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Abstract

Most of the risk loci identified from genome-wide association (GWA) studies do not provide direct information
on the biological basis of a disease or on the underlying mechanisms. Recent expression quantitative trait locus
(eQTL) association studies have provided information on genetic factors associated with gene expression
variation. These eQTLs might contribute to phenotype diversity and disease susceptibility, but interpretation is
handicapped by low reproducibility of the expression results. To address this issue, we have generated a set of
consensus eQTLs by integrating publicly available data for specific human populations and cell types. Overall,
we find over 4000 genes that are involved in high-confidence eQTL relationships. To elucidate the role that
eQTLs play in human common diseases, we matched the high-confidence eQTLs to a set of 335 disease risk loci
identified from the Wellcome Trust Case Control Consortium GWA study and follow-up studies for 7 human
complex trait diseases—bipolar disorder (BD), coronary artery disease (CAD), Crohn’s disease (CD), hyper-
tension (HT), rheumatoid arthritis (RA), type 1 diabetes (T1D), and type 2 diabetes (T2D). The results show
that the data are consistent with *50% of these disease loci arising from an underlying expression change
mechanism.

Introduction

A main challenge in interpreting personal genomes is to
identify the causal variants underlying human complex

traits and their functional consequences. In the past decade,
genome-wide association (GWA) studies have successfully
identified thousands of genetic variants associated with numer-
ous human complex traits, including diseases. So far, the GWA
studies (GWASs) catalog of the National Human Genome Re-
search Institute lists *19,200 single-nucleotide polymorphisms
(SNPs) associated with one or more complex traits, gathered
from *2070 GWA studies (www.genome.gov/gwastudies/
[May 2016]). Each of these disease-associated loci must har-
bor some underlying mechanism whereby the presence of a
causal variant alters some molecular-level process and in turn
that perturbation affects higher level processes and pathways.
Generally, there is little direct evidence on how these variants
affect molecular-level processes. A number of different mech-
anisms may be involved, including altered protein folding, half-
life, and function through missense SNPs (Sunyaev et al., 2000;
Wang and Moult, 2001), SNPs that affect splicing (Wang and

Cooper, 2007), and SNPs affecting RNA expression level (Ni-
colae et al., 2010). One major source of difficulty in identifying
the mechanism is that genetic variants in a locus found to be
associated with disease (the markers) are a small part of a larger
set, all in linkage disequilibrium (LD) with each other, and any
one of these might be causal.

GWA studies have also been used to discover expression
quantitative trait loci (eQTLs) by finding correlations be-
tween transcript expression levels and the presence of genetic
variants ( Jansen and Nap, 2001). The emergence of high-
throughput technologies, particularly transcription micro-
arrays and RNA sequencing, provides an efficient way to
simultaneously measure the expression levels of thousands of
genes. Microarray technology has also been used for large-
scale genotyping, and comparison of these two types of data
then allows eQTL mapping in a large number of individuals
(Lappalainen et al., 2013; Liang et al., 2013; Montgomery
et al., 2010). Initially, data derived from Epstein–Barr virus-
transformed immortalized lymphoblastoid cell lines (LCLs)
were used for population-wide eQTL analysis in humans
(Dixon et al., 2007; Duan et al., 2008; Stranger et al., 2007).
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Recently, a number of studies have performed eQTL map-
ping on various human tissues, such as brain (Gibbs et al.,
2010; Myers et al., 2007), liver (Greenawalt et al., 2011;
Innocenti et al., 2011; Schadt et al., 2008), adipose (Emilsson
et al., 2008; Greenawalt et al., 2011; Nica et al., 2011), fi-
broblasts (Dimas et al., 2009), and skin (Ding et al., 2010;
Grundberg et al., 2012; Nica et al., 2011). Thousands of cis-
and trans-regulatory eQTLs have now been discovered in a
variety of human tissues and populations.

A complication in relating eQTLs to disease GWASs is the
apparent unreliability of individual eQTL studies, arising
from a variety of issues in statistical analysis as well as ex-
perimental factors. So far, most eQTLs have not been re-
producible in multiple studies, even within studies conducted
on the same cell types in the same population (Dixon et al.,
2007; Göring et al., 2007; Myers et al., 2007; Stranger et al.,
2007; Veyrieras et al., 2008). To address this issue, we have
integrated human genome-wide eQTL data from 16 publicly
available studies to identify higher confidence eQTL rela-
tionships on the basis of consensus, both generally and within
several specific cell types.

A number of studies have used eQTL association results
and disease GWAS findings to improve the functional in-
terpretation of disease-associated loci (Chu et al., 2011;
Ertekin-Taner, 2011; Gibson et al., 2015; Heid et al., 2010;
Hrdlickova et al., 2011; Hsu et al., 2010; Lango Allen et al.,
2010; Li et al., 2015; Moffatt et al., 2007; Peters et al., 2016;
Repnik and Poto�cnik, 2016; Richards et al., 2012; Schaub
et al., 2012; Speliotes et al., 2010; Wu et al., 2012). Several
studies have shown that SNPs associated with human traits
and chemotherapeutic drug susceptibility are in general en-
riched for eQTLs (Cookson et al., 2009; Gamazon et al.,
2010; Nicolae et al., 2010). Most studies have used eQTL
data from the most accessible cell type, LCL, and it is not
clear how good a proxy these are for human cells and tissues
relevant to nonimmune-related disease, such as psychiatric
traits or cancers (Choy et al., 2008; Nicolae et al., 2010).
Some studies have used eQTL results from tissues par-
tially appropriate to the disease of interest when linking to
disease-associated SNPs (Ding et al., 2010; Fransen et al.,
2010; Innocenti et al., 2011; Kang et al., 2012a, 2012b; Liu
et al., 2011; Maranville et al., 2011; Schadt et al., 2008;
Zhong et al., 2010). For example, Ding et al. (2010) re-
ported an eQTL study of human skin that aimed to elucidate
the role of regulation of gene expression in psoriasis. Ri-
chards et al. (2012) assigned eQTL status to schizophrenia
susceptibility alleles based on eQTL data derived from the
adult human brain.

