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Previous studies have shown that structural brain 
changes are among the best-studied candidate markers 
for schizophrenia (SZ) along with functional connectiv-
ity (FC) alterations of resting-state (RS) patterns. This 
study aimed to investigate effects of clinical and sociode-
mographic variables on the classification by applying 
multivariate pattern analysis (MVPA) to both gray mat-
ter (GM) volume and FC measures in patients with SZ 
and healthy controls (HC). RS and structural magnetic 
resonance imaging data (sMRI) from 74 HC and 71 SZ 
patients were obtained from a Mind Research Network 
COBRE dataset available via COINS (http://coins.mrn.
org/dx). We used a MVPA framework using support-vec-
tor machines embedded in a repeated, nested cross-vali-
dation to generate a multi-modal diagnostic system and 
evaluate its generalizability. The dependence of neurodi-
agnostic performance on clinical and sociodemographic 
variables was evaluated. The RS classifier showed a 
slightly higher accuracy (70.5%) compared to the struc-
tural classifier (69.7%). The combination of sMRI and 
RS outperformed single MRI modalities classification 
by reaching 75% accuracy. The RS based moderator 
analysis revealed that the neurodiagnostic performance 
was driven by older SZ patients with an earlier illness 
onset and more pronounced negative symptoms. In con-
trast, there was no linear relationship between the clinical 
variables and neuroanatomically derived group member-
ship measures. This study achieved higher accuracy dis-
tinguishing HC from SZ patients by fusing 2 imaging 
modalities. In addition the results of RS based modera-
tor analysis showed that age of patients, as well as their 

age at the illness onset were the most important clinical 
features.
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Introduction

Multivariate pattern recognition methods, such as sup-
port vector machines (SVM)1,2 have recently emerged 
as promising tools for the diagnosis of  schizophrenia 
(SZ) due to their capacity to extract the inter-regional 
dependencies of  distributed brain patterns from high-
dimensional training data and generalize the learned 
discriminative rules to unseen patient cohorts.3–5 
Classification results from the recent studies suggest 
that grey matter (GM) and functional connectivity 
(FC) alterations provide useful discriminative power to 
identify patients with SZ, revealing complex patterns 
of  cortical changes underlying the symptoms of  the 
disorder.6

Extant magnetic resonance imaging (MRI) findings 
heavily support the “brain surrogate” of SZ that is not 
confined to single regions but rather involves distributed 
pattern of brain alterations in both structural4,7 and func-
tional MRI (fMRI) modality.8,9 However, although GM 
changes in prefrontal, striatal, temporal and parietal 
regions, as well as FC deficits in a long- and short-range 
connections between these brain regions are well repli-
cated they are susceptible to the effects of sociodemo-
graphic variables and age in particular.10–12
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In the field of neuroanatomical disease classification it 
has also been shown that clinical factors such as patients’ 
age, age of illness onset and symptoms may affect diag-
nostic accuracy. A recent meta-analysis6 has shown that 
although illness duration itself  did not have a significant 
impact on sensitivity and specificity of the unimodal clas-
sification, older patients and chronic stage of illness were 
significantly associated with higher sensitivity in RS fMRI 
data. These findings might result from more pronounced 
FC alterations in older subjects with SZ as compared with 
first-episode patients. The more pronounced FC altera-
tions have been previously shown in functional studies 
that reported a relationship between altered connectivity 
(topological measurements) and illness duration in SZ.13

However, the majority of these multivariate pattern 
analysis (MVPA) studies used only 1 MRI modality to 
determine the diagnostic membership of study partici-
pants.14 Some of the recent multimodal imaging studies 
investigating neuronal abnormalities in different MRI 
modalities came to a conclusion that multimodal fusion 
is an effective approach to elucidate disease factors that 
are shared across different modalities.15–17

However, more work needs to be done to explore fac-
tors determining the diagnostic performance of MRI-
based biomarkers across the life span. Within this context, 
the first aim of this study was to thoroughly evaluate the 
moderating impact of sociodemographic and clinical vari-
ables on the model generated by MRI-based classifiers.

