
1Scientific RepoRts | 6:30062 | DOI: 10.1038/srep30062

www.nature.com/scientificreports

Collective Influence Algorithm
to find influencers via optimal
percolation in massively large
social media
Flaviano Morone, Byungjoon Min, Lin Bo, Romain Mari & Hernán A. Makse

We elaborate on a linear-time implementation of Collective-Influence (CI) algorithm introduced by
Morone, Makse, Nature 524, 65 (2015) to find the minimal set of influencers in networks via optimal
percolation. The computational complexity of CI is O(N log N) when removing nodes one-by-one, made
possible through an appropriate data structure to process CI. We introduce two Belief-Propagation (BP)
variants of CI that consider global optimization via message-passing: CI propagation (CIP) and Collective-
Immunization-Belief-Propagation algorithm (CIBP) based on optimal immunization. Both identify a
slightly smaller fraction of influencers than CI and, remarkably, reproduce the exact analytical optimal
percolation threshold obtained in Random Struct. Alg. 21, 397 (2002) for cubic random regular graphs,
leaving little room for improvement for random graphs. However, the small augmented performance
comes at the expense of increasing running time to O(N2), rendering BP prohibitive for modern-day
big-data. For instance, for big-data social networks of 200 million users (e.g., Twitter users sending 500
million tweets/day), CI finds influencers in 2.5 hours on a single CPU, while all BP algorithms (CIP, CIBP
and BDP) would take more than 3,000 years to accomplish the same task.

In ref. 1 we developed the theory of influence maximization in complex networks, and we introduced the
Collective Influence (CI) algorithm for localizing the minimal number of influential nodes. The CI algorithm
can be applied to a broad class of problems, including the optimal immunization of human contact networks and
the optimal spreading of informations in social media, which are ubiquitous in network science2–6. In fact, these
two problems can be treated in a unified framework. As we noticed in1, the concept of influence is tightly related
to the concept of network integrity. More precisely, the most influential nodes in a complex network form the
minimal set whose removal would dismantle the network in many disconnected and non-extensive components.
The measure of this fragmentation is the size of the largest cluster of nodes, called the giant component G of the
network, and the problem of finding the minimal set of influencers can be mapped to optimal percolation.

The influence maximization problem is NP-hard7, and it can be approximately solved by different methods.
We showed in1 that the objective function of this optimization problem is the largest eigenvalue of the
non-backtracking matrix (NB) of the network λ n()max , where = …

n n n n(, ,)N1 2 is the vector of occupation
numbers encoding node’s vacancy (ni = 0) or occupancy (ni = 1). In1 we introduced the Collective Influence algo-
rithm to minimize λ n()max . This algorithm is able to produce nearly optimal solutions in almost linear time, and
performs better than any other algorithm with comparable, i.e. nearly linear, computational running time.

In this paper we describe an improved implementation of the original CI algorithm, which keeps the computa-
tional complexity bounded by O(N log N) even when nodes are removed one-by-one. This is made possible by the
finite size of the Collective Influence sphere, which, in turn, allows one to use a max-heap data structure for pro-
cessing very efficiently the CI values. The linear time implementation of CI is explained in Section Implementing
CI in linear time.

In Section CI propagation we introduce a generalized version of the CI algorithm, which we name Collective
Influence Propagation (CIP), that incorporates the information about nodes influence at the global level.
Indeed, it can be seen as the limit version of CI when the radius ℓ of the ball is sent to infinity. The CIP algo-
rithm allows one to obtain a slightly better solution to the problem, i.e., a set of optimal influencers smaller than