In principle, it is possible to find which disease-associated
loci harbor an underlying expression mechanism by com-
paring the set of markers from a disease GWAS with the set
of markers from an eQTL study: if the cause of disease risk is
a change in expression discovered in an eQTL, the two sets
of markers should overlap or be in LD. The comparison is
complicated by the sparse sampling of the full SNP set pro-
vided by microarrays. When full genotyping information is
available for sampled SNPs, imputation methods (Howie
et al., 2009) may be used to obtain estimated association p
values for many SNPs not directly measured, potentially
addressing this issue. Often these data are not readily avail-
able, and an alternative approach is required. We made use of
one set of disease GWAS data with complete genotype in-

formation to investigate the properties of full marker distri-
butions and, on that basis, devised a method that can be
applied to cases where only microarray marker SNP infor-
mation is available.

In this study, we sought to identify which loci associated
with complex trait disease may harbor an underlying ex-
pression mechanism, making use of a set of consensus eQTLs.
To this end, we examined each of a set of disease-associated
loci to ascertain whether any known eQTL relationship may
have produced the disease association data.

Materials and Methods

Data sources

All eQTL association data in this study were collected
from 16 publicly available studies that had been performed
on various human tissues and populations, listed in Table 1.

Data preparation

To compare exSNP-exGene association pairs between
these studies, all transcript names, probe IDs, and alias gene
names were converted to current unique Entrez gene IDs and
gene names (NCBI build 37.2). Ambiguities in alias gene
names were resolved using chromosome location informa-
tion. Transcript clusters (TCs) identified in the HA2 study
were converted to Entrez gene IDs by mapping the region of
each TC to gene ranges on human genome assembly hg19.
Retired and discontinued SNP IDs were filtered out and all
SNP IDs were converted to the current dbSNP IDs (dbSNP
build 134). Retired or unmappable gene names were also
eliminated from the study. Any SNP with multiple chromo-
some coordinates on NCBI reference assembly 37.2 (dbSNP
b134) was removed.

Linkage disequilibrium

LD information between pairs of SNPs was acquired from
the HapMap project phase III (release 27) (The International
HapMap 3 Consortium, 2010) or derived from the 1000
Genomes Project (phase1 release) (The 1000 Genomes Pro-
ject Consortium, 2010) for several ethnic populations (CEU,
YRI, CHB, and JPT for HapMap; EUR and YRI for YRI). For
1000 Genomes LD data, the r2 values for pairs of SNPs with
minor allele frequencies (MAFs) >5% and located within
200,000 bp of each other were calculated using PLINK (v.
1.07) (Purcell et al., 2007). Spearmen correlation between LD
values from the HapMap project and 1000 Genomes is 0.89.

Where both HapMap and 1000 Genomes provided LD
values for an SNP pair, the HapMap value was used. Where
possible, appropriate population LD data were used for
each dataset. HA_CEU, HA2_CEU, HRC, AS, BR, LV, 3C,
BR, and BR2 datasets are from Caucasian (CEU) popula-
tions and HA_YRI, HA2_YRI, and HRY datasets are from
Yoruba (YRI) populations. HA_CHB and HA_JPT datasets
are for Chinese (CHB) and Japanese ( JPT) populations,
respectively. No clear ethnic identity is available for the
MO and LV2 sets. For the LV2 dataset, individuals are
mostly from the mixture of Caucasian and African popu-
lations and so an intersection LD set for CEU and YRI
populations was used. For the MO study, we generated an
intersection of LD sets among all four populations, CEU,
CHB, JPT, and YRI.
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Hierarchical clustering

The distance between each pair of datasets was defined as
(1-f), where f is the fraction of common exGenes between the
two sets. The hclust module in R was used.

High-confidence eQTL data

Figure 1 summarizes the procedure used to identify high-
confidence eQTLs based on consensus within the included 16
independent human genome-wide eQTL studies. For disease
analysis, a high-confidence eQTL relationship is defined as
one that is identified in at least two studies of these 16. The
number of high-confidence eQTL relationships so defined
varies with the LD criterion used. For the disease analysis, the
most conservative LD level (r2 > 0.8) was used, providing a
total of 4252 unique genes with an expression level associated
with the presence of at least one high-confidence eQTL SNP.

GWA studies of human common diseases

Loci significantly associated with disease susceptibility for
seven specific human common diseases (bipolar disorder
[BD], coronary artery disease [CAD], Crohn’s disease [CD],

hypertension [HT], rheumatoid arthritis [RA], type 1 diabetes
[T1D], and type 2 diabetes [T2D]) were collected from the
Wellcome Trust Case Control Consortium (WTCCC1) GWA
study (The Wellcome Trust Case Control Consortium, 2007)
and from other related meta-analyses and follow-up studies in
the GWAS catalog (www.genome.gov/gwastudies/ [March
2013]).

CentiMorgan distance calculation

The genetic map data of all human chromosomes, calculated
from HapMap II data with LDhat (ldhat.sourceforge.net/in-
structions.shtml), were acquired from NCBI FTP (ftp.ncbi
.nlm.nih.gov/hapmap/recombination/2011-01_phaseII_B37/).
Where necessary, the centiMorgan (cM) coordinates of
disease-associated marker SNPs and expression-associated
eQTLs were interpolated from those of the closest SNPs with
defined cM values based on chromosomal distance.

Comparison of disease and eQTL markers

The procedure used to estimate whether or not the detected
disease and eQTL markers in a locus arise from the same

Table 1. Expression Quantitative Trait Locus Data for the 16 Selected Genome-Wide

Expression Quantitative Trait Locus Association Studies

Study ID Samples (size) Cell type
eQTL

associations exSNPs exGenes References

HA HapMap CEU—Caucasians (30) LCL 3858 3686 239 Stranger et al. (2007)
HapMap CHB (45) LCL 4066 3780 253
HapMap JPT (45) LCL 5254 5061 274
HapMap YRI–Africans (30) LCL 3524 3283 306

BR Caucasians (193) Brain Cortex 624 545 209 Myers et al. (2007)

AS Childhood asthma (206) LCL 21116 12121 2632 Dixon et al. (2007)

LV Caucasian liver donors (427) Liver cell 4362 2527 3824 Schadt et al. (2008)

HA2 30 HapMap CEU—Caucasians (30) LCL 4453 3699 722 Duan et al. (2008)
30 HapMap YRI (30) LCL 5027 4086 1659