Previous studies have shown that integration of different 
MRI modalities into multi-modal disease models may pro-
vide superior classification performance compared to each 
of these single data channels alone.16,18–21 The potential 
benefit of combining different MRI modalities lies in the 
increase of the multivariate pattern classification perfor-
mance, as well as a broader insight into the neurobiological 
processes underlying SZ. However, defining the optimal 
way for combining information from different modalities 
is challenging. Overfitting needs to be avoided and the 
fusion process has to lead to disease classifiers that remain 
robust and operational even if 1 data channel is lost.12

We hypothesized that the sociodemographic and clini-
cal moderators heavily determine the applicability of 
multimodal predictive models. Furthermore, we explored 
the hypothesis that longer duration of illness and higher 
level of psychotic symptoms are paralleled by more pro-
nounced GM and FC abnormalities in patients.

Methods

Participants

The study included 74 HC and 71 SZ patients. Imaging 
and phenotypic information was drawn from a Mind 
Research Network Center of Biomedical Research 
Excellence (COBRE), funded by the National Institutes 
of Health. This data is publicly available via the COINS 
data exchange (http://coins.mrn.org/dx).22 Detailed study 

procedures are described at http://cobre.mrn.org/. In 
summary, patients received the diagnosis of SZ by clini-
cal psychiatrists using the Structured Clinical Interview 
for DSM-IV.

Psychopathological symptoms were rated using the 
Positive and Negative Syndrome Scale (PANSS).23 The 
antipsychotic medication at MRI scan was converted to 
chlorpromazine and olanzapine equivalents (table 1).

All subjects were screened and excluded if  they had any 
history of neurological disorder, history of mental retar-
dation, history of severe head trauma with more than 5 
minutes loss of consciousness, history of substance abuse 
or dependence within the last 12 months. Informed con-
sent was obtained from all subjects according to insti-
tutional guidelines required by the Institutional Review 
Board at the University New Mexico (UNM).

Data Acquisition and Preprocessing

All participants were scanned on a 3 Tesla SIEMENS 
TIM scanner with a 12-channel radio-frequency coil at 
the Mind Research Network. All the prepocessing steps 
were performed in the NeuroDiagnostic Applications 
group of the Psychiatric Hospital of the LMU.

Structural Image Acquisition and Preprocessing

Structural images were obtained using a multi-echo 
MPRAGE sequence with the following parameters: time 
of repetition (TR) = 2530, echo time (TE) = (1.64, 3.5, 
5.36, 7.22, 9.08), inversion time (TI) = 900 ms, flip angle 
= 7°, field of view (FOV) 256 × 256 mm, slice thickness 
= 176 mm, matrix size 256 × 256 × 176, voxel size 1 mm × 
1 mm × 1 mm, Pixel band width 650 Hz. Structural MRI 
data were preprocessed using the VBM 8 toolbox (http://
dbm.neuro.uni-jena.de/vbm8/), which was used to seg-
ment the brain into white matter (WM), GM, and cerebral 
spinal fluid (CSF). The VBM8 toolbox extends the uni-
fied segmentation model of SPM824 by the (1) application 
of the Optimized Blockwise Nonlocal-Means Filter to 
increase the signal-to-noise ratio of the data,25 (2) segmen-
tation into GM, WM, and CSF using an adaptive maxi-
mum a posteriori approach26 extended by a partial volume 
estimation model,27,28 and (3) post-processing using a hid-
den Markov Random Field model.29 This preprocessing 
produced modulated and GM segments were then nor-
malized to MNI structural template using the DARTEL 
algorithm30 and re-sampled to 3 mm, isotropic resolution.

Functional Image Acquisition and Preprocessing

Blood oxygenation level dependent (BOLD) images of the 
whole brain using an echo planar imaging (EPI) sequence 
were acquired in 32 axial slices (TR = 2000 ms, TE = 29 ms, 
flip angle =75°, FOV  =  24 cm, 3.5 mm thickness and 
1.05 mm gap, matrix size= 64 × 64, voxel size 3.75 mm 
× 3.75 mm × 4.55 mm) using the intercommissural line 

http://coins.mrn.org/dx
http://cobre.mrn.org/ 
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(AC-PC) as a reference. RS scans resulted in 304 seconds 
duration (152 volumes) and subjects were instructed to 
keep their eyes open during the scan and stare passively 
at a foveally presented fixation cross, as this is suggested 
to facilitate network delineation compared to eyes-closed 
conditions and helps to ensure that subjects are awake.

