

mon to multiple landmarks, the range of normal in anatomy

atlases, the consequences of growth or function for form).

But nearly every morphometric investigation is motivated

by prior insights of this sort. We therefore need new tools

that explicitly incorporate these elements of knowledge,

should they be quantitative, to break the symmetries of the

classic morphometric approaches. Some of these are

already available in our literature but deserve to be known

more widely: deflated (spatially adaptive) reference dis-

tributions of Procrustes coordinates, Sewall Wright’s cen-

tury-old variant of factor analysis, the geometric algebra of

importing explicit biomechanical formulas into Procrustes

space. Other methods, not yet fully formulated, might

involve parameterized models for strain in idealized forms

under load, principled approaches to the separation of

functional from Brownian aspects of shape variation over

time, and, in general, a better understanding of how the

formalism of landmarks interacts with the many other

approaches to quantification of anatomy. To more

powerfully organize inferences from the high-dimensional

measurements that characterize so much of today’s

organismal biology, tomorrow’s toolkit must rely neither

on principal component analysis nor on the Procrustes

distance formula, but instead on sound prior biological

knowledge as expressed in formulas whose coefficients are

not all the same. I describe the problems of the standard

techniques, discuss several examples of the alternatives,

and draw some conclusions.

Keywords Geometric morphometrics � Biological

meaning � Multivariate statistical analysis � Covariances �
Procrustes analysis � Deflation analysis � Morphometrics �
Biomechanics

The innumerable riddles which still arise from the directionality of

evolution and the predictability of form and of development are all

consequences of the same general ordering principle ...So as not to be

deceived about the reality and extent of this orderliness we need to be able

to measure regularity objectively. This is where we shall begin.

Rupert Riedl, Order in Living Organisms, 1978:xi

Introduction

Modern quantitative natural scientists are introduced so

early in their training to the standard metaphorical structures

of twentieth-century applied statistics—numerical variables

and their linear combinations, their tabulation in matrices,

and their correlations or covariances—that the scientific

foundations of these practices are hardly ever subjected to

close scrutiny. This essay is meant as a discipline-specific

example of such an examination: how cogent the multi-

variate strategies might be that underlie a relatively new

branch of biometrics, geometric morphometrics (GMM). I
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will conclude that its current choices of multivariate method

suit its actual subject matter (the biologically meaningful

analysis of Cartesian coordinates of homologous landmarks)

so imperfectly as to invalidate many, perhaps most of the

rhetorics by which its findings are typically reported.

The main problems that engage me are the inadequate

information resources of the conventional matrix notation,

the incoherence of the linear combinations that comprise the

typical reporting language for patterns uncovered in the

course of analyzing the matrices, and the difficulty of

interpreting ‘‘rotations’’ of lists of variables, such as the

conventional rotations to Procrustes shape coordinate space

and then its principal components that supply the axes of

most of GMM’s published scatterplots. These are explored

in section ‘‘Four Ubiquitous Problems’’. Section ‘‘Some

Alternative Methods’’ reviews some partial resolutions of

these paradoxes already available in the literature, and sec-

tion ‘‘A-Priori Information to Break the Symmetries of

GMM’’ lists some of the sources of symmetry-breaking

information that are available to the theoretical biologist but

that are not yet incorporated in any of our standard analytic

maneuvers. Section ‘‘Two Evolutionary Examples’’ pre-

sents, in précis, two worked examples of the techniques

envisioned here. A closing discussion, section ‘‘Discussion:

Solutions Yet to Be Envisioned’’, goes on to sketch an

assortment of more radical possibilities. I hope some of

these will eventually become the focus of newly energized

methodological experiments aimed at altering the rhetoric of

inference first in morphometrics and later in quantitative

organismal biology more generally. Following this discus-

sion are two Appendices. The first of these exemplifies the

article’s critique in an application to one formula of current

interest, the so-called RV-coefficient that ostensibly helps to

report the relationship between two blocks of measurements

on the same sample. The second is a detailed examination of

the geometry by which Cartesian coordinates or their shape-

coordinate cousins actually generate the covariances to be

processed by principal components methods.

Some philosophical preliminaries As far as its actual

formulas are concerned, this essay reduces to some rules of

good practice that should govern the ways arithmetic is

turned into understanding in the course of studies of

organismal form. Some of its caveats are not specific to

that organismal context, but instead overlap with what

good practitioners of applied multivariate analysis already

know, namely, that reliable prior scientific knowledge

should logically dominate arithmetical rules, not vice

versa. Yet I have been unable to locate any printed history

of multivariate analysis in biology, let alone one that traces

the privileged role of principal component analysis and

other optimizing representations. (There is a brief review of

the occasional earlier paragraph about that specific tech-

nique in Bookstein 2015c.)

The central desideratum on which my arguments focus,

the furtherance of ‘‘biological meaning,’’ is one standard

trope in the philosophy of biology. In its quantitative

aspects I am averring mainly to a social phenomenon

bracketed between two great students of twentieth-century

practice, Ludwik Fleck and Edward O. Wilson. Writing in

the 1930s, Fleck (1979) teased out an explication of sci-

entific consensus, the Denkkollektiv (thought collective),

that wholly anticipated Thomas Kuhn’s great insights

about ‘‘paradigms’’ a long generation later. In an aphorism

summarizing the original German thesis (Bookstein

2014:xxviii) this view runs, ‘‘A scientific fact is a socially

imposed constraint on speculative thought.’’ Fleck’s

example was the evolution of the understanding of syphilis:

what brought about the coalescence of the modern view

was the success of early twentieth century serology at

showing the quantitative stability of the regressions relat-

ing symptoms to blood measures.

Wilson (1998) was conveying this same message when

he resurrected William Whewell’s long-dormant notion of

the consilience of the natural sciences, the anticipated

convergence upon a common truth of lines of evidence

from many directions. Wilson suggested that this be taken

as the governing principle of all the sciences we might call

‘‘natural’’ (including, notoriously, human sociobiology):

‘‘Trust in consilience is the foundation of the natural sci-

ences’’ (Wilson 1998:11; Bookstein 2014:29–30). The way

numbers acquire meaning in the organismal biological

sciences is by their potential role in producing consilience

in this sense: numerical agreement (of actual value, not

merely of an associated plus or minus sign) across a mul-

titude of different ways a numerical signal might be probed

(Bookstein 2014) while historical conditions, sample

design, and experimental settings are all varied in turn.

Thus consilience is a matter of systematically altering the

instrumentation supporting a quantitative argument. As a

homely example, it would be more persuasive to confirm

the distance (in meters) a vehicle travels by the product of a

directly measured speed, in m/s, times a directly measured

elapsed time than simply by measuring displacement a

second time with a different camera. As Collins (1985) puts

it, persuasion in the sciences of complex organized systems

arises mainly from the very careful control of replication

across many levels.

According to this notion, the emergence of biological

meaning as a community activity, it is the agreement of

estimates of the same quantity from essentially different

types of measuring instruments that makes some of the

subdisciplines of biology, from genomics to evo-devo, into

the quantitative natural sciences that, here in the twenty-

first century, they are turning out to be. This essay is a

collection of notes toward applications of geometric mor-

phometrics that further that end. The collection emphasizes
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warnings against the misapplications, the mistaken argu-

ments that purport to wield a computed number or pattern

description as if it supported one selected interpretation

(usually the author’s) far more strongly than it actually

does.

I do not agree with Platt’s (1964) famous article (rep-

rinted in Platt 1966) about the role of ‘‘strong inference’’ in

biology. Platt says, referring to the context of discovery,

Measurements and equations are supposed to shar-

pen thinking, but, in my observation, they more often

tend to make the thinking noncausal and fuzzy. They

tend to become the object of scientific manipulation

instead of auxiliary tests of crucial inferences.

Many—perhaps most—of the great issues of science

are qualitative, not quantitative, even in physics and

chemistry. Equations and measurements are useful

when and only when they are related to proof; but

proof or disproof comes first and is in fact strongest

when it is absolutely convincing without any quan-

titative measurement. Or to say it another way, you

can catch phenomena in a logical box or in a math-

ematical box. The logical box is coarse but strong.

The mathematical box is fine-grained but flimsy. The

mathematical box is a beautiful way of wrapping up a

problem, but it will not hold the phenomena unless

they have been caught in a logical box to begin with.

I am not being so demanding here. (Perhaps organismal

biology has not yet reached its Golden Age, about which

Platt was reminiscing so nostalgically from the molecular-

biological point of view 50 years ago.) It is quite possible

that meaningful insights can emerge from the careful study

of empirical organismal patterns relating multiple mea-

surements under carefully controlled conditions of obser-

vation along with suitably elegant arithmetic.

Biomechanics is generally consistent with classical kine-

matics, continuum mechanics, hydrodynamics, and aero-

dynamics; population genetics is consistent with classical

probability theory in many ways; even the cognitive

neurosciences may prove consistent with information

theory and, reading backward, the classical thermodynam-

ics of entropy and free energy (Friston 2010). Yes, many of

our mathematical foundations can be borrowed from these

more seasoned domains of quantification. What we borrow

are often the quantities that those other fields reassure us

are the ones most worth recording: biomass and bioener-

getics, chemical gradients, stable molecular arrangements

like membranes or the double helix. At the same time,

other fields, such as comparative anatomy, seem just as far

from a satisfactory quantitative foundation here in 2016 as

they were 40 years ago when I was just beginning my

work. It cannot hurt to point out these divergences.

Indeed there is a surprising dearth of literature about the

foundations of measurement in organismal biology. The

biophysicist Walter Elsasser, writing in the twilight of his

career, refers to the biologist’s focus on ‘‘holistic mem-

ory,’’ meaning, memory without storage (Elsasser

1988:42–43), as the aspect in which biology most diverges

from the other natural sciences. But any possibility of

specific insight seems to be inaccessible, only the general

adviso that one needs to measure only a few very carefully

selected aspects of the incomprehensibly high-dimensional

state space that any organism actually occupies (Elsasser

1975:203). To say measurement requires forethought is not

a trivial point even if one finds it very often trivialized in

the papers of the GMM tradition when they say, at the very

beginning, ‘‘Here are my landmarks,’’ without any justifi-

cation from the explanations to which those landmarks are

supposed to contribute and usually without any evidence

that the organism cares about those locations in any sys-

tems-maintenance sense.

This issue, so central to the general run of the other

natural sciences, is oddly absent from our field’s standard

treatises. Frequently cited classic references will often fail to

place any logical or biological requirements on the relevance

of the number line to whatever point is being made about a

formula for a path analysis, or a parent-child covariance, or

whatever. The role of statistical formulas is thereby mis-

leadingly rendered as if somehow independent of the content

of the variables whose numerical values are being thereby

transformed or transcribed using implicitly reductionist

arguments from chemical kinetics, energetics, kinematics, or

scaling. In this way formulas like the correlation coefficient

or the regression coefficient cease to be aspects of the sci-

ence we are pursuing, but stand instead for lazy metaphors:

rhetorical tropes the foundations of which go generally

unexamined. This essay examines those foundations for a

few of these most fundamental metaphors.

It is ironic to contrast this inattention with the far greater

importance that issues at the foundation of analogous

quantifications bear in the psychological sciences (e.g.,

Coombs 1964; Krantz et al. 1971–1990) or even in the

economic sciences (Morgenstern 1950). The biologist often

behaves as if any convenient quantitative score

extractable from an organism is ipso facto the kind of

number regarding which one can legitimately carry out the

sort of elementary statistics we teach our beginning graduate

students: the kind of number that can be averaged over

convenient samples of specimens, squared and converted to

variances or their components, multiplied so as to be con-

verted to covariances or correlations, converted to a proba-

bility in the course of setting down a discriminant function,

etc. But even to state such an assumption is to highlight how

unreasonable it must be in most empirical contexts.
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Our literature offers even less discussion of the meaning

of characterS, plural: their assembly into ‘‘data matrices.’’

Here is more or less everything that Sewall Wright has to

say about ‘‘the importance of choice of variables’’ in

Chapter 6 (‘‘Types of Biological Frequency Distributions’’)

of volume 1 (1968) of his masterpiece Evolution and the

Genetics of Populations:

It is probably usually true that measures of volume or

weight, whether of the organism as a whole or of

some one organ, associated with appropriate indexes

of form are more instructive than linear measure-

ments. On the other hand, indexes must be based on

measurements and their use involves certain statisti-

cal pitfalls.

Wright goes on with a full-page five-panel offering of

‘‘some unimodal distributions of indexes,’’ Figure 6.4, all

of which are ratios of pairs of length or area measures. We

are evidently a very long way from geometric morpho-

metrics here. Later, in Chapter 4 (‘‘Variability under

Inbreeding and Crossbreeding’’) of volume 3 of the same

treatise, the measurements in the examples are all either

extents (length, weight) or concomitants of fitness (litter

size, percent liveborn). None of his examples seem to

involve measurements of geometric shape, the core con-

cern of contemporary morphometrics.

Lande (1979) likewise seems to be limiting his attention

to the case of two measures of extent, as shown by the tail

of his title, ‘‘. . . applied to brain:body size allometry.’’ It is

clear that his methods apply only to such measures of

extent because he refers to Huxley’s (1932) method of

loglinear regression, counseling that ‘‘characters [should

be] measured on scales such that the intraspecific pheno-

typic variances are roughly constants; . . . for metrical

variables this can usually be accomplished by employing

logarithmic scales.’’ Of course the shape coordinates pro-

duced by today’s best GMM analyses are not positive

quantities—they must, for instance, average zero along

each of four entirely different dimensions—and so cannot

be log-transformed. The advice one gets from the popula-

tion genetics literature, whether classic (Lande, Wright) or

contemporary (Felsenstein’s publicly posted book draft of

2015, in which every covariance coefficient deals with

some single measurement undergoing a comparison across

relatives), evidently is not meant to apply to more general

schemes for quantifying organismal form, such as those of

this paper. At least, I can find no evidence that such

schemes have ever been adequately theorized.

My context here in this essay is geometric morpho-

metrics (GMM), not biometrics in general, and it is mul-

tivariate, dealing with characters in lists rather than one by

one. We will see that some of the problems that ensue are

with the ‘‘G’’ of GMM, while others deal with the ‘‘MM’’

component. So the covariances between (mid)parents and

their offspring are not among the examples I have in

mind—not if the values (like 1
2
) they are intended to match

are integer fractions derived from formulas instead of other

data. Likewise the paths along which these covariances,

once normalized, turn into regressions are intended to be

real morphogenetic paths capable of experimental confir-

mation or perturbation: causal relations that can be modified

in an experimental setting by changing some controllable

aspect of epigenesis or function. Covariances between

measures of form and calendar dates rarely meet this crite-

rion (but they can, as when we study experimental modifi-

cations of the life cycle itself, as with farmed salmon);

likewise, at least in biology, studies in which the regressor

has units of thousands or millions of years. Whenever a

regression slope comes in units of u1=u2; as is the case for an

automobile’s speedometer, there ought to be a way of esti-

mating the slope by a direct instrument measurement rather

than by merely replicating the ratio of measured rise to

measured run from which it originally derived.

There may be a particular problem with the language of

genomics vis-a-vis this multivariate setting. (For the sen-

timent of this paragraph I am deeply indebted to multiple

conversations with my Vienna colleague Philipp Mit-

teroecker.) For example, the word ‘‘additivity’’ and its

complement, ‘‘dominance,’’ do not seem to extend at all

well into the present context. Kenney-Hunt and Cheverud

(2009) noted that, generally, speaking, morphospace is an

uncomfortable setting in which to indulge the rhetoric of

population genetics in that it is more or less guaranteed you

will find overdominance no matter what processes actu-

ally produced the data on which you are relying. Their

claim is one version of my Shape Nonmonotonicity The-

orem (Bookstein 1980), which basically states that in any

geometric morphospace of more than two landmarks, for

any three forms A, B, and C you might name there will be

an indefinite range of empirical variables for which A and

B score the same whereas C’s score is different. That

theorem, in turn, is a special case of the version in Book-

stein (2002), an equally insidious challenge to the role of

intuitive pattern claims in multivariate biometrics, that for

just about any collection of 2k � 3 specimens or fewer on k

or more landmarks, and for any separation of the list of

2k � 3 into two exclusive subsets A and B, one can con-

struct a shape measure for which all the specimens of A

have one score and all the specimens of B have a different

score, without any within-‘‘group’’ variance on either side.

Only if the biology constrains that coordinate for you in

advance—only if the symmetries about which this essay is

complaining have been superseded by strong prior

knowledge of mechanism—does it make any sense to

280 Evol Biol (2016) 43:277–313

123



apply univariate arithmetical terms like ‘‘additivity’’ to

multivariate population-genetic data.

But, really, the problem is not specific to particular

subdisciplines of the organismal sciences. The lack of a

foundation for turning arithmetic into biological under-

standing of organismal form is at root the lack of a foun-

dation for the way we generate quantitative descriptions of

that form. Geometric morphometrics is based on just such a

protocol for the generation of such descriptions. Let us see

to what extent and in what contexts of study design the

advice it proffers us on sound method can prove con-

structive rather than destructive.

Four Ubiquitous Problems

Several ubiquitous problems of multivariate analysis in geo-

metric morphometrics arise from the fact that its foundations

in biology seem never to have been properly established.

Three of these are the vacuity of matrix notation, the fugitive

meaning of linear combinations of measurements or coordi-

nates, and the nonbiological nature of multivariate rotations;

and one special case of these rotations, our routinized Pro-

crustes analysis, deserves a subsection of its own.