3C Caucasians (75) LCL 554 544 436 Dimas et al. (2009)
Caucasians (75) Fibroblast 522 508 424
Caucasians (75) T cell 546 540 429

MO German (1490) Monocyte 37694 29948 2752 Zeller et al. (2010)

HRC HapMap CEU–Caucasians (60) LCL 8908 3896 930 Montgomery et al. (2010)

HRY HapMap YRI–Africans (69) LCL 799 779 786 Pickrell et al. (2010)

BR2 Caucasians (150) Cerebellum 5243 4399 317 Gibbs et al. (2010)
Caucasians (150) Frontal cortex 5512 5198 329
Caucasians (150) Temporal cortex 5335 4059 385
Caucasians (150) Pons 3411 3284 275

SKN Healthy skin individuals (57) Skin 5410 4782 222 Ding et al. (2010)

LV2 Liver donors (266) Liver cell 1170 1161 1170 Innocenti et al. (2011)

IM British (288) Monocyte 33740 28956 6063 Fairfax et al. (2012)
British (288) B cell 22453 20333 5449

MuTHER Caucasian female twins (*160) LCL 211977 149684 3945 Grundberg et al. (2012)
Caucasian female twins (*160) Skin 103537 82933 2495
Caucasian female twins (*160) Adipose 138885 109689 3136

MRC MRCA (405) and MRCE (950) LCL 176848 109763 1251 Liang et al. (2013)

E-GEUV 1000 Genomes—EUR (373) LCL 390813 281446 3048 Lappalainen et al. (2013)
1000 Genomes—YRI–Africans (89) LCL 19314 16932 472

eQTL, expression quantitative trait locus; LCL, lymphoblastoid cell line.
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underlying causal variant is illustrated in Figure 2. We used
complete genotype data for the WTCCC1 study of seven
complex trait diseases (The Wellcome Trust Case Control
Consortium, 2007) to examine the relationship between dis-
ease association p value distributions and eQTL markers.
Complete microarray genotype data were downloaded for the
WTCCC1 study. The probabilities of each genotype for the
SNPs in each disease locus not represented on the microarray
were imputed using IMPUTE2 (Howie et al., 2009) and the
disease association p value of each SNP was then calculated
using SNPTEST (Ferreira and Marchini, 2011). Imputed
disease association p value distributions were compared with
marker SNPs for high-confidence eQTL relationships de-
rived from the 16 eQTL studies (AllCell_AllPop).

Figure 3 shows Manhattan plots of these data for one re-
gion, where SNPs are significantly associated with the risk of
T1D in the WTCCC1 study, and that also contains eQTL
associations. The left-hand plots show the distribution of
disease association p values and the location of the expres-
sion marker SNPs as a function of the chromosome coordi-
nate in base-pair units. In plots of this type, it is often not
possible to determine whether or not the disease and ex-
pression signals share a causal variant. The right-hand plot
shows the same data as a function of crossover event prob-
ability measured in cM. The cM scale provides a clear dis-
tinction between a situation where the underlying causal
variant for the disease and expression signals is the same
(AP4B1, Fig. 3A) and where they are different (DCLRE1B,
Fig. 3B). In (A), significant p value disease-associated SNPs
overlap with the eQTL marker SNPs. In (B), there is a

0.06 cM separation between the eQTL marker SNPs, the
closest significant disease-associated SNP.

For the other 16 of the 21 WTCCC1 loci that contain at
least one high-confidence eQTL relationship, 14 have eQTL
markers for at least one gene that overlap with the disease
marker SNPs (data not shown). There are often multiple
genes in a locus, so the Manhattan plots show a wide vari-
ety of situations, but consistently, where there is overlap, the
shortest distance between a disease marker and an eQTL
marker is <0.05 cM, and in no case without overlap is there a
distance <0.05. On that basis, we adopted three thresholds for
confidence that the disease and expression signals arise from
a common underlying variant: when there is an exact match
between a disease marker and an expression marker (i.e.,
these are the same SNP), when the closest disease and ex-
pression markers are with 0.005 cM, and when the two closest
markers are within 0.05 cM.

Results

Genome-wide eQTL data

Table 1 summarizes the 16 publicly available genome-
wide eQTL studies used, categorized into 29 datasets by
tissue and population. The majority of studies were per-
formed on LCLs, and 10 datasets are from that source. Most
studies used a combination of genotyping microarrays and
transcription microarrays. Three studies, HRC (Montgomery
et al., 2010), HRY (Pickrell et al., 2010), and E-GEUV
(Lappalainen et al., 2013), all on LCLs, used RNA sequencing
technology rather than the older microarray technology to

FIG. 1. Identification of high-confidence unique eQTL relationships. A high-confidence eQTL relationship is defined as
one found in two or more datasets. This figure illustrates the two ways, exact-match or imputed-match, used to determine
consensus associations. Exact-match: In Dataset 1, the presence of an exSNP1 is associated with altered expression of the
gene. Dataset 2 contains the exact same SNP-gene association, sufficient to classify the association as high confidence.
Imputed-match: Dataset 3 has an association between two other SNPs, exSNP2 and exSNP3, and the expression level of the
same gene. These SNPs are both in LD with exSNP1, so are considered to represent the same underlying relation-
ship. eQTL, expression quantitative trait locus; LD, linkage disequilibrium; SNP, single-nucleotide polymorphism.
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determine expression levels. One study, E-GEUV, used the
1000 Genomes Project populations (EUR and YRI) and so
was able to include the genotypes of all SNPs down to about a
frequency of 1% instead of the limited number represented on
a genotyping microarray.

We define exSNPs as those SNPs that correlate with
change of expression of one or more genes. The corre-
sponding genes are referred to as exGenes, and an eQTL
association represents the relationships between one exSNP
and its associated exGene. After processing the raw data from
the 16 studies, there are totally 796,908 unique eQTL asso-
ciations covering 15,170 unique exGenes and 548,344 unique
exSNPs. The number of eQTL associations varies widely
across studies (522–390,813). Variation in population sample
size is probably the biggest factor in this spread (sample sizes
range from 30 to 1490). The expression level of most ex-
Genes is associated with the presence of multiple exSNPs,
primarily as a result of LD, and in most cases, only a single
variant is likely actually causative of a change in expression.