Functional RS data were processed as follows: First, 
after discarding the first 10 images (magnetization equi-
librium not reached) and 2 dummy scans, the remain-
ing 140 images were unwarped and realigned to the 
first volume for head-motion correction. Secondly, the 
time course of  head motions was obtained by estimat-
ing the translations in each direction and the rotations 
in angular motion about each axis for each volume 
using SPM8, (http://www.fil.ion.ucl.ac.uk/spm). The 
unwarped and realigned images underwent background 
filtering and exclusive masking of  the cerebellum to 
account for the low signal to noise ratio in this brain 
region. Subsequently, temporal band-pass filtering 
(0.01–0.08 Hz) was performed to reduce the effects of 
low-frequency drift and high-frequency noise using the 
REST toolbox31 (http://restfmri.net/forum/REST). We 
regressed out the global brain signal, mean white matter 
signal (0.9 threshold), mean CSF signal (0.7 threshold) 
and the 6 motion parameters.

Then, the Montreal Neurological Institute struc-
tural template was high-dimensionally registered to each 

subject’s structural scan using the DRAMMS algorithm32 
(https://www.nitrc.org/projects/dramms/), which encoded 
linear and nonlinear deformations in the template space 
relative to each individual’s subject space. Following a rigid 
body transformation (6 degrees of freedom) from the sub-
ject’s structural image to the mean functional image, the 2 
transformations were respectively applied to the template-
space AAL atlas33 thus parcellating each subject’s series of 
functional images using the warped AAL atlas. Then, the 
mean time series in each of the 90 AAL regions was com-
puted by averaging voxel-level time series. The FC was then 
estimated by calculating the mutual Information34 between 
the mean time series of each pair of brain regions for each 
subject (mutual information matrices; MIM).

We decided to work in the original functional space in 
order to avoid the reslicing of the functional images to a 
higher dimensional space.

Multivariate Pattern Classification Analysis

We used our pattern recognition tool NeuroMiner 
(http://www.pronia.eu/the-project/work-plan/wp2-
surrogate-marker/) to implement a fully automated 
machine learning pipeline, which (1) constructed sets 
of  predictive neuroanatomical and neurofunctional fea-
tures from the high-dimensional GM maps and MIM 
respectively, and (2) learned decision rules from these 

Table 1.  Sociodemographic and Clinical Characterization of the Sample

Sociodemographic Variables Patient Group (SZ) Healthy Group (HC) Statistics

Complete sample
  N 71 M/SD 74 M/SD —
  Mean age at baseline [y] (SD) 38.1 (13.9) 35.8 (11.5) t = 1.09, P = .278
  Handedness (mixed or left) 10 (13.5%) 1 (1.4%) χ2 = 7.57, P = .001
  Sex (male) 57 (80.3%) 51 (68.9%) χ2 = 2.46, P = .12
  Educational level (years of education) 13 (1.8) 14.4 (3.3) t = 3.08, P = .003
  Mean verbal IQ [MWT-B] 98.6 (1.8) 105.1 (14.3) t = 2.59, P = .011
Matched sample (age and sex)
  N 66 66 —
  Mean age at baseline [y] (SD) 36.4 (12.9) 37 (10.7) t = 0.301, P = .764
  Sex (male) 52 (78.8%) 47 (71.2%) χ2 = 1.01, P = .315
Independent validation set
  N 5 8 —
  Mean age at baseline [y] (SD) 61.0 (2.65) 25.9 (14.7) —
  Sex (male) 5 (100%) 4 (50%) —
Clinical battery (N = 58)
  Age at first psychotic symptoms 20.6 (6.3) — —
  Age at first psychiatric hospitalization 22.6 (6.7)
  Age at first psychiatric illness 21.1 (6.74) —
  Mean PANSS positive symptoms score (SD) 15.0 (4.9) —
  Mean PANSS negative symptoms score (SD) 14.8 (4.9) — —
  Mean PANSS general score (SD) 29.6 (8.6) — —
  Current medication dose CPZ equivalent 352.6 (309.7) — —
  Current medication dose OLZ equivalent 14.9 (10.73) — —

Note: SZ, schizophrenia; HC, healthy controls; PANSS, Positive and Negative Syndrome Scale; MWT-B, Mehrfachwahl-Wortschatz-
Intelligenztest Version B; CPZ, Chloropromazine; OLZ, Olanzapine.

http://www.fil.ion.ucl.ac.uk/spm
http://restfmri.net/forum/REST
https://www.nitrc.org/projects/dramms/
http://www.pronia.eu/the-project/work-plan/wp2-surrogate-marker/
http://www.pronia.eu/the-project/work-plan/wp2-surrogate-marker/
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features to classify patients with HC versus SZ at the 
single-subject level.