Matrices

‘‘Matrix notation,’’ as everybody knows, reifies a rectan-

gular array of numbers by ordinating its contents in a

double-subscript scheme. An array ðaijÞ; where each single

aij is the number in the i-th row and j-th column, is con-

sidered to represent a single conceptual object, ‘‘the matrix

A,’’ for purposes of many multivariate pattern analyses and

the associated quantitative styles of biological inference.

For example, the data matrices with which GMM is most

concerned are matrices of Procrustes shape coordinates,

which are carefully normalized Cartesian locations of

digitized landmarks or semilandmarks (standardized sam-

ples from curves or surfaces). The rows of A are now

individual specimens, while the columns are coordinates of

the landmarks that were gathered. (See section ‘‘Procrustes

Distance, Procrustes Coordinates’’.)

Consider those subscripts i and j, i ¼ 1. . .n for rows,

say, and j ¼ 1. . .p for columns, a bit more carefully. We

know a little in advance about these two lists. For instance,

as printed they arrive in a natural order, the order of the

‘‘natural numbers’’ (the integers). Any index i for rows or

columns lies in-between any index i� k preceding it and

any index iþ l following it. For the matrices representing

images, this might be all we need to know. For example,

one gets ‘‘regions’’ of those images by agglomerating

entries aij for which the corresponding subscript pairs ij are

near neighbors in some suitable sense. (This is the case, for

instance, for the pixels in Fig. 1.) Or it might be the case

that the order of one of these subscript lists makes sense

even if the other doesn’t: specimens that were observed at

an ordered series of ages, for instance, on an unordered list

of properties (weight, coat color, brand of chow, behavior).

Or specimens might have a hierarchical structure: five from

group A, six from group B, . . . Conventionally all this is

encoded via a list of additional columns of the matrix,

dummy variables, that at least can accompany the data set

on its way to our favorite software package.

But it is much more common in organismal biology in

general, and in morphometrics in particular, for there to be

a far more intricate order among the variables than can be

represented simply by reference to integers. GMM’s

landmarks, for instance, have adjacencies just like the

pixels of Fig. 1 did—but those adjacencies are not gridded

the way subscripts are: they are functions of the column

(coordinate) means, in pairs (2D data) or triples (3D data),

not the subscripting scheme per se. For 3D data, the matrix

notation can handle neither the conceptual orthogonality of

Fig. 1 A digital image is an unusually tractable kind of matrix in that

row number, column number, and subscript-to-subscript Euclidean

distance all have physical interpretations. This example is a very

small synthetic slice of the full-color image of the NLM Visible

Female (‘‘Eve’’): a medial section of one of her central lower incisors,

with its canal, in the jawbone. This is a real image, not a virtual one,

and it is realistically noisy. Colors are those of the original tissues

except that blue represents the latex used to fix movable structures

(here, the teeth themselves) against the forces exerted by the

microtome, the forces that are also responsible for the left-to-right

smearing in some portions of the image. Original sections were

horizontal at spacing 300 l, photographed with pixel size also 300 l
in order to yield cubical voxels. Image produced in W. D. K. Green’s

Edgewarp software package. The original image is 5180 � 960 �
1664 � 3; about 24 gigabytes; the three thousand or so pixels of this

extract are thus a very small selection (Color figure online)
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the x, y, and z directions nor this structure of successive

triples pertaining to the same point. As far as the matrix is

concerned, the column representing the x-coordinate of

landmark 1 is considered to potentially relate in the same

way to the column representing the y-coordinate of land-

mark 1 as it does to the x-coordinate of landmark 2, or the

y-coordinate of landmark 2, for that matter. It is a lot of

work for subsequent algorithms to recover from an igno-

rance so profound about the kind of information that is

visually so obvious in diagrams of a digitizing template

such as the example in Fig. 2.

In schemes like this, landmark points bear two proper

Cartesian coordinates, and often they indicate boundaries

between tissues or other functionally or morphogenetically

relevant information. But the semilandmarks (here, those

unnamed dots) record arbitrarily spaced information from

curving form in-between, and so while one of their coor-

dinates (the one normal to the curve) incorporates quan-

tifiable information about extent, the other encodes a

different kind of information, about tangent direction. If

this information is to be relevant to comparative explana-

tions (as it often is, in the study of joint articulations, for

example), it must be via a different formalism than the

Procrustes analyses we will consider in section ‘‘Procrustes

Distance, Procrustes Coordinates’’. We will learn more

about the handling of these issues of ontology and spacing

in section ‘‘Deflated Procrustes Analysis’’. For now, it is

enough to remark that the necessary information is missing

from the matrix record itself as it currently stands. An

analogous opportunity connected with the origin of certain

lists of specimens in a branching history (a phylogeny)

supplies the impetus for the comparative approach that will

concern us at section ‘‘The Comparative Method for

Analysis of Contrasts Across a Phylogeny’’ and again in

section ‘‘Modifying a Comparative Analysis of Mam-

malian Skulls’’.

Even when variables are spaced along only one dimension—

time, perhaps, or spectral frequency—we need additional

information beyond the subscript j, the column number: we need

to know the numerical value of the instrumental setting we were

are using at the time this particular column of data was collected.

‘‘Each animal was measured at age 7 days, 14, 21, 30, 40, 60, 90,

and 150,’’ we might be informed, or, ‘‘acoustic energy was

assessed in each of the following eight frequency bands: . . . ’’

When variables are associated with the settings of dials on

machines for signal-filtering or image capture, that information

likewise must accompany the matrix accommodating the vec-

tors of readings specimen by specimen; but in none of these cases

is such notation available to the matrix calculator.1 And even for

the GMM data resources somewhat less information-rich than

the coordinate or spectral records—matrices of measured

lengths—there is still considerable information missing, about

the location of those distances upon the typical form and their

subdivision into rigid, elastic, or articulated components. See the

analysis of Wright-style factor analysis, section ‘‘Sewall

Wright’s Style of Factor Analysis’’.

Wherever in the course of subsequent sections we are

able to claim any cogency for the methodological adjust-

ments demonstrated or proposed, it can only be because an

analytic tactic has been uncovered that modifies standard

matrix calculus approaches in order to accommodate the

information that would otherwise have gone missing. Often

this is the information about logical connections among the

rows or columns, in pairs or longer sublists, that is inten-

tionally omitted from the ij subscripting scheme for the

matrix content itself.
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Fig. 2 A typical template, this one corresponding to the left-facing

two-dimensional hominid calva example in Bookstein (2015b). The

20 abbreviations correspond to 20 landmarks, the 74 dots to

semilandmarks arbitrarily spaced on arcs connecting some of the

landmarks in pairs

1 The problem arises often enough in a single dimension that there

are two distinct mathematical special cases for handling it. In one

setting, subscripts lie on the number line in natural order. For

example, the matrix of expected distances between points connected

by random walks of 1, 2, . . . steps of the same step variance can be

assembled in a matrix whose entries form a Toeplitz matrix—they are

constant along every line parallel to the diagonal, proportional to the

absolute value of that difference of subscripts. For an application in

evolutionary biology, see Bookstein (2013b). The other mathematical

case is analogous except that the subscripts lie on a circle: the so-

called circulant matrix model. The psychometrician Louis Guttman

was particularly interested in methods for analyzing matrices derived

from such lists of variables. In still other models, both the rows and

columns are circular: this is the so-called torus model for dihedral

angles of DNA chain backbones studied in its statistical aspects by K.

V. Mardia and colleagues.
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Linear Combinations

Just as we are used to matrix notation, numbers in rows and

columns, we are likewise used to the notation of linear

combinations of variables, formulas like ‘‘b1X1 þ b2X2þ
� � � þ bpXp:’’ It should not be as rare a cognitive stance as it

actually is to step back from this sort of formula for a

moment and ask about the biological meaning of its ele-

ments: the ‘‘coefficients’’ bi; the ‘‘variables’’ Xi being

agglomerated, and especially the operator ‘‘?’’ (or ‘‘-’’ if

you change the sign of the coefficient) that is taking the

responsibility for the arithmetic here.

We can easily imagine nonsense examples of this

notation: formulas like ‘‘5� humerus.length—3� aortic.-

valve.angle.’’ We must demand at the outset that at

least the units of quantities being combined by a plus

or minus are commensurate: one cannot add centimeters

to radians. Let us edit the example, then, so that it now

reads ‘‘5�humerus.length—3�aortic.valve.length.’’ But of

course much more is required. If the arithmetic result is to

be a predictor of some exogenous quantity, it needs to

come in a unit of its own, say, grams (or perhaps a com-

posite unit such as dynes, gm cm/s2). Then the coefficients

5 and �3 must each be in units of grams per centimeter (or

grams per second per second), and one of the two princi-

pled ways to generate vectors of coefficients of additive

combinations like these is as multiple regression coeffi-

cients, or, as the geneticist Sewall Wright renamed them,

path coefficients. (The other way, also identified with

Sewall Wright, is his approach to general and special

factors, section ‘‘Sewall Wright’s Style of Factor Analy-

sis’’. In that context, the coefficients of the linear combi-

nations specify effects, not causes.)

Regression coefficients, in general, arise from multiple

causal pathways in play at the same time. Their assump-

tions must be minutely examined whenever such a linear

combination is written down. Each coefficient must apply

to the expected effect of change in one predictor regardless

of the values of any of the other predictors, and the effect

of, e.g., raising humerus length by 2 units must be equal

and opposite to the effect of lowering it by the same two

units, regardless of its current value. Such assumptions are

nearly impossible to verify in any real data set, and in their

absence it is unjustified to believe in the reality of any

process calibrated by the coefficient vector of b’s under

scrutiny. And what, in general, do we make of the fact that

some components of the summation are positive and some

are negative? Does the process we are studying even allow

for interventions that differ in sign? Physiological param-

eters, in particular, must be positive; kinetic energy, like-

wise; one cannot lower ambient water pressure or the jaw

gape of a predator past zero. There will be more to say

about linear combinations when we discuss consequences

of the Perron–Frobenius theorem at section ‘‘Sewall

Wright’s Style of Factor Analysis’’.

Linear combinations are even more problematic when

the variables being combined are Cartesian coordinates. In

that setting, the formula must combine terms in all coor-

dinates for all the landmarks. The arithmetic, then, looks

like ‘‘a1xX1 þ a1yY1 þ a1zZ1 þ a2xX2 þ . . .:’’ In this setting

the symbols þ and - stand for directions in the coordinate

space. If a1y is positive, for instance, its positivity means

that the picture of this component will involve a shift of a1y

in the direction of increase of the y-coordinate of the first

landmark along with analogous shifts in every other

coordinate at the same time. (There may also be a thin-

plate spline grid following these shifts along, the better to

see their regional organization.) Evidently we are not

talking about arithmetic, þ and -, but about vectors, shifts

of the first landmark in the direction ða1x; a1y; a1zÞ at the

same time that every other landmark is being shifted

according to its little three-vector. To interpret the original

expression a1xX1 þ a1yY1 þ a1zZ1 þ a2xX2 þ . . . as an

actual number is to presume that it is biologically mean-

ingful to ‘‘project’’ any observed composite shift of all the

landmarks at once against this particular direction in their

common vector space. But such a projection presumes the

meaningfulness of the geometric aspects (shortest dis-

tances, or, equivalently, perpendicularity of the residual to

the projection) that treat all directions as somehow equiv-

alent in their potential biological meaning. Hence the

concern for linear combinations of coordinates is insepa-

rable in principle from a worry about the meaning of their

directions, which is to say, the structure of rotations

between directions or sets of directions in these spaces of

linear combinations.

Rotations, Especially Their Basis in Covariance

Structures

Rotations can be thought of as a special case of the pre-

ceding, when a whole list of linear combinations of the

same X’s is considered at once such that the coefficients of

each linear combination have zero crossproduct with the

coefficients of any other and individually sum in square to

1.0. This is the characterization of the orthonormal trans-

formations that leave pairwise interspecimen Euclidean

distances RjðXi1j � Xi2jÞ
2

invariant. The statistically minded

organismal biologist almost never pauses to contemplate

the fact that corresponding to these criteria—sums of

products of coefficients, ‘‘distances’’ between specimens—

there is no biology at all. In the formula for distance, why

should different variables Xi enter with equal weights? In
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the formulas for the rotations, why should the organism

care if linear combinations are orthogonal?

Of the two most commonly encountered settings in

which rotation is invoked in GMM, one is the rotation to

principal components. (The other, the rotation that consti-

tutes the Procrustes fit itself, is dealt with in the next

subsection.) In principal components analysis, which when

applied to shape coordinates is usually called relative

warps analysis, the linear combinations that comprise the

rotations are determined up to their sort order by the

requirement that they are not only orthonormal as coeffi-

cient vectors but also of covariance zero as linear combi-

nations of the actual measurements case by case. The

requirement of zero covariance, algebraically speaking, is

just another way to bring in the notion of sums-of-squares

(in this context, the sums of squares that stand for variances

of the same linear combinations) that parallels this dis-

cussion of rotations throughout.2

A covariance is a computation that combines specimens,

not only variables. Its formula is an average of centered

crossproducts, 1
n
ðXi1Xj1 þ Xi2Xj2 þ � � � þ XinXjnÞ � XiXj;

and thus appears to beg the questions of what it means to

multiply two measurements Xi; Xj on the same specimen and

what it means to add these products over specimens; but

sometimes that requirement can be circumvented. For

quantities in the same units, covariances derive from vari-

ances: covðXi;XjÞ ¼ varððXi þ XjÞ=2Þ � varððXi � XjÞ=2Þ.
(In the two expressions after the equals sign here, the þ and

- operators are not regression coefficients but merely

instructions about simple arithmetic.) If we can accept the

biological reality of a variance as an expected square of a

numerical difference of variable values (assuming that that

makes sense), then a covariance between two quantities in

the same units is real or not depending on whether the sum

and difference of the corresponding pair of variables can be

understood to be biologically real (i.e., properties of the

organism) and to have variances that are likewise real

properties of the population from which the organism was

drawn. And this will be the case only if we can find some

process, some gene, some selective gradient that does have

this pattern of effects on the two scores at the same time. It is

far from obvious that any such assumption makes sense. In

any event, other covariances will pertain to variables that

come with different units, for which the preceding identity is

meaningless. Furthermore, computed zeroes of covariances

are unstable against variations of sample design (choice of

taxa, size range, etc.), so composite variates observed to be

uncorrelated in one sample will almost surely be correlated

in every other sample if the variables being combined submit

to any sort of causal reasoning at all.

Then covariances that are exactly zero, which is one

aspect of the criterion for our rotation to principal compo-

nents, would seem to be a property of our scientific rhetoric,

not of the organism itself—unless there is some good bio-

logical reason to posit the corresponding symmetry. We are

thus brought back abruptly to our original paradox: if

humerus.length�aortic.valve.length cannot be taken as

biologically meaningful, then neither can the covariance of

humerus length by aortic valve length, which is just the

expected value of the product of the two deviations from their

own sample averages. So the issue of the reality of covari-

ances is effectively the same as the issue of whether linear

combinations of independently measured quantities (or of

coordinates of independently located landmarks) make sense

the way a primary morphometric measurement (an extent—a

distance, area, or volume) does. This is a question for a whole

team of biologists, perhaps an evo-devo specialist working in

tandem with a geneticist. Certainly it does not fall under the

remit of the statistician in the room, or the software package

that is his avatar.

Another way of inspecting the dependence of GMM on

rotations is to carefully examine the a-priori symmetry

claim that ‘‘all directions [linear combinations subject to a

geometric normalizing factor] are equivalently plausible a

priori.’’ But this is an absurd position to hold when the

subject is patterns of change in landmark configurations,

the central concern of GMM. Figure 3 shows a collection

of different patterns that the axiom would have us accept as

equivalently plausible on this model (they have the same

Procrustes length). But biologically they are nothing of the

sort. One can imagine a claim that column 1 is detecting

the consequence of some biomechanical cause uniformly

distributed, or that column 2 is a classic morphogenetic

growth gradient parameterized by the relation to some

embryonic field along the obvious direction. And a pattern

like that in column 3 might be interpreted as a ‘‘Pinocchio

effect,’’ the variability of one single landmark irrespective

of any phenomena affecting its neighbors. But what are we

to do with a linear combination like the one shown in

column 4? (There are many more examples of this sort of

patternless grid in Bookstein 2015a, b.) We have no sci-

entific access to biological processes that produce this kind

of totally decorrelated ‘‘pattern.’’ It follows that however

we represent our domain of possible linear combinations,

examples like this one must be deprecated. But what,

exactly, do we mean by saying an example is ‘‘like’’ one of

these? It turns out to be the same geometrical formula (a

sum of squares) that we have already agreed has gone

unjustified thus far in the application to landmark locations

specimen by specimen.

2 The connection between optimal variances and zero covariances

technically applies only to ‘‘flat’’ descriptor spaces. For the general

Riemannian manifold, the different characterizations of PC’s are no

longer equivalent, and their empirical use in such fields as

neuroanatomy is consequently a great deal more fraught.
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Because the possible patterns that emerge from analyses

of rotations of shape variables, such as those in Fig. 3, are

intrinsically different in their biological import, it follows

that rotationally independent metrics are inappropriate for

reporting findings that involve aspects of shape spaces.