As is common practice, we consider cis-eQTL associations
to be those where the exSNPs are located within 1 Mb of either
the 5¢ or 3¢ end of the associated exGene. eQTL associations
between an exGene and an exSNP located more than 1 Mb
distance away from the gene region are referred to as trans-
eQTL associations. Supplementary Figure S1 shows the

proportion of cis- and trans-eQTLs in each dataset. Most
datasets have a much higher fraction (>60%) of cis-eQTLs.
The predominance of cis-eQTLs is largely a consequence of
the increased statistical power obtained by limiting the ge-
nome window in which associations are examined, thereby
greatly reducing the size of multitesting correction needed in
assessing the significance of an association. Supplementary
Figure S2 shows the distribution of distances between exSNP-
exGene pairs. The density falls off rapidly with distance,
and 85% of cis-regulatory exSNPs are within 200 kb of the
corresponding exGene. cis-eQTLs are approximately sym-
metrically distributed both upstream and downstream of the
corresponding exGene, as well as within the gene. About 25%
of cis-regulatory exSNPs fall within a gene region and were
assigned a distance of zero. Although LD broadens this dis-
tribution, it is still apparent that the majority of SNPs involved
in cis-eQTL relationships are located in the vicinity of the
affected gene, including the 5¢ and 3¢ untranslated regions, and
neighboring upstream and downstream regions. Because of
LD, it is difficult to determine the exact location of the un-
derlying causal variants that directly affect gene expression.

LD relationships between eQTLs

We presume that the underlying mechanistic origin of a
cis-eQTL relationship is that a particular SNP or other variant
falls on a functional element such as a transcription factor
binding site, a microRNA binding site, or splice site where
the change leads to nonsense-mediated decay. Then, an as-
sociation study will reveal a statistical relationship between
the presence of that causal SNP and the level of expression of
the gene. In principle, it might be possible to identify which
of the set of such SNPs is causal from the strength of the
correlation between its presence and the level of gene ex-
pression. In practice, LD is often close to 1 for a number of
neighboring SNPs, and the data are usually noisy, so it is not
possible to make such a determination. Furthermore, because
of low sampling of SNPs using typical microarray genotyp-
ing technology, it is unlikely the causal SNP will itself be
assayed. In spite of these limitations, it is usually possible to
group exSNPs into LD blocks and approximately identify
the number of unique causal relationships—each block will
usually represent one relationship.

Table 2 shows the number of total eQTL associations and
the corresponding number of unique exSNPs and unique
exGenes in each dataset. It also shows the number of unique
eQTL relationships, each of which represent a set of LD-
related exSNPs associated with the same exGene, at three LD
thresholds, r2 > 0.8, 0.5, and 0.3. In this study, each eQTL
relationship likely represents one mechanistic relationship
between the presence of a causal variant and the expression
level of the gene. The proportion of exGenes with a single
eQTL relationship ranges from 54% to 100% using an LD
threshold of 0.8 to 72–100% at a threshold of 0.3.

Pair-wise comparisons show low agreement
between eQTL datasets

To investigate how often the same eQTL relationships are
found in different studies, we compared the eQTL associa-
tions between each pair of datasets and identified the com-
mon exGenes and exSNPs that are associated with these.
Supplementary Table S1 summarizes the level of agreement

FIG. 2. Model for identifying those disease-associated
loci with a probable underlying expression mechanism. In
this hypothetical case, a causal variant, at the position of the
vertical dotted line, is related to disease susceptibility as a
result of altering the expression level of the nearby gene.
Because of LD, the presence of the causal variant will
usually result in one or more nearby SNPs also being as-
sociated with disease risk, and the blue curve represents the
expected p value distribution of these. Sparse sampling with
a microarray and noise factors result in only one or a few of
these associations being detected (blue dots). Since the
causal variant affects expression, the same SNPs will be
associated with expression level of the gene, with a colo-
cated expected p value distribution, represented by the red
curve, and again because of noise and other factors, only
some markers will be identified (red dots). In this example,
there is another eQTL in this region (eQTL1) where SNPs
are associated with the expression level of the same gene,
but unrelated to disease susceptibility, and so its eQTL
p value distribution does not overlap with that for disease
association.
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among the 16 different eQTL datasets. In general, the
agreement of most (92%) pair-wise comparisons between
datasets is low, with only 4–49% of exGenes shared between
datasets. There is also a low level of agreement between
exSNP-exGene relationships.

Some differences between eQTL studies presumably arise
from different biology as a function of cell type and popu-
lation. However, the fractions of common exGenes for
studies on the same population and cell type are also often

low. For example, the fractions of common exGenes among
studies performed in LCLs for Caucasian populations (HRC,
HA_CEU, HA2_CEU, and EGEUV_EUR) are usually not
high (8–27%), with one exception at 57%. With a couple of
exceptions, studies on the same cell line, but different pop-
ulations, also have agreements of 7–35%. Agreement for
studies in different cell types from the same population tends
to be a little higher, but is still low. The MuTHER study
(Grundberg et al., 2012; Nica et al., 2011) used adipose, LCL,

FIG. 3. Manhattan plots for a locus associated with type 1 diabetes in the WTCCC1 data. These plots show the relationship
between disease association p value for all SNPs in the region (blue points) and the location of high-confidence expression-
associated SNPs (red dashes). There are two separate high-confidence eQTL relationships in this region, each involving a
different gene. The horizontal dotted line indicates the significance threshold for disease p values (1E-05). The left plots show
the p value distribution of disease and expression SNPs as a function of chromosome coordinates and the right plots show the
same data as a function of genetic map position, in cM. (A) Disease associations and high-confidence eQTL SNPs associated
with the expression level of AP4B1 (adaptor-related protein complex 4, beta 1 subunit). In chromosome coordinates (left), the
disease markers appear widely spread and there is no clear distinction between these and eQTL markers. On the cM scale (right),
it is clear that the disease marker SNPs and eQTL SNPs occupy the same narrow range in the crossover coordinate. (B) High-
confidence eQTL SNPs associated with DCLRE1B (DNA cross-link repair 1B) in the same locus. In chromosome coordinates
(left), it is unclear whether these markers overlap with the disease markers or not. On the cM scale (right), there is clear
separation between expression and disease markers, reflecting low linkage disequilibrium between the two sets of markers so
that it is unlikely the same causal variant generates both signals. Together, these plots show that the data are consistent with a
disease susceptibility causal variant affecting the expression of AP4B1 and inconsistent with an expression effect on DCLRE1B.
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and skin in a Caucasian population. In this study, levels of
agreements are high (54–60%).