Firstly, to account for age, sex and size differences 
between the samples, the HC and SZ cohort were matched 
according to age and sex, resulting in 2 smaller samples 
containing 66 subjects each. The remaining 13 subjects 
were used as independent validation set, meaning that 
these subjects were kept out of the model estimation pro-
cess and used as previously unseen data (table 1).

To strictly separate the training process from the 
evaluation of  the predictor’s generalization capacity, 
the pipeline was completely embedded into a repeated 
double cross-validation framework (rdCV).35 As previ-
ously described, rdCV computes an unbiased estimate 
of  the method’s expected diagnostic accuracy on new 
cases, rather than merely fitting the current study popu-
lation. Furthermore, rdCV produces classifier ensembles 
that separate single individuals from different groups, 
while avoiding overfitting to the peculiarities of  the 
training data.

More specifically, the following analysis steps were 
wrapped into a 20-fold cross-validation cycle at the 
outer (CV2) and a 20-fold cross-validation at the inner 
(CV1) cycles of  rdCV. Both MIM and GM maps were 
scaled feature wise and for the GM maps, due to its 
inherent high dimensionality, principal component 
analysis (PCA)36 was used to reduce feature dimen-
sionality. The principal components with the highest 
eigenvalues that cumulatively explained 80% of  the 
variance were selected and the single subject GM maps 
were projected into the reduced principal components 
space. The resulting PC features (GM maps) and the 
scaled MIM (FC) were, independently, fed to a linear 
L2-regularized Logistic Regression (L2-LR) imple-
mented in the LIBLINEAR toolbox (http://www.csie.
ntu.edu.tw/~cjlin/liblinear/). The slack variable, C, was 
estimated in the inner cycle of  the cross validation, for 
both modalities independently.

Finally, unseen CV1 and CV2 test subjects, as well as 
individuals in the independent validation set were pro-
cessed by successively applying all training parameters 
to the test data. The classifier determined a test sub-
ject’s geometric position relative to the learned deci-
sion boundary, resulting in a group membership score 
and predicted membership (determined by sign of  the 
group membership score). This analysis sequence was 
repeated for each CV1 training partition in a given 
CV2 training fold, thus generating an ensemble classi-
fier which computed a CV2 test subject’s group mem-
bership by averaging the decision scores of  its L2-LR 
base learners. Finally, for each subject, ensemble 
group membership scores were averaged across those 
training partitions, in which the subject had not been 
involved in the training and optimization process, and 
thus determining its final out-of-training (OOT) group 
membership score.

The previously described classification procedure 
was applied independently to both GM maps and MIM 
resulting, for each subject, in 2 OOT decision score, 
one based on the structural and one the fMRI data. 
The fusion of  the data domains was then performed by 
taking the mean of  the 2 OOT decision scores for each 
subject, resulting in a multi-modal class  membership 
score from which the multimodal class membership was 
derived.

The models described above were then applied to inde-
pendent test data to further validate the method.

For the clinical moderator analyses, a ν support 
vector regression (ν-SVR) was applied to predict the 
single modality OOT group membership scores based 
on clinical variables (table  1; for more details supple-
mentary materials table  3). The clinical analysis was 
performed on 62 SZ subjects with complete data sets. 
Similarly to the classification process an rdCV frame-
work was employed to derive an unbiased estimation 
of  the method’s performance. For each CV2 fold the 
features were scaled, feature wise and a filter method, 
the Pearson correlation between the feature and the 
label, was applied to filter uninformative features.37 The 
selected scaled clinical features were used to predict 
the group membership scores with a ν-SVR as imple-
mented in LIBSVM with ν and C estimated in the inner 
cycle of  the CV framework.