This caution applies with particular force to the RV-coef-

ficient (Robert and Escoufier 1976) sometimes used for

comparisons of shape phenomena to exogenous measure-

ment domains, or to more up-to-date modifications such as

that of Smilde et al. (2009). Morphometrics needs not

some summary assessment of ‘‘all the dimensions’’ of a

multimodal comparison but the explicit biological inter-

pretation of eigenvectors or other partial descriptors one by

one. If X is a matrix of shape variables (such as the shape

coordinates of the next section) and Y is a matrix of some

other measurements on the same specimens, then the RV is

the sum of the squares of the elements of the matrix SXY—

the covariances of each X with each Y—after a peculiar

normalization of each matrix separately. Irrespective of the

contents of Y (which may well be another set of shape

measures), then, because the matrix X does not encode the

spatial adjacencies of the underlying landmark configura-

tion, neither can the covariances of the columns of X with

the columns of Y. Regardless of the details of those nor-

malizations, the procedure makes no sense as biology,

inasmuch as many of the numerous patterns over which we

are summing could well be nonsensical. If there is some

prior reason to consider patterns of covariances as infor-

mative, one should be examining the structure of those

cross-covariances SXY by a singular-value decomposition

of its own, followed by interpretation of individual eigen-

vectors. ‘‘The complete set’’ has no biological reality.

Appendix 1 presents an expansion of this argument that

includes a diagram relating this RV formula to our usual

geometric understanding of covariance structures in the

natural sciences. From the proper understanding of the RV

coefficient it will follow, the Appendix claims, that it is

valueless in most organismal applications.

Procrustes Distance, Procrustes Coordinates

Let us agree that the first task of the geometric morpho-

metrician is to collect all of the landmark configurations in

one data set, so that their coordinate configurations may be

treated as causes or effects of other biologically relevant

measurements. The commonest way of proceeding with

this task is by a Procrustes analysis. We now have enough

machinery in place to understand what the symmetries of

the Procrustes algorithm are and how important it is to be

able to break them.

An algebraic version of this task is easiest to set down

when we limit ourselves to the realm of ‘‘small variations.’’

Consider each set of measured Cartesian coordinates as if it

derived from some common mean form by variation of
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Fig. 3 A variety of vectors in shape space. For convenience, each

transformation is drawn twice, first as a set of landmark displacements

(filled circle to open circle) in some artificially registered coordinate

system and again as a thin-plate spline. Columns, left to right: a

uniform transformation; a growth gradient aligned southwest-to-

northeast; a ‘‘Pinocchio effect’’; a meaningless composite direction in

shape space (These latter are the vast majority of available directions;

when each of the little vectors is distributed as a circular Gaussian of

the same variance, they correspond to samples from the isotropic

offset Gaussian shape distribution)
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every coordinate at the same time in the vicinity of its

own mean. For convenience I will annotate the situation

for a two-dimensional data set of k landmarks, thus, 2k

coordinates (the same as the eventual count of shape

coordinates). Write each landmark configuration as a

2k-vector distributed around some mean form l. It makes

our notation easier if we standardize l as a vector of the

form ðx1; y1; x2; y2; . . .; xk; ykÞ with Rxi ¼ Ryi ¼ Rxiyi ¼ 0;

R x2
i þ y2

i

� �
¼ 1 (meaning: l is centered, its Centroid Size

is 1, and it has been rotated to principal axes horizontal and

vertical).

Then it can be shown that the standard Generalized

Procrustes Algorithm of Gower (1975), which everybody

uses for their Procrustes shape coordinates, replaces every

2k-vector C of data by a new vector very nearly equal to

C � R4
i¼1J

t
i ðJiCÞ where each Ji is the ith row of the matrix

J ¼

1=
ffiffiffi
k

p
0 1=

ffiffiffi
k

p
0 . . . 1=

ffiffiffi
k

p
0

0 1=
ffiffiffi
k

p
0 1=

ffiffiffi
k

p
. . . 0 1=

ffiffiffi
k

p

�y1 x1 � y2 x2 . . . � yk xk

x1 y1 x2 y2 . . . xk yk

0

BBB@

1

CCCA
;

4� 2k:

The first two rows of J center the distribution at a common

mean of (0, 0). The third row approximately standardizes

rotation (by zeroing out torque against the average), and

the fourth row approximately standardizes Centroid Size,

which is the sum of squared distances of the landmarks

from that new centroid.3 These four rows are orthogonal in

their own geometry of sums of crossproducts, and each has

length 1 as a vector. The rotation referred to here is not the

sort of rotation with which section ‘‘Rotations, Especially

Their Basis in Covariance Structures’’ was concerned.

Those were the rotations that could interchange or reproject

shape coordinates nearly ad libitum. The rotations

approximately implemented via the third row of J are just

the rotations of the digitizing plane as a rigid body, the

multiplication of all the shape coordinates by a matrix

cosh � sinh

sinh cosh

� �
O . . . O

O
cosh � sinh

sinh cosh

� �
. . . O

O O . . . O

O O . . .
cosh � sinh

sinh cosh

� �

0

BBBBBBBBBB@

1

CCCCCCCCCCA

where O is a little 2 � 2 matrix of zeroes.

To modify C by subtracting R4
i¼1J

t
i ðJiCÞ is to project out

the four dimensions expressed in the rows of J. That

geometry could also serve as the geometry of one mor-

phometric analysis if all the original Cartesian coordinates

were uncorrelated and had the same variance—if the

original coordinate data had been generated as samples

from Nðl; r2I2kÞ. This is the so-called offset isotropic

Mardia–Dryden distribution; for the corresponding prob-

ability distribution of shapes, see Dryden and Mardia

(1998), Section 6.6.2. Projection leaves distances

unchanged that lie in the space orthogonal to all the

directions that were projected out. Hence the common

didactic simplification that ‘‘Procrustes distance is the

minimum Euclidean distance between two landmark sets

over variations of scale, position, and orientation.’’ In this

J-matrix approximation we don’t have to minimize over

those nuisance parameters, but just project them out—the

distances are, so to speak, minimized automatically. It

follows, also, that principal components of Procrustes

shape coordinates serve as one set of principal coordinates

of Procrustes distance, Bookstein (2014), Section 6.5.1.

But no actual morphometric data set is ever distributed

with as much symmetry as that r2I2k that was just invoked.

Whereas the first two rows of J normally correspond to

nothing measureable outside the digitizing lab, aspects of

biological size and biological orientation, the other two

rows, typically are correlated, often highly correlated, with

the remaining information, the shape coordinates. The

shape coordinates emerging from the project-out-J algo-

rithm have very nearly the minimum sum-of-squares

around their mean of any set of coordinates that stand for

‘‘the orbits of the observed data under the action of the

similarity group’’—all the possible positions, sizes, and

orientations we might have assigned them for purposes of

this statistical analysis—but the symmetries of that sum of

squares are the logical equivalent of the symmetries of the

multivariate Gaussian model Nðl; r2I2kÞ justifying the

entries of J, and hence are just as arbitrary as J’s rows

themselves were.

We noted in section ‘‘Matrices’’ that the geometrical

structure of a set of Procrustes shape coordinates—some

pairs of variables, but not others, pertain to the same

landmark point; some pairs but not others represent coor-

dinates aligned in the same direction—is not coded any-

where in the conventional matrix of their values. Breaking

this particular symmetry requires careful attention to the

specific geometry of a covariance between the various

types of these pairs. Furthermore, there is an interaction

between the representations of covariance and the J-matrix

that was projected out in order to pass from Cartesian to

Procrustes coordinates in the first place. These concerns,

while important, would distract us from the main business

3 Since Centroid Size is x2
1 þ y2

1 þ x2
2 þ . . .; one has

d x2
1 þ y2

1 þ x2
2 þ . . .

� �
/ x1dx1 þ x2dx2 þ . . .; this is the projection

of the observed variation of shape coordinates ðdx1; dy1; dx2; . . .Þ onto

the vector ðx1; y1; x2; . . .Þ that is the fourth row of J.
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of this section; they have been collected for separate con-

sideration in Appendix 2.

The formulation of the J-matrix helps us understand

why the Procrustes toolkit is particularly incongruent with

biology for data sets that incorporate semilandmarks (recall

Fig. 2) as well as landmarks. The spacing of semiland-

marks is arbitrary, and likewise their weighting in any

overall geometric formulation. And the more closely they

are spaced, the higher the correlation of their Cartesian

coordinates. Among the standard methods available as of

the date I am writing this, the only approach that seems

robust against this particularly arbitrary choice of

parametrization is the method of deflation reviewed in

section ‘‘Deflated Procrustes Analysis’’. Spacing of semi-

landmarks is a technicality, but allometry, the dependence

of shape on size, is a biological fact. The size standard-

ization implicit in the J-matrix is the differential of Cen-

troid Size, thus, a geometric size. There are still very likely

to be correlations of actual biometrical size, considered as

an exogenous biological measurement, with the shape

coordinates (although it makes no sense to project out yet

another size variable; instead one would replace the fourth

row of J by some better version, or even omit it entirely as

described in the next paragraph). Similarly, the Procrustes

shape coordinates may very well show a dependence on

orientation of the specimen, likewise considered as an

exogenous biological measurement: a consideration that,

though perhaps encountered only rarely in systematics,

might well arise in a biomechanical study of locomotion. In

that context one would delete or replace the third row of

J for the same reason. Even the first two rows, the cen-

tering, might be replaced by a weighted scheme if the

landmarks were closely enough spaced for each to repre-

sent a patch of tissue; then we could center by approximate

area rather than treating the landmarks as identical point

masses. Or, in the context of an analysis of gait, we might

wish to center the horizontal domain, but not the vertical,

so as to preserve the information about potential energy as

part of the analysis.

Thus the Procrustes superposition itself, which supplies

all the shape coordinates that drive the subsequent principal

component computations of GMM, its regressions, PLS

analyses, etc., encapsulates symmetries that often the

biologist would do well to break. A good way to show the

problem is by use of the coordinates recommended by Boas

(1905), an astonishingly early date. These Boas coordi-

nates (a name coined by Joe Felsenstein) are just the shape

coordinates of a Procrustes-like procedure that foregoes the

scaling step. The upper panel of Fig. 4 shows these coor-

dinates for the familiar Vilmann rodent skull data set, eight

landmarks observed in 21 animals at eight ages. (For a

local (correct) global (wrong)
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GPA, scale restored  
actual data

Fig. 4 Two kinds of problems with the J-matrix. (above) Boas

coordinates for the Vilmann rodent brain data set. To the extent the

little regression vectors on centroid size (the measure of scale divided

out in the Procrustes procedure) are not along the directions out of the

centroid (the large filled dot) and proportional to displacement, the

Procrustes procedure has misregistered these data. Big star symbols

landmark mean locations after centering and rotation (the first three

rows of the matrix J). Solid heavy lines regression predictions for two

standard deviations of centroid size in either direction from its mean.

Dashed heavy lines segments from the means about a third of the way

back to the centroid. (below) In the method of contrasts, it makes

quite a bit of difference whether the projection used to quantify

contrast by contrast is based on the grand mean or instead on the pair

of forms involved in the specific contrast. The relation between the

13-landmark configurations of Gorilla and Homo from the Marcus

data set to be discussed in section ‘‘Modifying a Comparative

Analysis of Mammalian Skulls’’ is clearly different depending on

which reference mean is used to construct the projection matrix

J. Left, the correct (local) computation. Right, the less thoughtful

alternative based on the ‘‘mammalian archetype’’ in Fig. 8, wrongly

indicating a much greater relative expansion of the braincase in

Homo.
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listing of the data, see Appendix A.4.5 of Bookstein 1991.)

If regressions (here the heavy solid lines) of each landmark

position on the summed squared central moment of the

configuration are not along the direction of the lines toward

the centroid (here the heavy dashed lines), the third and

fourth rows of J have not been set optimally. In this context

the role of an initial Procrustes analysis would be to esti-

mate the correct third and fourth rows of J, followed by a

recomputation that used these vectors to break the original

symmetry. In this example it appears that the standard

matrix J particularly overweights the landmarks Bregma

and Lambda of the anterior cranial roof—their dependence

on Centroid Size seems much weaker than would be pro-

portional to their distance from the centroid. The heavy

solid lines here show the geometric structure of this octa-

gon’s growth allometry better than the corresponding

analysis of the shape coordinates themselves, Bookstein

(2014), Figure 7.5 or 7.6.

There is a more subtle problem with the conventional

Procrustes superposition when it is applied to a data set of

relatively broad shape range. The elements of rows 3 and 4

of the J-matrix are the normalized coordinates of the mean

shape for whatever sample was being analyzed. Interpre-

tations of the resulting shape coordinates, however, might

highlight particular pairs of forms; and, properly speaking,

any such comparison should be referred to a J-matrix of its

own. In the method of contrasts to be introduced in section

‘‘The Comparative Method for Analysis of Contrasts

Across a Phylogeny’’, for example, there will be a different

subsample of the data for each contrast of the rotated basis,

and thus there should have been a different J-matrix for

each contrast. The lower panel of Fig. 4 shows the effect of

this option for one of the contrasts generated in the Marcus

data set of 55 taxa of mammal skulls we will eventually

analyze in section ‘‘Modifying a Comparative Analysis of

Mammalian Skulls’’. The analysis on the right, based

(inappropriately) on registration to the grand mean form,

quite noticeably exaggerates the difference between the

forms of Homo and Gorilla skulls by comparison to the

version at left, registered on the average of Homo and

Gorilla only. The region where the registrations most dis-

agree happens also to be the region where the shapes differ

most, as a pair, from the putative ancestral form—the most

interesting feature of the whole analysis and, we shall see,

the reason that conventional principal component 1 of the

full 55-taxon data set is worthless as a quantification of

variation in any wider context.

The Procrustes distance between any pair of specimens

is approximately equal to the sum of squares of inter-

specimen differences of all the coordinates after the four

rows of J are projected out. This sum of squares likewise is

afflicted by all the symmetries of the usual ostensibly

isotropic Gaussian distribution, and so usually does not

correspond to any biologically plausible version of a

meaningful disparity between shapes. Centroid Size is

geometrically orthogonal to all the components of Pro-

crustes distance in this context. Its formula is likewise a

sum of squares, and its orthogonality to the shape coordi-

nates (and to rotation) is a geometric orthogonality, usually

not a statistical noncorrelation. The Procrustes coordinates,

properly construed, can serve only as joint causes or effects

of form.4 They do not constitute a uniquely appropriate

quantitative representation of landmark shape, but only one

selection from a very rich parametric range of choices. In

the lower panel of Fig. 4, the Procrustes distance between

the Gorilla and Homo 13-gons is 0.643, but the wrong

analysis (at right) yields 0.710 instead, and owing to the

very short divergence time between these two genera it is

assigned an unfortunately great weight in some versions of

the ensuing multivariate analysis. We will see the conse-

quences of this in section ‘‘Modifying a Comparative

Analysis of Mammalian Skulls’’.

Some Alternative Methods

For many years, the roster of concerns sketched in section

‘‘Four Ubiquitous Problems’’ has proven a professional

challenge to the builders of morphometric tools. How do

we build methods that accommodate the circumvention of

conventional axioms when the unreality of such axioms is

obvious in advance? Here are some of the more important

responses to that challenge.

Relative Eigenanalysis

The germ of this idea was planted well before the end of

the nineteenth century in the literature of continuum

mechanics, specifically, the modeling of material strain as a

function of load in settings where the physical stress-strain

tensor is not isotropic. The general idea is that the com-

putation of a set of principal components is an algorithm

with two arguments: not only the the covariance structure

or other symmetric matrix under examination, but also the

ancillary square matrix defining what it means to be

‘‘orthonormal.’’ The usual principal components compu-

tation is a relative eigenanalysis with respect to the identity

matrix (all zeroes except for 1’s down the diagonal), a

matrix that has nothing much to do with any biological

context. By liberating that second matrix so that it might

4 This was a property of the landmark points themselves before

it pertained to these numbers. As I said in Bookstein

(1991, page 61), ‘‘Landmarks are the points at which one’s explana-

tions of biological processes are grounded. . . . Landmark-based

morphometrics is the embodiment within biometrics of the functional

form of biological explanation.’’
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likewise be informative, the technique of relative eigen-

analysis offers a startling enrichment of our usual pattern

search engines for situations characterized by prior bio-

logical knowledge to which an identity matrix is irrelevant.

For instance, relative eigenanalyses are unaffected by

diversity of the units in which variables are measured

(whereas the usual PC computation would change drasti-

cally if the identity matrix were replaced by one with

diagonal entries varying substantially around 1.0 in any

realistic way). The Vienna theoretical biologist Philipp

Mitteroecker has been particularly interested in this

extended technology (see Mitteroecker and Bookstein

2009; Bookstein and Mitteroecker 2014). The search for

dimensions of shape that are relatively most or least vari-

able in one sample vis-à-vis another, for instance, is

resolved by an explicit relative eigenanalysis; so is the

generation of deflated Procrustes principal components to

be sketched in the next subsection (Fig. 5).

Corresponding to any relative eigenanalysis between

matrices of full rank, there is a distance metric for the net

dissimilarity of the two matrices being compared. The

squared distance is
P

log2 ki where the k’s are the relative

eigenvalues of either matrix with respect to the other. From

the biological point of view, this metric has the happy

property that the rescaling of any single factor of the

covariance structure has the effect on the resulting covari-

ance geometry of extension along a straight line—successive

inflations of the factor add their lengths on a log scale (rather

like a slide rule). Also, there is a deep connection between

relative eigenanalysis and the main statistical foundation of

our multivariate computations, the Wishart distribution of

sampling variation of covariance matrices (Wishart 1928):

multivariate Gaussian variation around a mean covariance

structure is spherical in this distance measure.