Figure 4 shows a hierarchical clustering comparison of the
datasets based on the fraction of common exGenes. Two factors
dominate the tree topology—cell type and specific study. Most
of the datasets that used LCLs are grouped in one major branch,
and studies that used monocytes or liver are also grouped.
Datasets from the same study are usually grouped together, for
example, the 3C study, the BR2 study, and the MuTHER study
(excepting MuTHER_LCL, which is in the LCL group).

High-confidence eQTLs

Given the high level of variability between the studies
apparently due to nonbiological causes, it is desirable to
identify the more reliable eQTL relationships. For this pur-
pose, we compiled eQTL relationships that have been ob-
served in at least two studies, for studies within the same
population, studies on the same cell types, and across all
studies, independent of population and cell type. In all, there
are 13 subsets (Supplementary Table S2).

A high-confidence eQTL relationship is defined as one for
which supporting eQTLs are found in more than one study
within an integrated set. We identified high-confidence unique
eQTL relationships within the eight integrated sets that con-
tain more than one study. The number of studies in which a
particular eQTL is found provides an approximate confidence

score. Supplementary Table S3 shows the number of unique
eQTL relationships and high-confidence unique eQTL rela-
tionships in each integrated set at various LD levels. For the
largest integrated set, AllCell_AllPop, including all the data,
at the lowest LD threshold (r2 > 0.3), the 133,658 unique
eQTL relationships result in 5928 high-confidence unique
eQTL relationships involving a total of 4252 exGenes (HC-
exGenes). In general, most exGenes (77%) contain only one
high-confidence unique eQTL relationship in each integrated
set at the lowest LD level (r2 > 0.3) (data not shown).

Figure 5 shows the distribution of the number of studies in
which each high-confidence exGene is identified, at various
LD levels, for the AllCell_AllPop integrated set. Most HC-
exGenes appear in more than the minimum of two studies,
with four the most common.

As an estimate of the relative quality of eQTL datasets, we
calculated the fraction of HC-exGenes in each dataset of the
LCL_CEU integrated set (Supplementary Fig. S3). This
quality measure varies widely. The lowest fraction of HC-
exGenes is for the HA2 dataset (6.5%). The MRC dataset has
the highest fraction (84%).

Tissue and population dependence
of eQTL relationships

We made use of the data for different tissue types included
in the 16 eQTL studies to perform limited testing on the

Table 2. Expression Quantitative Trait Locus Associations and Unique Expression

Quantitative Trait Locus Relationships for Each Dataset

Dataset
Unique eQTL
associations

Unique
exGenes

Unique
exSNPs

Unique eQTL
relationships

(r2 ‡ 0.8)

Unique eQTL
relationships

(r2 ‡ 0.5)

Unique eQTL
relationships

(r2 ‡ 0.3)

HRC 4362 930 3896 1453 1116 1038
HA_CEU 3787 239 3686 451 286 252
HA2_CEU 4163 722 3699 1273 1166 1141
EGEUV_EUR 390696 3048 281446 135826 103879 88142
HRY 794 786 779 794 792 790
HA_YRI 3419 306 3283 619 372 336
HA2_YRI 5027 1659 4086 3007 2835 2813
EGEUV_YRI 19314 472 16932 9349 6887 5709
HA_CHB 3930 253 3780 453 293 265
HA_JPT 5165 274 5061 481 317 290
AS 14348 2632 12121 6596 4178 3328
MRC 119958 1251 109763 17019 10894 8959
3CL 554 436 544 531 494 469
3CF 522 424 508 501 462 443
3CT 546 429 540 525 475 462
MuTHER_Fat 128181 3136 109689 19704 9056 5367
MuTHER_LCL 189983 3945 149684 28861 12913 7379
MuTHER_Skin 96412 2495 82933 14236 6471 3883
SKN 4916 222 4782 384 243 227
MO 37580 2752 29948 29690 23130 17598
IM_MO 31914 6063 28956 27794 23695 19929
IM_B 21674 5449 20333 19244 16665 14361
LV 4171 3824 2527 4145 4126 4117
LV2 1170 1170 1161 1170 1170 1170
BR 624 209 545 358 323 315
BR2_Cer 5241 317 4399 572 374 344
BR2_FC 5429 329 5198 625 381 347
BR2_TC 5280 385 4059 681 441 409
BR2_P 3389 275 3284 475 312 285
Total 808512 15170 578094 249346 177435 142019
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extent to which eQTLs are conserved across tissue types. As
noted earlier, only a fraction of eQTLs are found in multiple
studies even when the same tissue and population have been
used, so simply looking at the fraction eQTLs common to
studies in different tissues is not an adequate approach. To
address this, we restricted the comparisons to situations
where there are pairs of studies that share a tissue type,
providing a reference level of agreement, and that also have
data on other tissues.

Two studies, each on LCLs and two other tissues, can each
be used for this purpose: MuTHER with LCL, fat, and skin

(Grundberg et al., 2012; Nica et al., 2011) and 3C with LCL,
fibroblast, and T cell (Dimas et al., 2009). Both studies are in
Caucasian populations and so can be compared with the other
LCL studies on that population. Figure 6 shows the fraction
of common exGenes between each of three MuTHER tissues
and seven other studies conducted with LCLs. The fraction of
exGenes common to pairs of datasets varies widely, from 33%
to 68%, reflecting the differing experimental and other factors
discussed earlier. However, in all seven comparisons, the
fraction of common exGenes is higher between LCL-LCL
dataset pairs than for LCL with other tissue comparisons, in-
dicating a level of tissue specificity. For the LCL-fat compar-
isons, the common exGene fraction is between 27% and 39%
lower than for LCL-LCL, and for LCL-T-cell comparisons, it is
29–50% lower. Similar levels of tissue conservation were
found within the 3C study. Figure 7 shows similar comparisons
between the seven reference LCL sets and the LCL, fibroblast,
and T-cell data for the 3C study. In this study, the differences
between cell types appear generally rather small: 16–32%
fewer for LCL with fibroblast comparisons, and 15–27% less
for LCL with T-cell comparisons.