Results

Both functional and structural classifiers were able to dis-
tinguish between HC and SZ patients with similar accura-
cies. The GM classifier showed a slightly lower accuracy 
of 69.7 % (P < .001; specificity 63.4% / sensitivity 82.4%) 
comparing to 70.5% accuracy of the RS classifier (speci-
ficity 69.7% / sensitivity 71.2%).

The accuracy for the OOCV dataset in the RS fMRI 
was 76.9 % (P = .09; specificity 62.5 % / specificity 100 %) 
and 92.3 % (P = .003; specificity 87.5 % / sensitivity 100 
%) for the structural magnetic resonance imaging (sMRI).

Ensemble-based data fusion outperformed pattern 
classification based on single MRI modalities by reach-
ing 75 % accuracy classifier (P < .001; specificity 71.2% / 
sensitivity 78.8%).

For the OOCV data the fusion improved the classifica-
tion accuracy achieving for this dataset 100% accuracy 
(P < .001).

Structural Analysis

The structural pattern identified by the classifier (figure 1) 
consisted of (1) GM volume reductions in bilateral frontal, 
temporal, angular, supramarginal, insular, anterior cingu-
late, parahippocampal, and postcentral cortices and bilateral 
subcortical structures (striatum and thalamus), and (2) GM 
volume increments in the cerebellum, as well as parietal and 
occipital brain regions (supplementary materials table 1).

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw053/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw053/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw053/-/DC1
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RS-fMRI Analysis

Decreased FC highly predictive in the RS-fMRI classifica-
tion of SZ vs HC was detected between fronto-occipital, 
fronto-parietal, fronto-temporal and cortico-thalamic 
regions. Increased FC in SZ vs HC was observed between 
the left inferior temporal gyrus and parahippocampal 
gyrus (figure 2). For more information please see supple-
mentary materials table 2.

Effect of Clinical and Demographical Measures on 
Neuroimaging Results

The SVR model significantly predicted RS-based OOT 
group membership probabilities based on clinical and 
sociodemographic measures (r  =  .48, P  =  1.2 × 10−4, 

T = 4.15, coefficient of determination= 23.5, mean aver-
age error = 0.24 df = 57). This model was then applied to 
the SZ subjects with complete data in the independent 
test data obtaining a mean average error of 0.24, supple-
mentary materials figure 1.

The identical approach failed when predicting sMRI-
based OOT probabilities using the same clinical and 
sociodemographic battery (r = −.18, P = .17, T = −1.39, 
Coefficient of Determination= 3.3, df = 57).

Using a filter to perform feature selection in conjunc-
tion with the SVR algorithm allowed us to measure the 
relevance of the clinical and demographic variables based 
not only on the weight of each variable but also on its 
probability of being selected by the filter (supplementary 
materials table 3).

Fig. 1.  Percentage difference in grey matter (GM) between healthy controls (HC) and schizophrenia (SZ) for the 95th percentile of 
reliable voxels. Reliability is defined as the mean value of the L2-LR weight divided by its standard error across all the generated models.

Fig. 2.  Percentage difference in connectivity between healthy controls (HC) and schizophrenia (SZ) for the 99th percentile of reliable 
connections. Reliability is defined as the mean value of the L2-LR weight divided by its standard error across all the generated models.

http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw053/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw053/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw053/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw053/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw053/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw053/-/DC1
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The weight profile of features derived from the SVR 
approach suggests that older SZ patients and those with 
a “later” onset of illness (age > 25)  seem to be more 
robustly recognized as patients. Notably, frequently 
selected demographic and clinical features were: current 
age, age of the first psychotic symptoms, age at first psy-
chiatric illness, age at first psychiatric hospitalization, 
difficulty in abstract thinking, emotional withdrawal and 
PANSS negative summary score.