Hence, whenever there is a ‘‘natural’’ reference covari-

ance structure in any biological context, we can use it to

render our principal components a great deal more com-

prehensible than if we relied solely on the nonbiological

geometry of sums of squares.

Deflated Procrustes Analysis

This maneuver, while remarkably recent in its formal

appearance (Bookstein 2015a, b), derives ultimately from

notions of self-similarity that date back to the initial find-

ings about Brownian motion at the turn of the twentieth

century. Real Brownian motion, as first demonstrated by

the physicist Perrin (1913/1923), is self-similar, the same

  
  
  
  
  
   
                                
  

  
    

  
  
  
  
  
                                  
  

  
 

  
  
  

  
   

                               
  
  
  
  
   

  
  

   
                                   

  
  
  
 

  
  

  
   

                                  
  

  
  
    

  
   

                                       
  
  
 

      
  
  
  
  
  

   
                                

   
  

  
  
  
  
  

  
  

   
                             

Fig. 5 The two basic ideas of

relative eigenanalysis. (upper

left) For any two ellipses, such

as covariance matrices of a pair

of measurements in two groups,

the relative eigenvectors are the

directions that are conjugate in

both of the ellipses at the same

time. (A pair of diameters of an

ellipse is conjugate if the

tangents at the endpoints of each

diagonal are parallel to the other

diagonal.) (upper right, lower

left) The relative eigenvectors

can be computed as well as the

axes of either ellipse when the

other is linearly transformed

into a circle. (For a circle, all

pairs of perpendicular diameters

are conjugate.) (lower right) Yet

another linear transformation of

the same pair of ellipses. The

natural distance function

between two ellipses is the same

in all these panels: the square

root of the sum of the squares of

the logarithms of the ratios of

length between the paired

diameters (the relative

eigenvectors) of the two

ellipses. Here that distance is

0.344
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shape, statistically speaking, at every scale (temporal

window) of observation. It has been argued (Nei 2007) that

Brownian motion of the phenotype corresponds closely

enough to a mechanism of selectively neutral mutational

processes that it can often be considered the correct ref-

erence model against which to cast claims of evolutionary

patterns. (This phrasing is to be taken somewhat ellipti-

cally. At larger time scales, neutral drift is not distin-

guishable from directional selection varying in a

suitable joint distribution of direction and magnitude. Also,

the variance induced by these diffusive processes will

probably vary over directions in our morphometric space—

the corresponding Brownian motion would be ‘‘colored,’’

not white. See Felsenstein and Bookstein 2016.)

The equivalent in GMM of the temporal windowing

criterion is a spatial one: a shape change phenomenon that

is the same shape distribution, statistically speaking, in

neighborhoods of every size, position, or orientation. (The

claim is not that shape is like position of a particle, but that

the ways we allow our focus to move and change scale in

studies of a diffusing particle are analogous to the ways we

allow our focus to move and change scale in descriptions of

shape comparisons.) As modified for application to land-

mark data, this is the requirement that the reference dis-

tribution against which we judge pattern claims needs to

offer the same apparent signal for every shape phenomenon

at every scale consistent with the mean landmark config-

uration. This is the equivalent for morphometrics of E.

T. Jaynes’s characterization of the familiar Gaussian dis-

tribution as the proper representation of ‘‘total ignorance’’

of the information in the statistical distribution of a scalar

about which we know only the mean and the variance.

For any mean landmark configuration there exists such a

distribution. The upper half of Fig. 6 shows a sample of

eight of these transformations for a scheme of ‘‘landmarks’’

forming a 7 � 7 grid. The statistical shape distribution of

the nonuniform component of any square you might con-

struct from the points of this grid—any size, any position,

any orientation—is exactly the same.5 This is shown in the

middle panel for three squares selected as shown in the

guide figure. To put the matter most provocatively,

whenever this distribution fits a data set it follows that

every single feature that leaps to the eye in an individual

grid is as meaningless as the pattern of peaks and slopes of

a random walk: those creases or centers of expansion could

have been anywhere else, at any scale—they do not bear

interpretation. You may be more than astonished—perhaps

the American idiom ‘‘flabbergasted’’ and the British

‘‘gobsmacked’’ are the only thesaurus entries energetic

enough for this purpose—that such a distribution exists at

all, let alone that it can be simulated easily by simple

software. In fact, if we remove the uniform component of

shape variation from our descriptor space (i.e., the com-

ponent that is ‘‘at infinite scale,’’ the same everywhere),

then we produce a self-similar shape distribution from any

isotropic Mardia–Dryden distribution (the shapes of points

distributed around their means as circles or spheres all of

the same standard deviation in every direction, Dryden and

Mardia 1998) as the vectors of scores generated by a rel-

ative eigenanalysis of the corresponding shape coordinates

with respect to the bending energy matrix of the thin-plate

spline (in 2D) or its square (in 3D). One consequence of

this scaling is that the formalism is robust against changes

in the spacing of semilandmarks with respect to landmarks,

a fundamental problem in the Procrustes approach

reviewed in section ‘‘Procrustes Distance, Procrustes

Coordinates’’. While smooth changes of outline curvature

will emerge at large scales in this new analysis, abrupt

local changes, such as remodeling of a joint, will be

detected as variation at small scale instead. There is no

space to review these helpful features here; for explana-

tions, see Bookstein (2015b).

This result, hinted at 20 years ago in an obscure article

on the statistics of the thin-plate spline (Kent and Mardia

1994), makes possible a rigorous multivariate approach to

integration centered on visualizations of the patterns by

which one claims to have detected it. The partial warps of a

landmark configuration (Bookstein 1991, Section 7.5)—

eigenvectors of the bending energy of the corresponding

thin-plate splines—embody all the information about

cFig. 6 Deflated Procrustes analysis. (upper two rows) Eight instances

from a sample of 200 from the deflated Procrustes distribution

(Bookstein 2015a, b) on a 7 � 7 grid. (third row) Nonuniform

component of the shape distribution for three diverse squares as

indicated in the key figure, far left. The theorem says these

distributions must be identical. Notice how much less regionalized

these grids are than the rightmost grid in Fig. 3. (bottom panel) For

this distribution, the scatter of partial warp variance against partial

warp bending energy, its BE–PWV plot, has a slope of �1. For this

sample the computed slope is �0:986: Empirical data sets often show

slopes that differ from �1; we will examine one of these in section

‘‘Extending the New Morphometric Models of Disorder to a

Multiscale Regime: An Example from Entomology’’

5 For any sample of homologous landmark configurations in two

dimensions, the nonuniform component of variation can be approx-

imated as the result of projecting out a version of the J-matrix, section

‘‘Procrustes Distance, Procrustes Coordinates’’, that has two further

rows ðcy1; dx1; cy2; dx2; . . .; cyk; dxkÞ and ð�dx1; cy1;�dx2; cy2;

. . .;�dxk; cykÞ; where c ¼ Rx2
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx2

i ð1 � Rx2
i Þ

p
and d ¼ ð1 � Rx2

i Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx2

i ð1 � Rx2
i Þ

p
. Because of the constraint Rx2

i þ Ry2
i ¼ 1 imposed in

the course of standardizing J, this extended version is still orthonor-

mal (all rows of length 1, all crossproducts 0). The projection on these

two additional rows is an estimate of the uniform component of any

such shape change around the Procrustes average. See Bookstein

(2014):418, equation (7.1) and subsequent text. In 3D the analogous

projection involves five dimensions, not just two.
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landmark spacing that lies atop the matrix of Procrustes

shape coordinates (and so would have been omitted from

the remit of methods like principal component extraction).

The proposal is that integration would be best quantified as

the regression slope in a BE–PWV plot, a log–log plot of

partial warp variance against partial warp bending energy.

In the bottom panel of Fig. 6 is the corresponding diagram

for the 7 � 7 grid (46 partial warps) based on the full

sample of 200 from which the eight exemplars at the top

were drawn. The distribution was originally simulated with

total isotropic symmetry but then deflated. The slope of the

regression line shown is almost precisely �1: Slopes dif-

ferent from �1 in either direction convey useful biological

information. A claim of integration must therefore be

accompanied by evidence that this distribution does not

apply to the data—that the variance of features falls faster

than the inverse of their bending energy. In this circum-

stance, the deflated RW’s quite effectively convey the

aspects of localizable shape variation that are most salient

even after adjusting for adjacencies and scaling among the

landmarks’ mean locations. The task remains of incorpo-

rating the aspect of uniform (affine, hence nonlocalizable)

shape variation, which, by virtue of having bending energy

zero, cannot be located on our log–log plot without special

handling. The approach in Bookstein (2015b) imputes a

fictitious scale to the uniform term based on its Procrustes

variance; other algorithms should certainly be explored.

Sewall Wright’s Style of Factor Analysis

Almost exactly 100 years ago, Sewall Wright, analyzing

the matrix

R ¼

1:000 0:584 0:615 0:601 0:570 0:600

0:584 1:000 0:576 0:530 0:526 0:555

0:615 0:576 1:000 0:940 0:875 0:878

0:601 0:530 0:940 1:000 0:877 0:886

0:570 0:526 0:875 0:877 1:000 0:924

0:600 0:555 0:878 0:886 0:924 1:000

0

BBBBBBBB@

1

CCCCCCCCA

of correlations among six size measures (skull length, skull

width, humerus length, ulna length, femur length, and

tibia length, in that order) for 276 leghorn chickens, noticed

that principal components analysis was a remarkably

misleading tool for the purpose of biological explanation.

(For further comments on this correlation matrix, see

Bookstein (2016), Figure 2.31.) All the correlations are

positive, and so the first principal component of this

matrix, PC1 ¼ ð0:347; 0:326; 0:443; 0:440; 0:435; 0:440Þ;
with eigenvalue 4.568, has all direction cosines positive;

but every subsequent component is a mixture of posi-

tive and negative loadings, as it must be in order to

be orthogonal to the first one. For instance, PC2 ¼
ð�0:537;�0:696; 0:187; 0:251; 0:278; 0:226Þ; with eigen-

value 0.714, claims to be a contrast between the two skull

measures and something like the average of the other four.

(This is just an instance of the Perron–Frobenius Theo-

rem recently reviewed for its morphometric implications

by Reyment 2013.)

Wright points out, reasonably enough, that process

explanations in the biological sciences hardly ever take the

form of contrasts like these, and for a factor analysis to be

useful it ought to proffer loadings that are sensible guides

to biologically distinct processes instead. (This concern

will be discussed later under Herbert Simon’s heading of

the search for the ‘‘nearly decomposable.’’) Wright

suggested that the subject of the modelling should not be

the whole matrix R but only its offdiagonal triangles, and

that the most useful explanation of the phenomena here

would actually be derived from a four-factor decomposi-

tion Roffdiagonal � g� gþ s1 � s1 þ s2 � s2 þ s3 � s3 where

g¼ ð0:636;0:583;0:958;0:947;0:914;0:932Þ, s1 ¼ ð0:468;

0:468;0;0;0;0Þ; s2 ¼ ð0;0;0:182;0:182;0;0Þ; s3 ¼ ð0;0;0;
0;0:269;0:269Þ, and � is the outer product that converts a

pair of vectors ðbiÞ; ðcjÞ into the matrix of their element-

wise products ðaijÞ with aij ¼ bicj.

In Wright’s helpful terminology, this is an explanation

in terms of one general size factor, g, that applies to all six

measures, together with three special factors each of which

applies only to a pair of the original measures: the two skull

measures, the two upper limb measures, or the two lower

limb measures. The special factors are uncorrelated with

the general factor and with each other, and the general

factor weighs the skull measures less heavily than the limb

measures—the limbs are more correlated with each other

than either is with the skull. In this approach, the linear

combination with g for coefficients serves, after scaling, as

the best morphometric estimate available of the value of

the common cause of those six variables, for comparison

with some outside criterion (weight or age, perhaps)

claimed to be an expression of the same process. This

interpretation of the additive combination—coefficients

pertaining to the morphometric variables one by one as

effects of something—is the counterpart of the version

introduced in section ‘‘Linear Combinations’’, the coeffi-

cients as expressing the morphometric variables jointly as a

cause. (Of course Wright acknowledges there is not really

enough information here to identify the actual develop-

mental mode(s) of action of the special factors: Wright

1968:330.)

I have emphasized the role of prior biological knowl-

edge in shaping the broken symmetries of the analyses

recommended here. In this setting of multiple length

measures the prior knowledge to which Wright’s algorithm

292 Evol Biol (2016) 43:277–313
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has access is the knowledge that these six measures come

in three pairs: one pair crossing on the skull, the other two

pairs sharing an endpoint (the elbow, for the wing pair; the

knee, for the leg pair). Such a decomposition is far more

coherent than any principal component analysis can be—it

is much more likely that a biological process aligns with

the s’s, a gene or gene complex for each of the three

anatomical compartments, than that some gene system

actually accounts for patterns like PC2; the joint decrease

of skull measures along with increase of all the limb

measures. (Why should the gene(s) responsible for every

principal component after the first be mandated to be

contrasts? Can’t some pleiotropies—most of them, one

could argue—be imagined instead to leave most aspects of

an integrated organism unchanged?)

This Wright leghorn example has been discussed at great

length in Wright’s own retrospective summaries (e.g., Wright

1968) as well as in the work of others coming later [cf.

Bookstein 1985; Marcus in Rohlf et al. (1990)]. If it were not

for the numerical quantities, one might think of this procedure

as a hierarchical clustering of variables. But those numbers are

path coefficients, so the resulting model is indeed an

explanatory one. See Mitteroecker and Bookstein (2007).

Other Modifications in Current Use

Regression of One Distance Upon Another

Another approach that circumvents relative eigenanalysis

is the replacement of a matrix computation by a matrix of

scalar computations. This was the intent of Nathan Man-

tel’s (1967) original method of matrix-matrix comparisons.

The analysis reduces to the estimation of a single scalar,

the slope of a regression without intercept of one empirical

distance upon another. If we write d1; d2 for the two dis-

tance measurements in question, of course omitting the

diagonals of the matrices, then one formula for this slope is

just the conventional Rd1d2

�
Rd2

1 : Note that the quantity of

interest is a regression slope, not a correlation, and that the

regression line must go through (0, 0). The method is

multivariate only in the sense that the distances driving the

regression might be multidimensional summaries, the way

that squared distance on a map is the (weighted) sum of

squares of change in latitude and change in longitude.

Otherwise, the result is not a pattern, but only one single

scalar, playing the role of a diffusion constant. The corre-

sponding axioms, then, must deal with the symmetries of

that diffusion process per se. For one way of breaking that

symmetry, see Bookstein (2007). Extensive modifications

of this approach have been explored by Paul Sampson,

Peter Guttorp and others to accomodate settings where one

of the distances is known to be anisotropic a priori (for

instance, migrations across versus along a river, or weather

patterns blocked by a mountain range).6

Domino PLS

This technique was introduced by the Norwegian chemo-

metrician Harald Martens in 2005 by way of diagrams that

looked like the playing pieces of the tabletop game called

‘‘dominoes.’’ (The name does not refer to the deity in

Latin!) It can be thought of as an ad-hoc modification of

PLS analysis (the analysis of a crosscovariance matrix SXY )

to accommodate the type of prior quantitative parameteri-

zation described in section ‘‘Linear Combinations’’ (where

our context was principal components analysis instead).

For each observed block of variables, Domino PLS con-

structs an auxiliary block expressing the one or more

dimensions of prior knowledge in the form of a structured

matrix of its own components. Then follows an alternating

computation in the spirit of Herman Wold’s original

NIPALS algorithm, resulting in a compromise between the

optimal cross-block prediction task of the underlying PLS

(singular-value decomposition of the matrix SXY ) and the

projection onto the design matrix of the auxiliary block.

See Martens and Domino (2005), or the brief exegesis in

Bookstein (2014), Section 6.4.3.3.

The Comparative Method for Analysis of Contrasts Across

a Phylogeny

As an alternative to relative eigenanalysis, section ‘‘Rela-

tive Eigenanalysis’’, one might imagine an approach that

used the auxiliary information to construct an expected

covariance circumventing at least some of the problems of

the standard Procrustes method: in this setting, the pre-

sumption that the forms sampled are independent. This is

an approach first recommended by Felsenstein (1985) early

in the development of his method of ‘‘contrasts’’—for a

review of the history of previous attempts to integrate

GMM and phylogenetics, see Section 1.2 of Felsenstein

and Bookstein (2016). Contrasts are a rotation of the space

of specimens to a new orthogonal (but not necessarily

uncorrelated) basis of comparisons among individuals or

subgroup means corresponding to a presumptive phy-

logeny. To oversimplify a bit: in the presence of an

6 Hence for a Mantel regression along these lines to have any

inferential weight in a study using GMM there must be a consider-

ation of broken symmetries like those along with all the other aspects

of symmetry-breaking reviewed in section ‘‘Four Ubiquitous Prob-

lems’’. In particular, however comfortable it may feel to announce

that ‘‘forms sampled at close spacing are more similar than those

sampled at wide spacing,’’ a Mantel test based on a morphological

distance, whether Procrustes distance, Mahalanobis distance, or any

other variant, is almost certainly unjustified in its arithmetic.
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evolutionary clock, each contrast can be divided by the

square root of its duration, whereupon we have a new basis

for the space of descriptor vectors (in the GMM applica-

tion, these are vectors of shape coordinates) the principal

components of which are an attempt to reconstruct the

domain of neutral selection independent of the accidents of

species birth and death, both their directions in mor-

phospace and their locations along the geological time

scale. This is the method used for the mammal skull

example (section ‘‘Modifying a Comparative Analysis of

Mammalian Skulls’’). For a more detailed explanation, see

Felsenstein (2008) or Felsenstein and Bookstein (2016).