A similar analysis can be made for the population depen-
dence of eQTLs, comparing data from LCLs across Cauca-
sian and African populations, using the HA study. Figure 8
shows the fraction of common exGenes between those da-
tasets and those in other studies on Caucasian populations.
Differences within and across population fractions are usu-
ally small, with the exception of the 3C comparison, where
the fraction of common exGenes is about 25% smaller across
the populations than within Caucasians.

These are very limited comparisons, but suggest that
generally the level of conservation of eQTLs across tissues
is fairly high and that between populations is also high,

FIG. 4. Hierarchical clustering of the fraction of common exGenes between pairs of eQTL datasets. Distance scale is
based on the percentage of common exGenes between pairs of datasets.

FIG. 5. Number of HC-exGenes with support from 1, 2,
3, . studies at various LD thresholds (R2) in the AllCel-
l_AllPop integrated set.
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allowing extrapolation between tissue types, although at the
expense of some false positives.

Comparison of eQTL and disease GWAS data

To investigate the role expression regulation plays in dis-
ease susceptibility, we compared results from disease GWA
studies and those from eQTL GWA studies. For each iden-
tified disease risk locus in a set of common diseases, we

estimated whether there is an eQTL consistent with an un-
derlying expression mechanism driving altered disease risk.
Analogously with the eQTL analysis, we assume that in each
disease risk locus, an underlying causal/mechanism variant
affects disease risk. Because of LD, it usually results in a set
of SNPs (marker SNPs), including the causal one if that is an
SNP, occurring at a different frequency in disease popula-
tions than in control populations and so being detectable in
GWA studies. If the disease causal variant affects the

FIG. 6. Comparisons of fractions of common exGenes between pairs of eQTL datasets of the same cell type and pairs
with different cell types for the MuTHER study. The blue bar shows the fractions of common exGenes between various
LCL datasets and the MuTHER_LCL dataset. The red and green bars show the fractions of common exGenes between the
other LCL datasets and the MuTHER_Fat and MuTHER_skin datasets, respectively. LCL, lymphoblastoid cell line.

FIG. 7. Comparisons of fractions of common exGenes between pairs of eQTL datasets of the same cell type and pairs
with different cell types for the 3C study. The blue bars show the fractions of common exGenes between the LCL
datasets and the 3C_LCL dataset. The red and green bars show the fractions of common exGenes between the LCL
datasets and the 3C_Fibroblast and 3C_T-cell datasets, respectively. In both sets of comparisons, there is evidence of
limited tissue specificity.
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expression level of a gene, there should also be a set of
overlapping marker SNPs discovered in eQTL studies. Thus,
comparison of the location of disease markers and of nearby
eQTL markers in a locus provides a means of estimating
whether a known eQTL relationship provides a possible basis
for the disease mechanism. For this purpose, we used the
AllCell_AllPop high-confidence eQTLs derived from the full
set of 16 studies, with the most conservative LD level
(r2 > 0.8), a total of 18,615 unique high-confidence eQTL
relationships involving 4252 unique genes. The procedure for
comparing disease and eQTL markers is described in the
Materials and Methods section. There are 21 disease risk-
associated loci reported in the seminal WTCCC1 GWA study

of seven diseases (The Wellcome Trust Case Control Con-
sortium, 2007) and a further 316 risk loci from meta-analyses
and subsequent studies, extracted from the GWAS catalog
(www.genome.gov/gwastudies/), were included.

For each disease-associated locus in each set, we collected
all disease marker SNPs and all neighboring marker SNPs
involved in high-confidence eQTLs within 200 kb of any
disease marker. The cM distance between each disease
marker and each eQTL marker SNP was estimated using the
Caucasian HapMap genetic map (a distance of 1 cM between
locations corresponds to a recombination frequency of 1%
per generation and provides the measure of genetic linkage).
Figure 9 shows the percentage of loci for each disease type

FIG. 8. Comparisons of the fraction of common exGenes between datasets in the same population versus datasets from
different populations. The blue bars show the fractions of common exGenes between various Caucasian datasets in the
HA_CEU dataset. The red bars are the fractions of common exGenes between the other Caucasian datasets and the
HA_YRI dataset. The results indicate low population dependence of eQTLs.

FIG. 9. Percentage of disease loci with possible expression mechanisms as a function of the cM distance between the
closest disease and expression marker SNPs. The AllCell_AllPop eQTL set was used. Two vertical dotted lines indicate the
cM thresholds, 0.005 and 0.05. The maximum threshold used in this study is 0.05 cM.
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where disease markers match high-confidence eQTL markers
as a function of cM threshold. The number of loci included
rises steeply at low cM values, but less steeply above
0.005 cM. The steep slope at low values is likely a conse-
quence of different tag SNPs used on the microarray chips for
disease and expression association studies—often the exact
disease marker SNP is not present on the expression chip, but
there is one very close in cM space. Above 0.05 cM, the
curves begin to plateau, but some extra loci do accumulate as
the distance increases. Coverage converges at between 45%
and 73% of loci, depending on the disease.

Matches between disease and eQTL markers were collected
for three thresholds, cM distances of zero, <0.005, and <0.05,
based on the analysis described in the Materials and Methods
section. Table 3 shows the number of disease loci that meet
these criteria. With the 0 cM threshold, 15–32% of the disease
risk loci for each disease have putative expression mechanisms
and that increases to 23–52% at a threshold of 0.005 cM and
29–61% at a 0.05 cM threshold. There is considerable variation
in the fraction of putative expression loci across the seven
diseases, with T2D having the lowest values (31% at the 0.05
threshold) and RA and CD having the highest (62% and 57%,
respectively, at the 0.05 threshold). Supplementary Table S4
shows all candidate expression loci for the seven diseases at a
cM threshold 0.05 and the eQTL-associated genes for each
locus. Each of these genes is a candidate for involvement in
disease mechanism based on the eQTL data.