Discussion

This study aimed to investigate potential effects of clini-
cal and sociodemographic variables on the performance 
of neurodiagnostic classification. We initially confirmed 
that combination of GM and RS predictions outper-
formed pattern classification based on single MRI modal-
ities by reaching 75% accuracy for this analysis compared 
to ~70% accuracy for the single modalities. The appli-
cation of the proposed method to the independent test 
data resulted in accuracies near 100% this might be a 
consequence of the small size and demographic profile of 
this subsample, notably the age differences between the 
groups, young HC versus old SZ (table 1). Furthermore, 
the filter method employed as feature selection approach 
in the regression helped us to identify the subset of the 
clinical and demographic features that were most predic-
tive for the RS decision scores. The particular features 
as patients’ current age and age of illness onset had the 
highest probability to be selected. Specifically, older 
SZ patients with a later onset of illness and more pro-
nounced negative symptoms were more reliably assigned 
to the SZ group by the RS classifier. Our findings about 
more pronounced changes in FC in older subjects with 
SZ could be a result of accelerated „brain aging” in SZ,12 
as previous studies on normal aging already pointed out 
at reduced FC in healthy elderly.38 Additionally, the age 
of onset is an important predictor of SZ group member-
ship as patients with a “later” age of illness onset, after 
adolescence, seem to be characterized by greater FC defi-
cits. Previous MRI studies on biomarkers have shown 
that brain-specific deviations are dynamically related 
to age and illness duration trajectories.13,39,40 For exam-
ple, several studies showed that structural classifiers are 
very sensitive to age-related effects across the lifespan,12 
reporting accelerated „brain aging” in SZ putatively due 
to dysmaturational processes in the early course of the 
illness. The latest publications in the field are indicating 
that the acceleration is especially large in the first years 
after the disease onset.41 Though we were able to replicate 
findings from diverse studies that suggest GM changes in 
SZ in a pattern involving both cortical and subcortical 
structures the structural classifier based on GM altera-
tions operated independently of sociodemographic and 
clinical measures in our study. The reason could lie in 
the heterogeneous cohort that consist of many chronic 

SZ Patients with different onset and duration of illness in 
which the difference between chronological and the neu-
roanatomical age (brain age gap estimation [BrainAGE]) 
might be exhibiting ceiling effect.

In the RS data domain it seems that the “later” illness 
onset, after adolescence, may be responsible for the more 
severely disrupted FC in patients with SZ. This may not 
be reflecting the innate relationship between the FC and 
age trajectories, but could be due to the fact that the later 
onsets of illness are associated with older patients in our 
sample.

Majority or aberrant connections in the SZ group were 
subcortical short range connections with a particular 
emphasis on interhemispheric connections. This is not 
surprising considering that previous studies on inter-
hemispheric connectivity in SZ have shown evidence for 
weakening of FC between the 2 brain hemispheres involv-
ing a number of cortical and limbic regions.42 Aberrant 
long range connections of the SZ group in fronto-occipi-
tal, fronto-parietal,43 fronto-temporal9,44 and cortico-tha-
lamic regions45 were also embedded in the most predictive 
set of functional features.

 Importantly, the aberrant fronto-temporal connectiv-
ity could explain the impaired recruitment of cognitive 
verbal processing46 which contributes to negative symp-
toms in the speech domain.47–49 Aberrant cortico-striatal 
connections have also been previously shown to be related 
to negative symptoms of the SZ group.50

The limitation of the study is that the chronic effects 
of antipsychotics could contribute to the altered FC with 
longer duration of illness. Unfortunately, although the 
sample contains information on the medication, we had 
no information on “life time” medication. Importantly, 
such chronic exposure to antipsychotic medication may 
also alter FC.51

Our results from the recent meta-analysis underline 
the utility of multivariate pattern recognition approaches 
despite the clinical heterogeneity of the SZ phenotype. 
We demonstrated that combination of sMRI and RS 
fMRI provides even higher accuracy in discriminating 
SZ patients from HC by optimizing deficiencies of single 
modality prediction. Furthermore, our finding on aber-
rant connectivity in SZ that starts in early adulthood 
supports the hypothesis that such psychopathological 
abnormalities are paralleled by more pronounced brain 
abnormalities which could be more easily detectable with 
RS classifiers compared to structural classifiers.

Future studies need to proceed further to identify clini-
cal variables that are relevant for the real-world applica-
tion, as well as for the clinical reliability of multivariate 
methods and novel therapeutical approaches.

Supplementary Material

Supplementary material is available at http://schizophre-
niabulletin.oxfordjournals.org.

http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw053/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw053/-/DC1
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