A-Priori Information to Break the Symmetries
of GMM

Keeping the critiques of section ‘‘Four Ubiquitous Problems’’

in mind, let us review a range of quantitative insights that most

of us would agree ought to be permitted to modify (not just

‘‘resemble’’) the formulas of our GMM statistical analyses.

These claims of causes or effects of form are not to be con-

sidered hypotheses exogenous to morphometrics in some

sense, so as to be ‘‘confirmed’’ or ‘‘disconfirmed’’ by the

morphometric computations. No, they are to be treated as

constraints on the morphometric computations themselves—

knowledge that must be taken into account in the actual

operation of the pattern engines we are exploiting. Our prin-

cipal components, for instance, need to be computed explicitly

in light of those insights regarding, among other things, the

regional organization of shape changes. The operators þ and

- connote explanations of arithmetical combinations across

multiple measures only where biology has previously autho-

rized us to do so. Here are some of the contexts where such an

authorization might typically be granted.

The Mean Form

The most important constraint on any GMM analysis is the

mean or average form itself. In ordinary multivariate

statistics, the mean and the covariance structure are treated

as conceptually independent aspects of a population or

sample description—in the Gaussian models, indeed, they

are statistically independent from first principles. In GMM,

by contrast, every aspect of our description of the covari-

ance pattern ought to explicitly accommodate the mean

form in its parameters. We saw one example of this

dependence already in our discussion of deflated Procrustes

analysis, section ‘‘Deflated Procrustes Analysis’’, and there

will be two more instances, semilandmarks and symmetry,

in the next paragraphs. The mean form, in other words, is

not something to be estimated, or at least not only some-

thing to be estimated, but also, and principally, the major

determinant of our rhetoric for reporting variability.

Bookstein (2009) showed the effect of a shift of mean

shape on the residuals from the J-matrix in the form of its

own relative eigenanalysis. The largest and smallest rela-

tive eigenvalues of the corresponding pair of null Pro-

crustes distributions are approximately 1 � q where q is the

Procrustes length of that mean shape shift. For realistic

shape ranges, as in Fig. 4, this can be quite a large artifact

reweighting the space of comparative shape descriptions,

as potential factors in the direction common to two means

are greatly overweighted in comparison to factors aligned

with the direction of their difference. The consequences of

one such example are demonstrated in section ‘‘Modifying

a Comparative Analysis of Mammalian Skulls’’.

Semilandmarks

One partially hidden role of the mean form that is familiar to

most current users of GMM is the way that it is involved in

fixing the locations of the semilandmarks that sample

information from curves in-between the landmarks or sur-

face patches in-between the curves. The formulas for semi-

landmarks [originally published in Bookstein (1997)] all

explicitly involve information about the empirical directions

of differential information (tangents to curves or surfaces) at

each location being estimated. The current semilandmark

formalisms, therefore, already embody one specific example

of the symmetry-breaking modifications about which I am

speaking: different observed tangent directions lead to dif-

ferent data representations for the same landmark resource.

Also, every landmark location affects the location of every

semilandmark, whether they share a curve or indeed whether

the landmark is located on any curve.

Bilateral Symmetry

Here in 2016 we already understand quite well how bilat-

eral symmetry is to be imported into GMM. Knowledge of

which landmarks are paired and which are unpaired is a

fine example of the sort of information that is omitted from

the ‘‘data matrix’’ of shape coordinates as reviewed in

section ‘‘Procrustes Distance, Procrustes Coordinates’’. We

accommodate that information by explicitly dividing our

space of phenomena of interest into two subspaces: the

‘‘symmetric’’ and the ‘‘asymmetric.’’ In a typical analysis

there are two separate distances or variance components

computed, one in each of these subspaces. The subspaces

are functions of the pairing of landmarks, and some of the

associated GMM operations are explicit functions of the

averages after pairing, for instance, the sliding of sym-

metrically posed semilandmarks reviewed in Bookstein

(2014, Section 7.7.6). Note a peculiarity of language in this

regard: to claim bilateral symmetry is actually to reject the
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standard GMM symmetry that treats all pairs of landmarks

as equivalently mutually informative. Bilateral symmetry,

in other words, replaces one statistically a-priori symmetry

with another more attuned to the actual biological facts of

the matter. The subspace for asymmetry, in turn, can be

subdivided into several sub-subspaces corresponding to a

diversity of biologically disparate processes: bending of the

midline, sliding of antimeres along the midline, rotation

away from the midline, etc. (Bookstein 2003). All the

formulas for these components invoke the coordinates of

the mean shape explicitly.

Allometry

We understand allometric growth, the changes in proportion

that follow as consequences of changes in size (Gould 1966),

better than any other organismal shape phenomenon. In the

standard approach to Procrustes form space (Mitteroecker

et al. 2004, Bookstein 2014, Section 7.4; see also Dryden and

Mardia 1998, Chapter 8, who call it ‘‘size-and-shape’’), size

is presumed ‘‘just another dimension.’’ But of course it is not.

For one thing, it is more easily observed than any other

mensurand (by weight, by net length, or by an obvious proxy

like age); for another, it is much more easily intervened upon,

as by experimental control of diet or by enforced exercise; for

a third, it is already the subject of substantial prior knowledge

both as regards ecophenotypic trends (e.g., Bergmann’s

Rule) and as regards the variation among species in typical

adult body sizes. The current machinery for incorporating

size into GMM shares the same Procrustes symmetries that

this essay is subjecting to close scrutiny. Part of the new

toolkit will need to be a replacement for the current definition

of Centroid Size that suspends those Procrustes symmetries

in favor of patterns derived from the data at hand. One such

approach, relying on a weighted sum of the shape coordinates

where the weighting factor for each is the coordinate’s own

specific comparative ‘‘growth’’ rate, is currently the subject

of computational explorations by Joe Felsenstein and myself

(Felsenstein and Bookstein 2016). The ultimate purpose of

these innovations is to free discussions of allometry from

squabbles over exactly which is the best measure of size

should be driving the simplistic regressions driving the

standard multivariate approaches. The scare-quotes around

the word ‘‘growth’’ above are meant to convey my agreement

that these analyses must differ across the fundamentally

different kinds of processes (static allometry, growth

allometry, evolutionary allometry) that unfortunately share

custody of their common term.

Gravity

Although the three-dimensional space of current GMM

treats all directions of a Cartesian triad of coordinates in

the same way, the real world does nothing of the sort. Most

advanced multicellular life forms show aspects of form

aligned with the vertical—they are, so to speak, aware of

gravity. Some approaches to morphometrics attempt to

accommodate this by fixing a coordinate system—the

notorious Frankfort Horizontal of craniometrics, for

instance—while other approaches imitate the current

methods for bilateral symmetry by splitting the descriptor

space into two subspaces, one that includes information

about gravitation (e.g., the aspect of gait analysis that

concerns the height of the center of mass) and another that

does not (kinetic energy of the limbs and trunk, or elastic

energy of the ligaments). The division is methodologically

complicated inasmuch as height of the center of gravity,

and thus potential energy, is linear in the shape coordinates,

while kinetic energy is, roughly speaking, quadratic in their

rates of change.

Physiology

The treatment of gravitation as an energy term is one

possible locus out of several at which physiological rea-

soning might be articulated to GMM. Other potential

instances come readily to mind: the relative contributions

of diaphragm and ribs to changes in lung volume over the

human respiratory cycle; the modeling of the Starling

equation by aspects of the cardiac ventricular volumes over

that cycle; the modeling of swimming in water by scaling

arguments such as Reynolds number. Because swimming is

directional, an otherwise Procrustes-like algorithm can

exploit bilateral symmetry to align outline data for a GMM

analysis even in the complete absence of landmark points

(Bookstein and Ward 2013). The more sophisticated

articulation of GMM to mathematical physiology is one of

the important areas of future methodological development;

I return to this topic in section ‘‘Discussion: Solutions Yet

to Be Envisioned’’.

Meristic Features

Serial structures like vertebrae have a long history of

special treatment in GMM (see, for instance, Slice 2003). A

particularly sophisticated example of these approaches,

Boisvert et al. (2008), replaces the Procrustes distance

formulation in toto by an alternative concerned only with

the rigid relationships between successive vertebrae. Or the

basic scheme of Procrustes coordinates could be preserved

and the space still rotated into components for the shape of

the vertebrae separately (and their axial trends) versus the

relations of each vertebra to its neighbors. This can be seen

as a straightforward generalization of the analogous treat-

ment of bilateral symmetry except that the operation of

mirroring per se is no longer pertinent.
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Tissue and Image Textures

Gravitation is in the same direction everywhere in the animal

body; but some directional information is not so restricted.

We are already accustomed to one special case of this con-

cern for tissue texture, the relaxation of semilandmarks along

the sharpest boundaries between tissue types or between

bony tissue and air. In today’s best anthropometrics this

particular broken symmetry is a commonplace. But the

technology of this sort of relabeling can be driven a great deal

further. In some branches of clinical medical imaging, con-

siderable effort is being invested in the accommodation of

texture information to break the symmetries of spatial

dimensions by aligning locally instead. Cardiac muscle is

known to lie in sheets aligned in different directions; the

white matter of the mammalian brain nicely suits descriptors

of the directionality of its component neurons as derived

from the exquisite new technique of diffusion imaging; the

image of the retina can be interpreted better by reference to

the optic nerve disk that organizes all of its axial symmetries.

The retinal coordinate system, in turn, is a special case of a

family of descriptors organized on cylindrical instead of

Cartesian principles: coordinate systems for tubes such as

blood vessels or the intestines, in which one coordinate is

linear, one radial, one azimuthal.

Mechanical Strain

An early response to the complaint in section ‘‘Linear Com-

binations’’ about the meaninglessness in general of endoge-

nous linear combinations of shape coordinates arose in the

course of articulating GMM with the neighboring and even

more quantitative field of biomechanics. Responding to

challenges over the course of a colloquium on the biome-

chanics of GMM in 2013, I propounded a formal method for

articulating prior knowledge of biomechanical ratios with

GMM descriptive statistics. The suggestion is to map the text

of any dimensionless biomechanical formula (say, for a

physical angle measured on the landmark configuration, or the

ratio of a pair of regional measures of extent such as length or

linearized area) into an explicit linear combination of shape

coordinates that is computed purely algebraically, without any

reference to the statistics of the shape coordinates. [The for-

mulas for this conversion had originally been published in

Bookstein (1986).] A sample of forms or a taxonomic contrast

could then be described by reference to these directions, or a

system of principal components could be compared to them.

For the simplest cases, those involving only relative size

measures, the computation reduces to diagramming the

geometry of each extent in Procrustes space (for a length,

equal and opposite vectors at each landmark pointing away

from the other; for an area, vectors out of the common

centroid proportional to mean distance from that centroid),

then projecting row 4 of the J-matrix from these vectors (in

order to accommodate the way they jointly affect the

Procrustes superposition and thereby each other’s esti-

mates). The method is explicitly limited to landmark

points, points for which each of the Cartesian coordinates is

meaningful; it does not extend to the semilandmarks that

comprise the bulk of our GMM data sets these days. For the

general algebra of this approach, consult the extended

exegeses in Bookstein (2015c, 2016).

A second methodological speculation likewise concerns

the mutual scaling of form and the sort of response to load that

is currently pursued mainly by bioengineering-based finite

element models (FEM’s), a computational flow that involves

the same data base of information that GMM exploits but

treats it very differently. Bookstein (2013a), another paper of

mine responding to an explicit challenge from a conference in

Vienna in 2010, shows how a concern for actual physical

strain energy can bridge the GMM and FEM domains. The

approach recommended here is an explicit regression of

deformation energy on the GMM descriptor space. The

example worked there, a cantilevered rod of varying shape

under fixed load, demonstrates that the Procrustes metric of

GMM per se has nothing in particular to do with the coeffi-

cients in this regression once the geometrical symmetries of

GMM have already been broken by the geometry of the load

regime itself. The hope is that such computations will extend

to physiologically interesting settings like chewing or loco-

motion. In the setting of load on a cantilever, the two concepts

of bending energy, one from GMM and the other from FEM,

articulate fairly well inasmuch as both involve integrals of

squared second derivatives, but the relative scaling dimen-

sions of the two differ according to specific details of the

modeling task at hand. Work is in progress to extend this

investigative style to a wide range of other bioengineering

contexts, such as the bending of shells (e.g., the cranium), for

which analytic approximations exist in the textbooks that

obviate any need for the intensive algebraic computations of

finite element analysis per se. There is no reason to expect

representations of this sort to be linear in the shape coordinates

or in any other representation of form.7

7 Consider, for instance, scaling the effect of some constant load on

an anatomically variable shell with respect to the shell’s thickness h.

From the basic Rayleigh equation, treating that thickness h as a

parameter, we have elastic energy�AhðextensionÞ2 þ Bh3ðbendingÞ2

for appropriate constants A and B, so the two additive components

scale differently with thickness—the transformation from Procrustes

coordinates to elastic deformation cannot be affine (linear). Also,

while the squared ‘‘extension’’ in this equation is approximately

proportional to squared Procrustes uniform distance plus the squared

change in log Centroid Size, the ‘‘bending’’ being squared is the

bending geometry within the shell only, not extended over all space as

in the thin-plate formalism. The variety of available quantifications of

image deformation is particularly well-reviewed in Grenander and

Miller (2007).
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Two Evolutionary Examples

The challenge implied by all the preceding suggestions is

to build software protocols that explicitly constrain the

formulas of GMM by incorporating insights from other

branches of biology. To date I have worked one example

along these lines and collaborated on another, both, as it

happens, from the articulation with bioengineering.

Extending the New Morphometric Models

of Disorder to a Multiscale Regime: An Example

from Entomology

The discovery of this example and the sketch of its elab-

oration are Jim Rohlf’s, to whom I am very grateful for

permission to use them here.

When extended to the estimate of a self-similarity

dimension, the ‘‘deflated Procrustes analysis’’ sketched in

section ‘‘Deflated Procrustes Analysis’’ shares one under-

lying premise with the other covariance-based methods

reviewed at section ‘‘Rotations, Especially Their Basis in

Covariance Structures’’: the axiom that a regression slope

applies homogeneously across the whole predictor range.

In the three examples of Bookstein (2015b), all of which

pertain to the mammalian cranium, this assumption seemed

compatible with the data. But the very first time a reviewer

attempted to extend this range of examples, to a structure

that is under very severe biomechanical constraint (the

wing) in an invertebrate family (Culicidae—mosquitoes),

the axiom failed quite blatantly. See Fig. 7.

In this classic 18-landmark data set, there is a dominant

first partial warp (position of the midwing vein landmarks

vis-à-vis the overall pattern), a midrange of selfsimilarity

dimension zero consistent with an isotropic Procrustes

distribution (along the longitudinal axis only), and, finally,

a selfsimilar falloff at the finest level of detail. An appro-

priate interpretation would note that the subset of land-

marks that seem to participate in the segment of slope zero

in the center of this plot are, by and large, those that show

the most elongated scatters of Procrustes coordinates in the

upper right figure. These are the landmarks near the middle

of the wing, where the vein branching would seem not to

have much effect on aerodynamic properties, i.e. to be

functionally neutral. At the other end of the plot is a regime

of scaling that appears to match Example 2 of Bookstein

(2015b) in being a domain of self-similar variation of a

curving boundary (in this case, the trailing edge of the wing

as airfoil). By explicitly challenging GMM’s standard

symmetries we have thus neatly separated the functional

from the potentially phylogenetic aspects of this data set.

A corresponding reduced shape distance or shape

probability model would partial out the space of partial

warp 1, either as one dimension (if it is aligned with a

specific two-vector of directions, in this example the

direction along the wing’s long axis) or in two dimensions,

before applying a spherical Mardia–Dryden model. Effects

on this configuration, such as taxonomic differences arising

from selection mechanisms, would then be reported as the

combination of a directional statistic (change in PW1) and

a nondirectional statistic (Procrustes distance in the com-

plementary space). This distance term is spherical in the

landmark means but not spherical in the directions of

variation around them: the ‘‘vertical’’ (direction of the

animal’s motion) is strongly canalized even though posi-

tioning along the long wing axis itself is not. This Pro-

crustes distance term, in turn, would be truncated by

deflation prior to the end of the PW sequence. Hence the

BE–PWV plot confirms the insights a specialist in ‘‘life in

moving fluids’’ might have brought to the original data

flow: variation of wing landmarks across the Culicidae is

very strongly canalized by aerodynamics in two disparate

scaling regimes separated by a region that appears to be

aerodynamically neutral. The insight, in turn, makes us

alter our principal components radically from the set that

would otherwise have been supplied by the conventional

GMM toolkit.

Modifying a Comparative Analysis of Mammalian

Skulls

Early in his career, in the course of a study of the primate

scapula, the great bioengineer Charles Oxnard wrote,

A series of features of the shoulder bones, chosen

because of their association with the mechanically

meaningful features of the musculature, have been

found to vary (a) in association with the known

contrasts in locomotion, and (b) in such a way as to

render more efficient mechanically the associated

muscular structure. Investigation of bony dimensions

residual to such a study has shown that they are not

highly correlated with primate locomotion but are, in

contrast, associated with the commonly accepted

taxonomic grouping of the order. (Oxnard 1967, p.