To place these results in the context of previous studies, we
defined three categories of eQTL-associated disease candi-
date genes. Genes in category A are those where expression
change has already been related to the relevant disease. Those
in category B are cases where the eQTL candidate gene has
already been proposed as disease involved, usually from a
GWA study, but an expression mechanism has not previously
been suggested. The genes in category C are those that have
not previously been proposed as disease relevant. (Genes in
the strong LD immune protein region on chromosome 6 are
not included because of ambiguous candidate gene assign-
ments.) Table 4 shows the number of loci with genes in each
category for each disease. Only 15 disease candidate genes
have a previously proposed expression mechanism. There are
94 genes in category B—previously disease-associated genes
where we have now identified a putative expression mecha-

nism. False positives are most likely to be in category C, but
we do expect that a substantial fraction of these new disease
candidate genes will turn out to be correct. As illustrated
below, in some cases, the new candidates are supported by
circumstantial evidence of biological relevance.

Examples of disease-associated eQTL relationships

GALNT4 and hypertension. A marker SNP, rs2681472,
on chromosome region 12q21.3 is significantly associated
with HT in European origin and East Asian populations
(Cho et al., 2012; Hong et al., 2010) and these GWA studies
have proposed the ATP2B1 gene (ATPase, Ca++ transport-
ing, plasma membrane 1) as a nearby candidate gene for
involvement in HT. A recent study has shown that ATP2B1
is involved in calcium homeostasis related to essential HT
(Hirawa et al., 2013). From our eQTL analysis, we found no
eQTL SNPs in this region associated with ATP2B1 expression.
However, two studies (Grundberg et al., 2012; Zeller et al.,
2010) included in the integrated set have several SNPs that are
within 0.005 cM of the disease marker and that are significantly
associated with the expression level of another nearby gene,
GALNT4 (polypeptide N-acetylgalactosaminyltransferase 4).
Although there is no GWA study showing an association
between GALNT4 and HT, one recent GWA study suggested
that GALNT4 plays a causal role in susceptibility to athero-
sclerosis related to high blood pressure (Erbilgin et al., 2013).
N-acetylgalactosaminyltransferase 4 is thought to be involved
in endothelial–platelet interactions by O-glycosylating the thre-
onine residues of the P-selectin glycoprotein ligand (PSGL-1)
(Erbilgin et al., 2013). Thus, the underlying mechanism in the
12q21.3 region associated with HT likely involves altered ex-
pression of GALNT4.

GSDMB, ORMDL3, and immune-related diseases. Several
marker SNPs, including rs2872507, rs2305480, and
rs2290400, in chromosome region of 17q12 have been
identified as associated with the risk of several diseases,
especially immune-related ones, such as CD (Barrett et al.,
2008; Franke et al., 2010; Repnik and Poto�cnik, 2016), RA
(Okada et al., 2014; Stahl et al., 2010), asthma (Bønne-
lykke et al., 2013; Moffatt et al., 2007), and T1D (Barrett
et al., 2009). Different studies have proposed different disease-
relevant candidate genes for this locus. For CD, GSMDL,
ZPBP2, ORMDL3, and IKZF3 were reported. In contrast, only
IKZF3 was reported as a candidate for RA and only ORMDL3
for asthma and T1D. Based on the eQTL analysis, six genes,

Table 3. Number of Disease Risk Loci with Possible

Underlying Expression Mechanisms

in Seven Common Diseases

Disease set BD CAD CD HT RA T1D T2D

All loci included 65 45 84 17 34 50 42
0 cM 13 8 24 3 12 12 7
0.005 cM 20 15 37 6 18 19 10
0.05 cM 26 23 48 8 21 24 13

Data at three thresholds of agreement between disease and
expression markers are included where at least one disease and
expression SNP are identical (0 cM), where a disease and expression
marker are <0.005 cM apart, and where the markers are <0.05 cM
apart.

BD, bipolar disorder; CAD, coronary artery disease; CD, Crohn’s
disease; HT, hypertension; RA, rheumatoid arthritis; SNP, single-
nucleotide polymorphism; T1D, type 1 diabetes; T2D, type 2
diabetes.

Table 4. Number of Genes in Each Category

for Each Disease

Category BD CAD CD HT RA T1D T2D

A 1 4 4 0 1 2 3
B 21 12 38 3 12 9 4
C 25 23 67 8 26 35 14

Category A genes are those where an expression mechanism has
previously been suggested and the new analysis supports that
finding. Category B genes are those where the disease candidate
gene has previously been suggested and we have now identified a
putative expression mechanism. Category C genes are those where
the expression-related candidate genes have not previously been
suggested as disease relevant.
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GSDMA, GSDMAB, KRT222, ORMDL3, PGAP3, and
ZPBP2, are found to have an eQTL association with these
marker SNPs. Three of these eQTL genes, KRT222 (Mon-
tgomery et al., 2010), ZPBP2 (Grundberg et al., 2012), and
PGAP3 (Grundberg et al., 2012), were discovered in only a
single eQTL study. Two genes, GSDMB and ORMDL3, are in
high-confidence eQTL relationships at the highest LD thresh-
old (r2 > 0.8). Thus, the eQTL analysis suggests that these two
genes are likely to be involved in susceptibility to these
immune-related diseases. In support of this conclusion, previ-
ous studies have shown that changes in the binding of an in-
sulator protein, CTCF, and related chromatin remodeling on
this autoimmune associated locus may lead to altered cis-
regulation of these two genes (Verlaan et al., 2009).

Discussion

There have now been a number of high-throughput studies
for finding eQTLs in human populations and tissues, pro-
viding a wealth of data about the relationship between genetic
variation and the level of gene expression. At present, al-
though reproducibility between studies is low (Dixon et al.,
2007; Göring et al., 2007; Myers et al., 2007; Stranger et al.,
2007; Veyrieras et al., 2008), we were interested in obtaining
a conservative, but relatively reliable, set of eQTLs for use in
identifying those human complex disease loci where a ge-
netic variant affecting expression of a gene may be contrib-
uting to disease susceptibility. To this end, we compared the
results of 16 independent eQTL studies to find those variant/
expression relationships that have been observed more than
once. Across the 16 studies considered, more than 15,000
different genes have been reported as involved in an eQTL
relationship, usually with a nearby (cis) variant. The number
of human genes that are expressed at a high enough level for
eQTL associations to be detected is probably not much larger
than this, so at face value, almost every human gene has its
expression affected by at least one variant. This remarkable
observation may be misleading; however, only a little over a
quarter of these genes have so far been found to be involved
in the same eQTL more than once across the included studies.
Most commonly, each gene is found to be involved in a single
eQTL relationship.