219)

By the turn of this century, he was more assured on the

subject. Morphometric descriptions of species differences

tend to contrast the functions of various anatomical parts

(this is certainly the case in, e.g., discussions of primate or

human evolution), whereas discussions of evolutionary

relatedness per se tend to combine measurements over

many parts of the organism at once and to make particular

sense in terms of development. Any competent morpho-

metric analysis must maintain the distinction between these

Evol Biol (2016) 43:277–313 297

123



two distinct kinds of explanations. As he summarizes

things,

Individual [taxon-specific] studies speak most closely

to function and combined studies to evolution. . . .

This thinking relates to a more sophisticated view of

what comprises a ‘variable’ or a ‘feature’ or a

‘character’ in morphology. (Oxnard 2000, p. 260)

For a general review of the context in which these views

were put forward, see the brief history of principal

component methods in Bookstein (2015c).

The biomechanics of a mosquito wing is relatively

intuitive, being mainly a matter of wing shape and wing

stiffness, and the range of forms in the scatter of Fig. 7 is

evidently not too great. Thus we think we know how to

−0.4 −0.2 0.0 0.2

0.
0

0.
2

0.
4

0.
6

. . ... .... ......... ... .. ........... .... .......
. ..
............ .. .

. ..... ...... ..... .. .. ......... .. ... .... .... ....... ....
.. ......
..

. . ..... .....
... .. .. . . ... .

.
.. ... ........ ... .. .. .. ..
. .. . ... ..

.. .
.. . .. ...... .. ..... ... .... . ...... .

.. .. .. .. .. ..... ... .. ...... .. .... .
.....
.
.. ... .....

. .... ...... .. ...........
. ... .. ...... ... .. .. ............ .
. .. ...... .. ......... .............. .... ..

.. .
....... ... . ... ...... ... .....

. ................ ............. ........... .............. .... ...... ........... ... ........... ................... . .................
. ................ .................................................................... .... ................... .
..... ......... .... ........ ........ .................... ................................................ .........................

..... ......... .... ....... . ... ..... ...... ... ........... .................... ................... ..................................
..... ... ........... .... .. .... ..... ...... .... .. .. ... ... ... .. ..... .. .. ....... .... ............... ...... .. ...... ...... ........ .....

. ....... ..... ...... ...... .. ........ .. ...... . .... .. ....... ...... ... ......... .......... ... ...... .... .. ..... ....... .. ...... ..... ..
..

.. ......
... .....
... .... ........ .. ... ..... ..... .. ....

. ....
. .
.. ... ...... .. ... . .. ..
... ......
.. ....... ... ...... ... ..... ........ .
.

. ... .. .. ..... .....
.. ... .. .. .. ......

.... .. .. ..... .. ....
. . .. .
. .

.

. ... .. .. .. .. ... ... ..... ..
..
.. ......... . ... ... ...

.. ... . .......
.
. ..

... .. ......... .. .. .. ... ..... ...... ...... .......... .... .. ... ........... .. .... ....... .. ....... ...... .... ..... ......... .... .......

...... ..... . .. .. ... .... ... .... .......... ..... .....
.... ..... ... ................ .......
.... ....... .. .... ... .......... ............ ... . ....... .. .. .. .. ... .. ... .... ..... . ...... .... .. .. . ......... ....... ... .. ... ..... ... .. . ........ . ... .. ... ........ .. . ... ... ......

.... ...... . ... .. . ....... ... .............. ...... .. ... ...... ....... .. .... .......... ....... .. .. .. .. ............. ......... ... ..... ..... .. ...... ........ .... .. ... ... . ........ ..... ... .. .... ... .... ........... ................ ........ ........... ......... ... ... ....
.. .. .... .. .... .. .. .. ......... . . ..... ..... ... ........ ..... . ...... ....... .. .. .... .. .. ....... .. .... . ............ ............ .... . ..... ... ..... .. ... .. ........ .. .. .. .. ...... ... .. ..... ..... .. ..

........... .
. ........ ...... .. . ....... ................... . ..........

log bending energy

lo
g 

pa
rt

ia
l w

ar
p 

va
ria

nc
e

2 4 6 8

−
12

−
10

−
8

−
6

 

 
 

 
  

 

 
  

 

 

 

 

 

1

2
3

4
5 6

7

8
9 10

11

12

13

14

15

for 127 mosquito wings
(courtesy Jim Rohlf)

Fig. 7 Rohlf’s mixed model for mosquito wings. (top left) Template

for 18 landmarks of the culicid wing. (Courtesy of Dr. Sonja

Windhager, after Rohlf and Slice (1990), Fig. 7.) (top right)

Procrustes shape coordinate plot for typical forms of 127 species.

(bottom) The BE–PWV plot, log bending energy against log of partial

warp variance (see text)
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manage Oxnard’s distinction in this particular setting. But

suppose we are dealing with a greater range of variability

and at the same time we are not so certain in advance of the

function(s) involved in managing landmark spacing. Then

perhaps we can proceed by a study of the scale of the

extracted features themselves: for function, at large scale;

for evolution, at smaller scales, collectively. The functions

need not be identified with individual relative warps but

only with the subspace of shape space that they span.

(Remember that ‘‘relative warps’’ is the general term for

principal components when they arise in a context for

which diagrams of warping are appropriate.)

Here is an example of that possibility, in an application

to part of the landmark data for the main orders of mam-

mals published by Leslie Marcus, Erika Hingst-Zaher, and

Hassam Zaher in 2000.8 I am told there is fairly general

agreement on the reasonable phylogeny shown in Fig. 8,

which was downloaded from the Timetree of Life

(www.timetree.org) sometime in 2013. The hori-

zontal axis here is scaled by estimated branching date, with

a maximum of 176 Myr. The conventional Procrustes

mean form of these 55 exemplars is as in the lower panel of

the figure. In connection with Fig. 4 I already introduced

you to the pathologies of using a mean form so far from the

poles of a contrast, in that instance, the contrast of Gorilla

with Homo. That analysis was selected from the full

complement of 54 contrasts spanning the 55 13-gons of this

exercise. The Procrustes fits here are not quite the standard

ones, but replaced the rotation step by a maximum-likeli-

hood procedure (Felsenstein and Bookstein 2016); that

detail does not greatly affect the following discussion. The

contrasts were computed with individualized J-matrices, as

recommended in section ‘‘Procrustes Distance, Procrustes

Coordinates’’, and each was scaled by the square-root of

equivalent net divergence time according to Joe Felsen-

stein’s advice in section ‘‘The Comparative Method for

Analysis of Contrasts Across a Phylogeny.’’

Figure 9 compares the two approaches to the construc-

tion of linear combinations suggestive of meaningful

dimensions of variation, computed via principal compo-

nents of the time-normalized Felsenstein contrasts. The

figure shows the first two of these dimensions. The left

column shows the grid for the first of these dimensions, the

center column, for the second; the right column, finally,

scatters the reconstructed scores for the individual taxa. It

is clear that the recentering procedure (adjustment of J in

accordance with a different mean value for every contrast)

makes a considerable difference for the analysis here. The

effect of the aberrant genus Homo on the first dimension, in

particular, is greatly reduced by the recentering, in keeping

with the reduction of its distance to the sister genus Gorilla

already shown in Fig. 4.

Once Homo is deleted from the plots, one of the two

Cartesian dimensions is nearly identical between them. The

direction (0.865, 0.739) of the conventional analysis cor-

relates 0.998 with the direction (1.123, 0.102) of the

recentered analysis. (The extreme forms on both are ele-

phant and giant anteater.) That is the maximal canonical

correlation; the minimum one, 0.898, suggests that much of

the fine detail of the scatterplot has altered. Even at the

coarsest level, notice that that most stable direction has

rotated a full 45� between the analyses: what is approxi-

mately along the first relative warp in the lower row of

Fig. 9 nearly bisects the angle between the axes in the

upper row. Changes like these, consistent with our dis-

cussion of the sensitivity of linear combinations (section

‘‘Linear Combinations’’) to tiny details of the assignment,

render unstable any judgment regarding the relation

between morphology and phylogeny across this shape

range. For instance, while the forms most distant fron

Homo in the two righthand scatters remain the echidna, the

platypus, and the giant anteater, the ordination on relative

warp two is nevertheless remarkably rearranged between

top and bottom rows, corresponding to the major change in

the balance of anterior and posterior features in its for-

mulation. The Homo–Gorilla contrast not only is over-

weighted in the analysis of all 55 taxa but also skews its

extracted dimensions quite severely. (And so this com-

parison also serves as an excellent example of the insta-

bility of zero covariances explored in section ‘‘Rotations,

Especially Their Basis in Covariance Structures’’) When

principal components are as sensitive to algebraic

assumptions as the two pairs shown here, it would be

foolhardy to presume that either set, or indeed any set at

all, is telling the truth.

This has been a discussion of the first pair of relative

warps, but possibly, following Oxnard’s hint, we should be

looking at the other end of their range: the more numerous

warps of lesser, not greater, explained variance. One might

guess that methods based on estimates of morphological

similarity (of which Procrustes analysis is one) are to be

considered reliable and informative only in the absence of

functional features, as those are regulated so differently. If

we are looking for evidence of neutral evolution, which

here would connote a rough proportionality between

patristic distance (total divergence time) and morphologi-

cal distance (as per the Procrustes formula), it must arise as

a linearity in the upper margin of a plot from which the

functional dimensions, the first few relative warps (such as

8 The analysis there included cetacean forms, which I have omitted

from the present analysis because the blowhole has so completely

rearranged the skull. Also, the data set had one missing value, for the

hyena, and so for convenience I have omitted that specimen also.

There remain 55 taxa under consideration. For the present didactic

purpose it is sufficient to attend only to the thirteen midline landmarks

(there were also eleven bilateral pairs).
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 anterior symphysis of mandible

posterior symphysis of mandible

inion sagittal

frontal−parietal sagittal
frontal−nasal sagittal

tip of nasal sagittal

tip of premax sagittal
premax−maxillary sagittal

maxillary−palatine sagittal

post palate
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anterior foramen magnum

posterior foramen magnum

Fig. 8 Structure of the Marcus et al. (2000) data set of skull

landmarks for 55 taxa of mammals. (above) One current phylogeny,

courtesy of Joe Felsenstein. The range of the horizontal axis here is

about 200 million years. (below) Average shape of the midline

13-gons for the 55 representative specimens
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the two in Fig. 9), have been removed—jointly partialled

out beforehand. As we see from the lower center panel of

Fig. 10, this linearity first appears after the removal of four

of these rotated linear combinations. The lines on the plots,

which are lowess estimates (locally smoothed regres-

sions), indicate that linear fits of shape distance on patristic

distance are unlikely to be meaningful, as already noted in

section ‘‘Regression of One Distance Upon Another’’. For

instance, these lines do not seem to pass through (0, 0).

Notice also how the slope of the smooth falls to zero below

100 Myr as successive RW’s are partialled out, meanwhile

maintaining its acceleration over the last quarter of its

range; both features further support Oxnard’s conjecture.

Our example suggests, then, that matches between phy-

logenetics and morphometrics may be artifacts of method-

ological choices deeply buried in the Procrustes algebra and

geometry. The relation between a phylogeny and a scatter of

relative warp scores is far more complex than just project-

ing a phylogeny over a scatterplot or even a series of

scatterplots. A less crassly empirical approach than what is

illustrated in Fig. 10 would replace the simplistic sugges-

tion there, the serial discarding of relative warps, by some

computation drawing on prior biological knowledge of

biological processes, such as the projection of the Pro-

crustes space onto meaningful biomechanical axes prior to

any consideration of covariances (Bookstein 2015c) or

‘‘association with the musculature’’ (Oxnard 1967). It

would be nice to know, in other words, what the functional

interpretation(s) of the space of the second, third, and fourth

of these relative warps could be and thereafter whether it

makes biological sense to stop the winnowing at four

dimensions (three plus the disruptive effect of Homo).
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Fig. 9 Effect of the recentering on findings from the method of

contrasts. Computations are based on time-normalized contrasts from

the phylogeny in Fig. 8. Columns, left to right: relative warps (RW’s)

1 and 2 as thin-plate splines; scatter of scores as reconstructed from

contrasts. Upper row per the conventional method, which uses a

single J-matrix for all the contrasts. Lower row using a different

registration (J-matrix) for each contrast. There is clearly an enormous

difference in the leverage attributed to Homo here
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Discussion: Solutions Yet to Be Envisioned

It would be easy to extend the section ‘‘A-Priori Informa-

tion to Break the Symmetries of GMM’s’’ list of candidates

for GMM symmetry-breaking. Clearly some components

of our prior knowledge base fit the formalisms of GMM

better than others. Growth gradients, for instance, are much

easier to model (e.g., as polynomial trends, see Bookstein

1991, 2015b) than the energetics of an elastic vertebral

column or an equine foot. An appropriate toolkit would be

capable of accepting information in any or all of these

channels once translated into a common morphometric

language.9 The translations will generally consist of

parallelization of parameters so as to permit their

variation across the organism, thereby breaking the

spherical symmetry of the Procrustes method or the

principal component method. Section ‘‘Some Alternative
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Fig. 10 Approaching the neutral model of evolution. Scatters of

locally computed Procrustes distance versus patristic distance for the

full data set (upper left) and then versions omitting the first one, two,

. . ., five relative warps (RW’s) of the contrasts. Patristic distance (on

the horizontal) has been restricted to less than 200 myr. The first

scatterplot to show a linear upper border appears to be the fifth (center

bottom panel), suggesting that there are three dimensions of

functional morphology here that need to be partialled out, and also

the specific derived features of Homo, before we can study anything

important about evolution. cGMM: corrected GMM distance compu-

tation after recentering the J-matrix and (except at upper left)

projecting out some of the relative warps. Lines lowess smooths of

the dependence of the ordinate on the abscissa. Notice that the scales

of the vertical axis differ from frame to frame (Color figure online)

9 But the extensions must be restricted to the quantitative domains

among our neighboring disciplines. There are much weaker forms of

prior knowledge—‘‘modularity,’’ embryonic layers, etc.—that corre-

spond only to qualitative intuitions about homologies in diverse evo-

devo processes. Hypotheses of ‘‘common origin’’ are rarely specific

enough to generate the sort of quantitative regularity claim that would

plausibly be allowed to break a prior geometric symmetry.
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Methods’’ reinterpreted a range of current tools from this

common perspective, and section ‘‘A-Priori Information

to Break the Symmetries of GMM’’ speculated on a

variety of tools not yet announced that will accommo-

date even more of this perfectly unremarkable, intu-

itively accessible prior knowledge: not constraints on the

morphometrics, but an adaptive radiation corresponding

to better matches between the algebra or geometry that

drives our statistics and the actual biological questions

being asked in particular organismal settings. This

closing discussion pursues a variety of more general

issues associated with all these developments and

suggestions.

What Not to Do

Our examples in Sections ‘‘Some Alternative Methods’’, ‘‘A-

Priori Information to Break the Symmetries of GMM’’ and

‘‘Two Evolutionary Examples’’ have in common the

avoidance of several widely encountered bad habits. Owing

to these virtues, and in spite of the occasionally esoteric (or at

least unfamiliar) mathematical notions sometimes entailed

in understanding them, they deserve broader exposure in any

context where prior biological knowledge may be presumed

to dominate the abstract, tacit symmetry assumptions of the

standard multivariate methods. Such a sea-change in our

peer-reviewed publications would be good news; likewise in

our biology graduate training programs.

In Good GMM, Science Is Never Subordinated to Statistics

In all the examples above, the biometrical a-priori com-

pletely dominates the logic of the symmetries that incor-

porate our mathematical inertia. Put another way, the

standard multivariate statistical models do not suit any

biological ‘‘FAQ page.’’ The disorder of representative

sampling is highly atypical of scientific ignorance; likewise

the disorder of gas molecules, in their Gaussian memory-

lessness, is entirely incommensurate with actual biological

systems, which (cf. Elsasser 1975) are characterized mainly

by ‘‘nonstructural memory.’’ Instead we need more new

techniques that bring the geometry of landmark spacing

(Bookstein 2015b), biomechanics (Bookstein 2015c), bio-

engineering (Bookstein 2013a), or biophysics (Cook et al.

2011) into the discussion. Hardly any part of organismal

biology resembles the random sampling on which Fisher

and his disciples based their sampling theories.

In Good GMM, Statistical Null Hypotheses Play No

Logical Role

This is a longstanding critical theme of statistical praxis

ever since the 1930s. Properly understood, GMM is not

conducive to any spirit of ‘‘null-hypothesis testing.’’ Its

goal is exploratory: pattern description, not decision. Per-

mutation tests do not conduce to excellence in organismal

biology, mainly because the corresponding distributions

are never encountered as descriptions of processes at the

level of the organism. Life isn’t organized as a set of

modest perturbations of equilibrium; it is dissipative and

far from equilbrium. The features of organisms are corre-

lated at every spatial and temporal scale we have ever

examined. The geometric morphometric task is the esti-

mation of path coefficients, not the pretense of yes-no

answers.