In addition to differences in expression behavior across
cell types and populations, discussed later, there are several
possible reasons for low consistency between studies. First, a
variety of genotyping arrays, with different tag SNPs and
different probes have been used. Second, early studies relied
on RNA microarrays to estimate transcript levels. Only three
studies used more recent RNA-Seq technology. Third, the
analysis procedures and statistical models used in each study
vary (e.g., linear regression models, Spearman rank correla-
tion). In addition, there are other possible confounders arising
in the experimental procedures, for example, the history of a
cell culture and culture conditions, and differences in ex-
perimental protocols. Despite these issues, there is evidence
that a substantial proportion of the cis-eQTL findings are
reproducible (Greenawalt et al., 2011; Innocenti et al., 2011).
Innocenti et al. estimated 49–67% cis-eQTL reproducibility
between several datasets conducted in the liver, which is
consistent with the comparison between LV and LV2 (59%)
in our datasets. A recent Genotype-Tissue Expression
(GTEx) pilot study (Ardlie et al., 2015) also found a con-

siderable fraction (68%) of previously reported (Westra et al.,
2013) exGenes in blood.

For the purpose of relating expression-related SNPs to
disease, we include only those eQTLs observed in at least two
independent studies. The assumption that such consensus
eQTLs are more reliable than those only observed once re-
quires statistical independence of each study. Each of the
studies was performed by different investigators, and in
general, different genotyping and transcription profiling
technologies were used. Additionally, a third factor affecting
reliability, the statistical analysis technique used, varies
across studies.

It has long been appreciated that expression mechanisms
may play a major role in complex trait disease, and some
studies have already provided data to support this idea
(Cookson et al., 2009; Nicolae et al., 2010). Up to now, it has
not been possible to determine how generally this is the case
or which disease-associated loci may harbor expression-
related mechanisms. In this study, by combining current
eQTL data and disease GWAS data, we have been able to
address these questions on a relatively large scale. We find
that (conservatively) approaching 50% of disease loci have a
high-confidence eQTL relationship consistent with an un-
derlying expression mechanism. With the criteria used, the
fraction of loci with putative expression mechanisms ranges
from 30% to 60%, depending on the disease. We have il-
lustrated that these data are useful for better identifying
disease-relevant genes in particular loci. Each proposed ex-
pression mechanism defines possible follow-up experiments.

eQTL relationships may vary depending on cell type and
also cell state—whether an immune system cell is active, for
example. In complex trait disease, it is often difficult to know
which cell type is implicated in each disease locus, and even
if this is clear, expression data for that cell in that state are
unlikely to be available. Typically, it has been assumed that
these differences are secondary, and most disease/expression
studies have used eQTLs from LCLs (Cookson et al., 2009;
Nicolae et al., 2010). One study across multiple tissue types
has suggested that the degree of tissue dependence is large
(69–80%) (Dimas et al., 2009).

The inclusion of studies with data derived from different
tissue types allowed us to estimate the extent to which eQTLs
are conserved. The data are limited, and the presence of large
amounts of noise also restricts analysis, but nevertheless, the
available comparisons suggest a substantial number, larger
than 50%, of at least partially tissue-independent eQTLs. In
support of this, a recent study found more than 50% of all
detected eQTLs to be common to nine tissues (adipose, tibial
artery, heart, lung, muscle, tibial nerve, skin, thyroid, and
whole blood) (Ardlie et al., 2015). However, it should be also
noted that although a study may be tissue specific, the tissue
will often include a range of cell types. For instance, in eQTL
studies of brain tissue (Gibbs et al., 2010; Myers et al., 2007),
various types of cells are included, such as blood cells, subtypes
of neuronal cells, and different glial cells, so it is difficult to
distinguish the eQTL relationships for each specific cell type.

A key step in identifying which disease loci have a po-
tential underlying expression-related mechanism is compar-
ing markers from eQTL studies with those from disease
GWASs. Other studies, for example (Ardlie et al., 2015),
have used a single LD r2 threshold as the criterion for de-
ciding whether an eQTL relationship provides a possible
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mechanism underlying a disease GWAS association (Ardlie
et al., 2015). In this study, we show that the cM distance
between disease marker SNPs and eQTL SNPs provides a
better measure and have used three confidence thresholds.
For 79 loci, there is exact agreement between at least one
disease marker and one eQTL marker. In a further 125 of loci,
the two markers are very close in LD space, less than
0.005 cM. The remaining 51%, out at a separation of 0.05 cM,
are still within a conservative threshold.

The presence of an eQTL mechanism in a disease locus does
not necessarily mean that it is the dominant mechanism con-
tributing to disease susceptibility. There are several possible
molecular-level mechanisms, including high- and low-impact
missense, and auxiliary splicing that contribute to common
complex trait diseases. In previous work (Pal and Moult, 2015),
we have also shown that a significant fraction of the disease loci
have a potential high-impact missense SNP disease mecha-
nism. Expression effects for the eQTL data analyzed here are
usually relatively small, with a median value of 2.2-fold change
in the level of expression. In contrast, high-impact missense
variants typically change in vivo activity of a protein by 5- to
10-fold, sometimes more (Yampolsky and Stoltzfus, 2005).
Where both mechanisms are present in a locus, a high-impact
mechanism does not necessarily dominate. In the model we
have previously proposed (Pal et al., 2015), in the same locus, a
gene with a high-impact mechanism may be weakly coupled to
the disease phenotype, whereas a gene with a lower impact
mechanism is tightly coupled and so dominates.

Many more eQTLs in various tissues and populations will be
identified in the near future. The NIH GTEx project has recently
published impressive pilot study results (Ardlie et al., 2015;
Consortium et al., 2013) and has a goal of determining eQTLs
in 20,000 tissue samples from 900 donors from predominantly
healthy humans. These data, together with results from other
studies, will ultimately provide a comprehensive view of the
relationship between genetic variants and altered expression
and splicing, as well as the role of these mechanisms in disease.

Conclusions

In this study, we identified those loci associated with complex
trait disease that may harbor an underlying expression mecha-
nism (Yu, 2014). Our study shows that the data are consistent
with *50% of these disease loci arising from an underlying
expression change mechanism. In many cases, the results pro-
vide a proposed expression mechanism for genes previously
suggested as disease relevant, but with no known mechanism,
and in others, new disease-relevant genes are identified.
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