In Good GMM, The Classic Multivariate Symmetries Are

Broken Whenever It Is Appropriate to Break Them

Issues of sample exchangeability aside, we have seen that

the symmetries of classic multivariate analysis (rotations,

sums of squares) hardly ever make biological sense in

morphometric applications. As E. T. Jaynes explained

(Jaynes and Bretthorst 2003), these symmetries, like the

postulate of Gaussian distributions in the first place, are at

root expressions of our prior ignorance about the content of

the scientific pattern(s) we are investigating: ignorance that

is, in most contexts, a hard-won property of the standard-

ization of instruments and experimental designs by which

we approach the topic. In biology, we cannot experiment

this way. No matter how balanced an ANOVA design, for

instance, we cannot induce noncorrelation among the

component pathways of any developmental process. In

Jaynes’s metaphor, we are never ignorant enough in GMM

applications to permit the luxury of recourse to these

maximally symmetric hypotheses. Variation of landmark

locations is not remotely the same, philosophically speak-

ing, as ‘‘noise’’ in some engineering context. Rather, every

landmark location is itself accommodating some optimum

over a range of possible morphogenetic processes, pro-

cesses whose constraints are among the a-priori dimensions

that this paper is arguing should replace those nugatory

original symmetry assumptions.

What to Do Instead

In place of these classic models of ignorance, GMM may

sustain other models much more attuned to the ways in

which we actually report the patterns it uncovers. I am

particularly enthusiastic nowadays about the toolkit of

deflated Procrustes distance sketched in section ‘‘Deflated

Procrustes Analysis’’, exemplified in section ‘‘Extending

the New Morphometric Models of Disorder to a Multiscale

Regime: An Example from Entomology’’, and exposited

further in Bookstein (2015a, b). The model of self-similar

descriptions there corresponds perfectly, in my opinion, to
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the nature of the morphometrician’s prior spatial knowl-

edge before any pattern constraints like those in section

‘‘A-Priori Information to Break the Symmetries of GMM’’

have been applied. At that stage, the statistician has no

information whatever about the location, orientation, or

scale of the phenomena she is likely to uncover. She is

thereby put into the same state of professional unbiased-

ness as the classic systematist, who looks for keys to

classifications under just those same circumstances: a

‘‘systematic character’’ can be any discriminant feature,

from behavior through net body size through (to take just

one example) details of the genitalia (and perhaps much

further down the descriptive tree to the level of individual

amino acids in a polypeptide’s primary structure). In the

future, when principal component analyses appear they

should be in the mode that respects this prior ignorance, not

the ignorance of ‘‘rotations of linear combinations,’’ which

is so deeply confounded with the locations and spacing of

the landmarks in the mean form.

The concern is the representation of GMM information

content not in isolation but as it articulates with all of the

other modes of information by which we understand bio-

logical form, function, and evolution. Our task as biolog-

ical scientists remains Socrates’s task as set down in

Plato’s dialogue Phaedrus: to ‘‘cut Nature at the joints.’’

We know a lot about these joints prior to launching on any

particular study (see, for instance, Bookstein 2015d),

otherwise we would not have managed to argue success-

fully for the funding to carry out the study. As Herbert

Simon argued in a posthumous publication (Simon 2005),

Nature (or at least the part of Nature studied in the natural

sciences) tends to be organized hierarchically in ‘‘nearly

decomposable’’ systems and subsystems. For organismal

biology, those are organs and the joints between them. The

version of this advice that is most appropriate for GMM

study designs would be the adviso to measure either inside

a component or explicitly across a joint, rather than trying

to combine these two purposes.

What appears to be missing from the disciplines

bounding GMM is, in many domains, a rhetoric for their

language of decomposable subsystems that can be trans-

lated into the morphometric context. In setting up the

appropriate sampling frame for studies like these, it would

be appropriate to learn from the concept of ‘‘ranges of

normal’’ as reflected in our understanding of human anat-

omy, for example. But few anatomy atlases actually devote

any space to exploring that ‘‘range of normal,’’ the actual

manner in which quantitative variation is distinguished

from qualitative typologies. [For splendid exceptions, see

Anson (1950/1963), or Keats and Anderson (2001). In

contrast, Cornelius Rosse’s otherwise superb ‘‘foundational

model of anatomy’’ offers no representations at all of

variation: see Rosse and Mejino (2003).] The analogous

question within GMM itself is the issue of the limits of the

deformation model. Oxnard and O’Higgins (2009) have a

thoughtful overview of the topic as it pertains to the tendon

sheaths of the anthropoid cranium, and many of the current

approaches to image analysis of human brains involve

experiments in the interplay of continuous versus discrete

descriptors of brain form: cortical sulci and gyri, for

instance, versus their flattening into a convex prototype, or

the analysis of spatial fields by their pixel-by-pixel values

versus the decomposition of the same images into

‘‘watersheds.’’

One example of the corresponding methodology falls

under the heading of the Ontology of Physics in Biology

(OPB) published by Dan Cook and colleagues a few years

ago (Cook et al. 2011, 2013). Cook systematically sur-

veyed the domain of biophysics for the terms that appeared

to function in common across examples—terms like mass,

energy, action, flux, force—and has built a corresponding

computer-accessible glossary that makes sense, for

instance, of the differences between fields and their inte-

grals, or boundaries and the flows across them. Originally

funded to systematize the literature of cardiovascular

physiology, the OPB’s terminology is intended to form the

underlay for a systematic extension of notions of spatial

occupancy from morphometrics (in the broad sense) over

into all of the biological sciences that involve studies of

energy and its transformations. Simon’s principles are

certainly honored as well in the division of the underlying

anatomy into its component parts. For the circulatory

system, these would be (the Latin equivalents of) the heart

and its chambers, valves, individual blood vessels, and,

most important, the flowing blood that occupies all of the

spaces within these compartments and bears the oxygen

and glucose that embody the difference between life and

death. Remarkably enough, the OPB has no role for land-

marks in its semantics. It is worth pondering that discrete

points do not appear to be of much use for specifying the

nature of biological control of physiological systems.

At a much smaller spatial scale, computational settings

that would otherwise involve the GMM of components of

molecules, for instance, are governed not by Procrustes

distance but by explicit formulas that calibrate the real

configurational energy of particular molecular configura-

tions, energies that likely control the corresponding

Brownian motions. See, for instance, Theobald and Wuttke

(2008) or Hamelryck et al. (2015). Theobald has publi-

cized a computational framework, the Theseus software

package, for analyses quite unrelated to the Procrustes

versions of shape coordinates of atom positions in proteins.

Considerations like these evoke the more salient ques-

tion as to whether the GMM focus on anatomical land-

marks has much to offer biology beyond its historical role

in systematics in general and such fields as anthropometrics

304 Evol Biol (2016) 43:277–313

123



and animal husbandry in particular. We can agree that

landmarks are often helpful in systematics and in classifi-

cation in biology and in medicine [for one unusual domain

of application, see Bookstein and Kowell (2010)], but

otherwise, when do landmarks make sense in evo-devo

biology, or functional biology? One way of calling the

question in this domain is to ask when, if ever, landmark

locations are the correct formalism for describing effects

on form or effects of form. The current trend in medical

image analysis, for instance, goes in a somewhat different

direction: recourse to coarsely registered eigenimages for

solids, for instance [see, e.g., the technique of ‘‘voxel-based

morphometry,’’ VBM, which I have considered vis-à-vis

GMM in Bookstein (2001)], or the exploitation of networks

of characteristic gray-scale features for surface images like

faces (Taigman et al. 2014).

In contrast, the Icelandic-Canadian geneticist Benedikt

Hallgrimsson has shown us several pretty examples of the

relevance of landmark-based GMM to studies of knockout

models for human birth defects. Such work may well

ultimately be considered a locus classicus of the use of

landmark data as dependent variables in studies designed to

assess the information in landmarks as calibrations of

effects. In Hallgrimsson’s work [see, for instance, Hall-

grimsson et al. (2009)], landmarks serve as hints about

genetic effects on potentially measureable extents (lengths,

volumes) that, in turn, are known to be outside the normal

range in studies of particular human genotypes. In a

compromise of another sort, the current technologies of

endoscopy reduce tubular structures (bronchi, intestines) to

their cylindrical coordinate systems, as already mentioned

in section ‘‘Tissue and Image Textures’’. We can thus keep

track of one spatial coordinate, the distance we have come,

without being able to embed it in any sort of more extended

3D system.

A final suggestion along these lines would have us

change our focus from the subject of random variables to

the broader topic of random matrices. There we find an

important model of ‘‘total disorder’’ that is quite different

from the kind of pattern our current covariance-based tools

detect effectively. Imagine a matrix of specimen-by-spec-

imen distances (dissimilarities) that, beyond any low-rank

pattern of determination by factors, incorporates indepen-

dent, identically distributed additive random noise in every

symmetrically placed pair of off-diagonal cells. This

model, which is quite realistic in certain applications in the

physical sciences, can be detected with the aid of a his-

togram of the eigenvalues of the corresponding eigenvec-

tors. According to the celebrated Wigner Semicircle

Theorem, that histogram should take the specific form of a

simple semicircle in all regions of the spectrum distinct

from the fixed effects of those factors. Protocols for the

detection of such disorder would lead to insights into the

fine structure of morphometric variations at least as

important as the protocols for reviewing the large-scale

patterns that are the domain of today’s thin-plate-spline

toolkit.

In my view the lack of speculation on these and related

matters—the limits of the landmark formalism and thereby

the pattern analyses it sustains—is one of the main lacunas

accounting for the relatively low profile of geometric

morphometrics across the biological sciences today in

comparison to the only slightly older techniques of com-

parisons among group averages that continue to dominate

the journals in most application domains. Many of us have

been struck, for instance, by the relative nonpenetration of

GMM into such eukaryotic kingdoms as botany or protis-

tics. I may have persuaded you, or at least opened your

mind to the possibility, that this is our own fault—that

Procrustes distance is not a particularly realistic formula

for most investigations into organismal biology: it is just

too symmetrical. The deeper issue is whether the notion of

a ‘‘landmark point’’ still makes sense here in the twenty-

first century the way it did for Rudolf Martin a century ago

(Martin 1914, pp. 504–518), or if it needs to be subordi-

nated to the more lasting components of organismal

quantifications that have strict analogues in the biophysical

sciences. Procrustes distance would then be reserved for

the more cognitively dominated parts of biology, those that

involve perception on the part of animals or systematists.

For now, here in the early twenty-first century, we need to

leave this question open.

Parting Thoughts

Phrased in its most general terms, the problem with which

this essay has been grappling is the mismatch between the

scientific styles of the twentieth century and the informa-

tion-processing styles of the 21st. Today’s standard GMM

techniques inadvertently pursue a devolution of quantita-

tive biology to correlation and regression indistinguishable

in spirit from what Fisher and Pearson were trying to do a

century ago. In this mimesis, however, we appear to be

sacrificing too much of the actual information content of

organisms as it is being revealed in steadily more and more

detail by the more advanced instruments of the twenty-first

century. The problem is the statisticians’ as much as the

biologists’. Statistics students are not taught the first half of

the steps in a quantitative scientific investigation, which

concern the careful design of instruments and the nature of

the measurements they generate. For an earlier meditation

on this topic see Bookstein (2014), Section 8.3.

Yes, correlation is not causation, and no, while Big Data

have arrived in many fields, Big Insights have not (Harford

December 2014). Nevertheless, looking backward half a

century from a future decade, say in 2035, GMM may have
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come to be viewed as a very early attempt to generate a Big

Data workflow for quantitative biology in the smallest

(meaning, most regulated) possible compass. Yet it seems

to have the same problems as every other domain of Big

Data. GMM sometimes would seem to be answering

questions, but is quite incompetent at asking them; and

while its data can submit to pattern engines, GMM is ter-

rible at drawing intelligent distinctions among the resulting

claims as regards their generalizability or their consilience

over alternate modes of measurement.

Today’s most serious challenge to GMM is thus the

requirement that it sharpen its rhetoric of answers, and

likewise its rhetoric of questions, by incorporating as many

as possible of the broken symmetries reviewed here: that is

to say, the prior information afforded by the embedding of

GMM within the toolkit of the quantitative biosciences

sensu lato. As you have seen, there are techniques already

in place for this purpose, some that are modifications of

previously ‘‘standard’’ GMM and others that modify

techniques useful in other quantitative fields. But we don’t

know yet how to use them for the generation of reliable

knowledge about organismal form. The challenge that

GMM poses to multivariate analysis, in short, is the

problem of knowledge transfer between whole scientific

domains. Is the framework of matrices, linear combina-

tions, and Euclidean rotations adequate for this task, or do

we need a far more advanced ontology for this purpose? I

will be eager to revisit this essay 10 or 15 years from now,

in order to survey the innovations that, I trust, will have

responded to its criticisms and requisites.
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Appendix 1: Example of A Symmetry Critique:
The RV Formula

As an example of the type of critique that section ‘‘Rota-

tions, Especially Their Basis in Covariance Structures’’

recommends be routinely applied to morphometric com-

putational protocols, consider the formula for the RV

statistic of Escoufier (Robert and Escoufier 1976), which is

often touted (foolishly, in my judgment) as a tool for use in

studies of ‘‘integration’’ or ‘‘modularity.’’ If X and Y are two

blocks of measurements, say, X, n� p; and Y, n� q; on the

same n cases, then the quantity under consideration is

RVðX; YÞ 	 RiRjs
2
XiYj

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
RiRjs

2
XiXj

��
RiRjs

2
YiYj

�q

where SXX ¼ ðsXiXj
Þ is the p� p covariance matrix of the

X’s, SYY is the same for the Y’s, and SXY ¼ ðsXiYjÞ is the

p� q covariance matrix of the X’s by the Y’s. The letters

RV stand for ‘‘R vectorielle,’’ meaning that this analogue of

the familiar correlation coefficient seemed to Escoufier

(1973) to be more reasonable than standard correlation-

based methods for vector contexts (of which GMM is one).

Some useful identities from the multivariate textbooks

(e.g., Mardia et al. 1979) apply here. For any matrices A,

n� p; and B, p� n; we have

trðABÞ ¼ trðBAÞ ¼ RiRjAijBji;

where ‘‘tr’’ is the trace operator, sum of the diagonal

elements of a square matrix.

Then, using the notation 0 to refer to the transpose of a

matrix,

trðAA0Þ ¼ trðA0AÞ ¼ RiRjA
2
ij;

trðRAR0Þ ¼ trðAR0RÞ ¼ trðAÞ

for A square and R a rotation, and thus

RiRjs
2
XiXj

¼ trðS2
XXÞ ¼ trðRDR0RDR0Þ ¼ trðDDÞ ¼ Rid

2
i

for SXX ¼ RDR0; D ¼ R0SXXR diagonal, di ¼ r2
PCi

. Also,

trððR1AR2ÞðR1AR2Þ0Þ ¼ trðR1AAR
0
1Þ ¼ trðAA0Þ;

for any two rotation matrices R1;R2; and thus if we write S

in the form of its singular-value decomposition S ¼ UDV 0;
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U orthonormal p� p; V orthonormal q� q; and D diagonal

with nonzero entries di, a vector of length min(p, q), then

we have

RiRjs
2
XiYj

¼ trðSXYSYXÞ ¼ trðUDV 0VDU0Þ ¼ trðUDDU0Þ
¼ trðDDÞ ¼ Rid

2
i

in this setting as well. Here each entry di of the diagonal

matrix D is the covariance of XU:i and YV:i; the linear

combinations of the X-variables and the Y-variables with

coefficients given by the ith columns of U and V, respec-

tively. So the numerator RRs2
XiYj

of RV, considered on its

own, is the sum of the squares of the latent variable

covariances di from the usual two-block Partial Least

Squares analysis. Of course the usual PLS procedure

involves the inspection of the singular vectors individually,

not of their singular values squared and summed.

There is no geometrical constraint relating the X’s and

the Y’s, so we can diagonalize each set separately. With

this pair of basis choices, the traces trðS2
XXÞ and trðS2

YYÞ that

are multiplied to give the square of the denominator of RV

become the sums of squares of the corresponding principal

component variances (summed squared eigenvalues—sums

of fourth powers of their standard deviations), while the

numerator of RV becomes the sum of squares of all pq

crossproducts of each principal component score of the X’s

by each principal component score of the Y’s.

Several features of this formula are already apparent.

1. That the analysis is rotatable is a bug, not a feature. No

matter what information we might have about con-

straints on rotations of the measurements within the X-

block or the Y-block—the direction of gravity, for

example, or the presence of a growth-gradient from

anteromedial to posterolateral—it cannot be accom-

modated as an influence on the computation.

2. The analysis does not produce any pattern descriptors

of the original scores. We cannot inspect a rank-one

approximation of X0Y to see if its left and right singular

vectors (columns of U and V in the PLS formulation)

correspond to any sensible weighting schemes for the

variables composing the blocks separately.

3. Sums of squared covariances are intuitively inacces-

sible, and likewise sums of fourth powers of standard

deviations (of the principal components). The sum of

the squared variances and covariances of the X’s or the

Y’s has, in general, no familiar statistical setting;

likewise the sum of the squares of all their crossco-

variances. We know how to compare independently

observed variances, by F-test, and we know how to

deal with principal component variances, by recourse

to the corresponding distribution of full covariance

matrices (the Wishart distribution, see, e.g., Jolliffe

2002, Chapter 3); but what on earth are we supposed to

do with sums of squares of their variances?

These quantities are likewise biologically inaccessible.

What kind of numerical property of a sample of

specimens is RRs2
XiYj

? Are its changes a meaningful

descriptor of the action of any factor of form? selective

gradient? genetic basis? Analogously, what is the

meaning of RiðrPCi
Þ4

? How would we compare two of

these values, as, for instance, for a wild type and a

laboratory knockout strain? Comparisons of principal

components require attention to the directions of those

components, not just their variances; how can we make

any sense of a quantity that completely ignores this

directionality?

Some tentative answers to these questions can be pur-

sued in the 2 � 2 setting—two blocks of two variables

each—by treating the data analysis question as a morpho-

metric one in its own vector space. Indeed the geometry of

the analysis, Fig. 11, can be diagrammed as a peculiar

variant of a classic morphometric layout, the analysis of a

single shape change tensor. Draw two ellipses with axes

horizontal and vertical, their axes standing for the principal

components of the X-block and the Y-block with semi-axis

lengths set to the standard deviations of those components.

For each one, draw the line (dotted in the figure) that is the

vector sum of the two semi-axes—that is, the diagonal of

the rectangle in which that ellipse would be inscribed.

Then, in a maneuver that is bizarre by any conventional

multivariate logic, scale each hyperellipse by the careful

inscription of its semi-axis diagonal in the curve x4 þ y4 ¼
1 (a curve that is sometimes called a hyperellipse) in the

manner shown in the figure. Write the scaling factors as

zX; zY :

The matrix SXY is, after the rotation and scaling to these

axes, a 2 � 2 matrix of covariances zXzYsPCXiPCYj
. It can be

imagined as composed of two rows, each of which can be

drawn as a vector out of (0, 0) in the plane of the Y-ellipse,

or, equivalently, two columns, each of which can be drawn

as a vector on the X-ellipse. With this scaling (which I have

already argued makes no biological sense) the RV coeffi-

cient is just the sum of the squared lengths of either set of

vectors.

This expression is geometrically unfamiliar, and puz-

zling. If those little vectors were orthogonal, then RV

would equal the squared length of the hypotenuse of the

right triangle they generated; but usually they are not

orthogonal, so that interpretation is blocked. And if the

ellipses were circles, then each vector would stand for the

multiple regression of its principal component on the axes

of the other system, and its length would be proportional to

the R2 of the corresponding multiple regression, up to a
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scaling; but the ellipses are not circles (in general—in the

figure, the right-hand one happens to be one), so that

interpretation is blocked. The RV coefficient apparently

ignores the angle between those vectors—this seems an

unreasonable loss of information, even though either of the

vectors can be reflected in either of the axes without change

of meaning (since principal components ‘‘point both

ways’’)—and also ignores any variation in length of the

vectors whose squared lengths are being summed. Cross-

covariance matrices zXzYsPCXiPCYj
that evaluate to

:7071 0

0 0

� �
,

:5 0

0 :5

� �
, and

:3 :4
:3 :4

� �
between a pair

of trace-normalized 2 � 2 blocks all generate the same

value 0.5 for the RV, an equivalence that seems quite

misleading inasmuch as the corresponding morphometric

reports would be wholly divergent in every other aspect of

a description. (For instance, the first and third of these can

be reduced to one single pair of crosscorrelated dimen-

sions, but the second example requires two such pairs to be

explained.)

The visualization in the general case, p dimensions

against q, is a straightforward conceptual generalization of

this same diagram. We rotate each block to its own prin-

cipal axes and ‘‘draw’’ its covariance structure via a

hyperellipsoid scaled so that its semi-axis diagonal falls

upon the surface Rx4
j ¼ 1 (a hyperquadric). With this

scaling, the RV coefficient equals the sum of squared

lengths of all of the vectors expressing either the rows (on

the left hyperellipsoid) or the columns (on the right

hyperellipsoid) of the original crosscovariance matrix of

the PC’s of the X-block by those of the Y-block. The angles

among these vectors are simply ignored, as is any variation

among their lengths. In an application where the X-block,

for example, consists of shape coordinate data, there is no

distinction available regarding which components of the

vectors on the right correspond to x-coordinates and which

to y-coordinates, or regarding how the lengths and orien-

tations of the vectors on the left assort with respect to the

positions and adjacencies of the corresponding landmarks

upon the form. Interpretation of the analysis will be even

more difficult when both blocks consist of shape coordi-

nates. Closely spaced landmarks are usually correlated for

biological reasons, but we cannot tell the extent to

which the pattern of crosscovariances conforms to this

aspect of their covariances structures separately or instead

cuts across them. And surely it matters if a pattern of

crosscovariances, when expressed in the bases of the

blocks’ own principal components separately, is more

like

d1 0 0 0

0 d2 0 0

0 0 d3 0

0 0 0 d4

0

BB@

1

CCA or like

0 0 0 d1

0 0 d2 0

0 d3 0 0

d4 0 0 0

0

BB@

1

CCA

—whether the vectors in our analysis tend to be longer in

the direction of the hyperellipses’ long axes or not. But the

RV coefficient is oblivious to such considerations.

In other words, the RV ratio makes no sense in terms of

any reasonable biological interpretations of these axes,

ellipses, or covariances. The actual value of the RV
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Fig. 11 Geometry of the RV coefficient for two blocks of two

measures each. The rounded square in each frame is the curve x4 þ
y4 ¼ 1 that normalizes the trace of the square of either 2 � 2

covariance matrix. Each ellipse is aligned with its axes horizontal and

vertical and the end of the shorter axis running through the center

(0, 0) of the quartic curve. Then each is scaled so that its

‘‘diagonal’’—the vector from the end of one axis to the end of the

other—lies upon the quartic. With this joint scaling, the RV

coefficient is the sum of the squared lengths of the heavy vectors

out of (0, 0) in either figure: the vectors representing either the rows

(left) or the columns (right) of the normalized covariance matrix

zXzYsPCXiPCYj
. The text argues that this computation is without

biological meaning
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coefficient is not itself the answer to any reasonable bio-

logical question. (You have probably guessed that already

from the weird form of that superquadric in the figure,

which is quite different from the ellipses we are accus-

tomed to exploit in linear multivariate analysis.) The RV’s

single role (in the eyes of those who consider it to merit

any role at all) seems merely to be significance testing.

This, however, as I have commented at length elsewhere

[see Bookstein (2014), Section 4.3.4] is not any sort of a

finding but only a formulaic answer to the question of

‘‘whether we may publish the claim of an association’’

between the X- and Y-blocks of variables, i.e. whether, in

the usual bureaucratic idiom, ‘‘further investigation is

indicated.’’ But that decision, like every other instance of

significance-testing in biology, is merely an aspect of the

sociology of the academy, having nothing to do with proper

modes of scientific inference at all.10

Thus even though the scheme of two blocks of vari-

ables, each one rotated separately to a basis of its own

principal components, is sometimes intuitively accessible,

the formula for the RV coefficient itself is not. From a

detailed examination of the geometry corresponding to

the formula it can be seen that the computed RV does not

answer any natural query about the explanations that

might be associated with the two lists of variables it is

describing. It should be obvious by now that the RV for-

mula should not be used in connection with landmark

data, and particularly not if the data include any semi-

landmarks, because the arbitrary spacing of those points

will render all of the preceding concerns even more

intractable. The RV coefficient thus supplies a nearly

perfect example of the fallacy of inappropriate symme-

tries with which this article is concerned.

Appendix 2: Diagrams for the Covariances of Shape

Coordinates

It is not only the caustic critiques, like the preceding

Appendix about the RV coefficient, that should explicate

formulas by way of their geometry. It would be good to

have such translations for supportive didactic texts as well.

This Appendix provides a graphical table of geometrical

equivalents for the common currency of the text’s geo-

metric morphometric models, the covariance structure of a

set of shape coordinates. The development can be followed

in the panels of Fig. 12.

You probably first encountered the idea of a covariance

via its role as the numerator of the standard formula for the

regression coefficient. If the line y ¼ axþ b is to serve as

the least-squares fit to a scatter of data points ðxi; yiÞ; then

the slope a must be equal to the ratio of the covariance of x

and y to the variance of x: the formula

a ¼
Pn

i¼1ðxi � xÞðyi � yÞ=n
Pn

i¼1ðxi � xÞ2=n
	 covðx; yÞ

varðxÞ :

It was Fisher who named this numerator the covariance of

x and y by analogy with the already-standardized name,

variance, for its denominator, the selfsame formula when

x and y are set to the same vector of measured values.

For the purpose of the graphics to follow it is helpful to

write down two elementary identities dealing with this

product-moment:

 +var()/2

 −var()/2

 +var()/2

 −var()/2
(x ,y )i   i

(x  ,y  )1   1

 −var()/2  

 +var()/2  
(x  ,y  )1   2 (x  ,y  )2   2(x  ,y  )2   2(x  ,y  )2   2(x  ,y  )2   2

(a)                (b)

(c)                             (d)

(e)

 −var()/2
 +4var()/2

 −var()/2
(x  ,y  )1   1

(x  ,y  )2   2

 −var()/2
 +4var()/2

 −var()/2

Fig. 12 The diverse geometries of shape coordinate covariances. a
The usual definition: cov(x, y) is the average of the signed areas of the

rectangles drawn. (Areas of rectangles drawn in dashed line are taken

with a minus sign.) Every rectangle includes the centroid of all the

points (x, y) as its fourth corner. b Equivalent characterization as half

the difference of two variances, that along the (1, 1) diagonal of the

scatter grid and that along the ð�1; 1Þ diagonal. Rotating the

coordinate system of this diagram by 90� reverses the sign of the

covariance. c For the two shape coordinates of a single landmark

point the scheme in panel (b) is adequate. d The covariance of any x-

coordinate with any y-coordinate reduces to the geometry of a new,

fictitious composite landmark, open circle, that combines the chosen

x-coordinate with the chosen y. e The covariance of two x-shape

coordinates (left) is an entirely different matter that begins with the

other covariance identity, the excess of the variance of an average of

two quantities (open circle) over half the sum of their variances

separately. Rotating the coordinate system of this construction by 90�

does not change the sign of anything, but results in an entirely

different construction (right), the covariance of the corresponding pair

of y-shape coordinates

10 Furthermore, whenever sample size is large enough—if it exceeds

2ðpþ qÞ2
, for instance, which is about four times the number of

parameters we could possibly estimate—the significance test for the

hypothesis SXY ¼ 0 that is based on the RV coefficient is the wrong

significance test. See Mardia et al. (1979), Section 5.3.2b: the

appropriate likelihood-ratio test is based on determinants, not traces.
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covðx; yÞ ¼ varððxþ yÞ=2Þ � varððx� yÞ=2Þ;

and

covðx; yÞ ¼ 1

2

�
varðxþ yÞ � varðxÞ � varðyÞ

�
:

Panel (a) in Fig. 12 illustrates our initial definition of the

covariance—the average value of the crossproduct ðx�
xÞðy� yÞ is, after all, identically equal to the average

(signed) area of the rectangles shown. As noted in the main

text, in the general case this already raises certain issues of

biological meaning. Does it make any sense to imagine a

unit of ‘‘area’’ for the general product of two measure-

ments, for instance, blood pressure by net litter weight? But

in the applications to geometric morphometrics with which

this paper is concerned, the variables whose covariances

are under inspection are shape coordinates that are tech-

nically dimensionless (cm/cm), and so the issue of the

composite unit describing products like these is seemingly

circumvented.

Under a slightly more general assumption—units of x

and y identical, if not necessarily dimensionless—the

definition of the covariance can be rearranged into the

form shown in panel (b), half the difference of variances

of the main diagonals of the scatter grid. We know that

covariance reverses when the sign of either variable

reverses: covðx;�yÞ = -cov(x, y). But also, since

cov(x, y) is the same as cov(y, x), we can achieve the

same effect by just rotating the coordinate system of the

figure here by 90�: (The role of those two diagonals

reverses, so they swap signs in the formula.) It follows

from elementary calculus that there must be at least one

intermediate orientation of the coordinate system (the

alignment with their own pair of principal axes) for which

this covariance between the two shape coordinates of a

single pair is exactly zero. Rotations notwithstanding, the

construction here explicates one of the three main types of

shape coordinate covariance, the covariance between the

two shape coordinates of a single landmark, as notated in

panel (c).

But there are two other types of shape coordinate

covariance, those between the x-shape coordinate of one

landmark and the y-shape coordinate of another, panel (d),

and those between two x-shape coordinates or two y-shape

coordinates, panel (e). The construction for the mixed (x, y)

case is not so different from that for the two shape coor-

dinates of one single landmark. In the figure, the landmarks

at which the two coordinates in question originated are

marked with a small solid dot, and the (x, y) combination

of interest is taken as a proper pair of coordinates of one

single new point, the one marked at the big open disk,

which simply pairs the x-shape coordinate of the first

landmark with the y-shape coordinate of the second. This is

order-dependent: the value of covðx1; y2Þ, shown, is not

necessarily the same as the value of covðx2; y1Þ, the other

pairing.

The situation is entirely different for the third case, the

covariance of a pair of parallel shape coordinates (two x’s

or two y’s). Panel (e) diagrams this by exploiting the other

covariance identity, the one about midpoints. The covari-

ance we seek is half of the weighted sum of three different

parallel directional variances: four times the variance of an

average (the open disk), minus the sum of the variances of

the contributing coordinates separately (the two small solid

dots).

From the contrast between panel (d) and panel (e) we

learn something important about the multivariate statistics

of shape coordinates in the large. In panel (d), the covari-

ance of interest is the difference of two directional vari-

ances. The kind of shape transformation that would make

this value particularly large and positive, and hence a major

contributor to some summary pattern description of the

covariance structure of the shape coordinate scheme as a

whole, would be one that increases the variance along the

diagonal with the positive coefficient: increasing x1; say,

while simultaneously increasing y2: Such a factor evidently

involves effects in two directions at 90� at the two land-

marks. But for landmarks positioned as in panel (d), the

combination of an increment in x1 with an increment in y2

actually serves to shorten the separation vector between

them. It seems an odd sort of morphogenetic factor that

would move two distant landmarks in perpendicular

directions, increasing their distances from other landmarks

while at the same time shortening the specific distance

between them. In comparison, consider the sort of factor

that would result in an increase of the covariance

covðx1; x2Þ; panel (e). To move these landmarks in parallel

is not necessarily to shorten any other distances. So this is a

likelier sort of factor to turn up in a morphogenetic toolkit.

Any process that moves the two landmarks in parallel will

increase the variances of each of the three points in the

diagram to the same extent, and so will increase this par-

ticular weighted sum by the multiple ð4 � 1 � 1Þ=2 ¼ 1 of

that same additional variance.

Of these two ways of generating covariance between

shape coordinates, the origin in parallel coordinates (x with

x or y with y) seems thereby more natural, biologically

speaking, than the origin in disparate coordinates, an x with

a y. Running the inference the other way, parallel shape

coordinates are much likelier to have been strongly and

jointly affected by large-scale form factors than nonparallel

ones: the form factors of largest scale will typically be

found to operate along the long diameters of the underlying

form, and to relatively stretch or shrink them rather than

giving them a relative rotation.
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(By using the notation of advanced calculus this can be

phrased in a somewhat more physical language, the Helm-

holtz decomposition of the vector field mapping the points of

one organism’s image to the points of another’s. Covariances

like covðx1; x2Þ are tuned to the transformations character-

ized by nonzero divergence r � U; where U is some scalar

summary of a pattern of expansion and r is the differential

operator (d/dx, d/dy, d/dz); but the covariances like

covðx1; y2Þ are tuned to transformations of nonzero curlr�
A; where A is a different sort of mathematical creature, a

‘‘vector potential’’ the role of which is to generate terms in

rotation, i.e., spin. Maxwell’s equations (of electrodynam-

ics) notwithstanding, such transformations are much less

commonly encountered in the course of morphogenetic

explanations. Morphogenetically, strain is easier to imagine

generating than torque; morphogenetic processes are much

easier to imagine that displace landmark locations away from

one another than that rotate landmark-to-landmark segments

with respect to one another.)

The specific maneuver that transforms the original

Cartesian coordinates into Procrustes shape coordinates

heightens this contrast between the two families of covari-

ances. If the x1 and x2 in panel (e) happen to lie at opposite

ends of a diameter of the form, then after a Procrustes

superposition the variance of their average is likely to be

nearly zero, so the covariance of the two coordinates will

approximately equal its maximal negative value, leading to

a principal component in the form of a contrast between the

two original coordinates, i.e., an estimated (relative) length

of the diameter they span. It is exactly this abstract over-

weighting of the largest-scale aspects of shape variation that

the deflation technique of section ‘‘Deflated Procrustes

Analysis’’ was designed to intercept. At the same time, the

rotation step of the Procrustes superposition acts to atten-

uate torques around the centroid like those generating large

values of covariances in panel (d), and thereby to down-

weight one or the other of the directional variances

varðxi � yjÞ in that panel that would otherwise be of com-

mensurate magnitude with terms of the form covðxi; xjÞ or

covðyi; yjÞ, the terms for the strains of largest scale.

The other main component of the current GMM toolkit,

the thin-plate spline, concurs with this emphasis, in that the

basic interpolant is a sum of terms that all have curl zero.

Forcing a spline map to rotate a small region with respect

to its surround requires a complicated finite-element pro-

cess that does not approach a proper infinitesimal form: see

Bookstein and Green (1993). (This is the main reason that

the thin-plate spline is unsuited to the comparison of

articulated linkages, for which relative rotation of parts is

an essential component of actual biomechanical function.)

The organism is, so to speak, unaware of these covari-

ances. The analyses in this Appendix and the panels of its

figure are concerned not with actual organismal biology but

rather with the way that covariances of shape coordinate

structures might represent or misrepresent patterns perti-

nent to that organism. Taken together, they serve as a

premonition that something is not quite right with the way

we typically identify morphogenetic factors with statistical

factors. It is exactly this unpleasant paradox—the unwan-

ted empirical domination of features at large scale in our

conventional GMM analyses—that the method of deflated

Procrustes analysis, section ‘‘Deflated Procrustes Analy-

sis’’, was developed to circumvent.
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