Levich Institute and Physics Department, City College of New York, New York 10031, NY, USA. Correspondence and
requests for materials should be addressed to H.A.M. (email: hmakse@lev.ccny.cuny.edu)

received: 04 May 2016

Accepted: 27 June 2016

Published: 26 July 2016

OPEN

mailto:hmakse@lev.ccny.cuny.edu

www.nature.com/scientificreports/

2Scientific RepoRts | 6:30062 | DOI: 10.1038/srep30062

the one found by CI. Remarkably, it is able to reach the exact optimal percolation threshold in random cubic
graphs, as found analytically by Bau et al.10. However, this augmented performance comes at the expense of
increasing the computational complexity of the algorithm from O(N log N) to O(N2), when nodes are deleted
one-by-one (the max-heap trick cannot be exploited in this case). The same quadratic running time pertains
also to a Belief-Propagation-Decimation (BPD) algorithm recently suggested in ref. 12. Based on this obser-
vation, CI remains the viable option for a fast and nearly-optimal influencer search engine in massively large
networks. Quantitatively, a network of 200 millions nodes can be fully processed by CI (using a radius ℓ = 2) in
roughly 2.5 hours, while both CIP and BPD would take a time of the order of 3,000 years to accomplish the task,
as illustrated in Section CI Propagation and figures therein contained. In Section Collective Immunization we
present yet another algorithm to solve the optimal influence problem, that we name CIBP . The CIBP algorithm is
a belief-propagation-like algorithm inspired by the SIR disease spreading model, which provides as well nearly
optimal solutions.

Implementing CI in linear time
In this section we describe how to implement the CI algorithm to keep the running time O(N log N) even when
the nodes are removed one-by-one. CI is an adaptive algorithm which removes nodes progressively according to
their current CI value, given by the following formula:

∑= − −
∈∂

i k kCI () (1) (1),
(1)

i
j B i

j
(,)

where ki is the degree of node i, B(i, ℓ) is the ball of radius ℓ centered on node i, and ∂ B(i, ℓ) is the frontier of the
ball, that is, the set of nodes at distance ℓ from i (the distance between two nodes is defined as the number of edges
of the shortest path connecting them).

At each step, the algorithm removes the node with the highest CIℓ(i) value, and keeps doing so until the giant
component is destroyed. A straightforward implementation of the algorithm consists in computing at each step
CIℓ(i) for each node i, and then removing the node with the largest CIℓ value. Despite its simplicity, this imple-
mentation is not optimal, as it takes a number of operations of order O(N2). However, the time complexity of the
CI-algorithm can be kept at O(N log N) by using an appropriate data structure for storing and processing the CI
values. The basic idea is that, after each node removal, we actually need to recompute CI just for a O(1) number
of nodes, and find the new largest value O(log N) operations. This idea can be concretized through the use of a
max-heap data structure.

Before to delve into the details, let us recall the definition of a “heap”. A heap is a binary tree encoding a pre-
scribed hierarchical rule between the parent node at level h and its children nodes at level h + 1, with no hierarchy
among the children. In our specific case we use a heap with a max-heap rule, i.e., each parent node of the heap
stores a CI value greater or equal to those of the children, but there is no order between the left child and the right
one (see Fig. 1). The root node of the max-heap stores automatically the largest CI value.

One more concept is needed, i.e., the concept of “heapification”, which we shall be using often later on.
Generally speaking, given a set of numbers S = {x1, … , xN}, the heapification of the set S is a permutation ∏ of the
elements {x∏(1), … , x∏(N)} satisfying the following max-heap property:

≥ ≥ .Π Π Π Π +x x x xAND (2)i i i i() (2) () (2 1)

We call heapify(i) the function which heapifies the CI values in the sub-tree rooted on node i. The aim of this
function is to down-move node i in the heap by swapping it with the largest of its children until it satisfies the
max-heap property in the final location.

Having defined the main tools we are going to use in the implementation, we can now discuss the flow of the
algorithm schematized in Fig. 2 step by step.

Figure 1. Max-heap data structure used to implement the CI algorithm. In the max-heap each parent node
stores a CI value larger than the ones stored by its children. No ordering prescription is imposed to the nodes
belonging to the same level h of the heap.

www.nature.com/scientificreports/

3Scientific RepoRts | 6:30062 | DOI: 10.1038/srep30062

Step 1 - Computing CI. To compute the CIℓ(i) value of node i according to Eq. (1) we have to find the nodes
belonging to the frontier ∂ B(i, ℓ) of the ball of radius ℓ centered on i. In an undirected network, nodes j ∈ ∂ B(i,
ℓ) can be found by using a simple breadth-first-search up to a distance ℓ from the central node i. In practice, first
we visit the nearest neighbours of node i, which, of course, belong to ∂ B(i, 1). Then we visit all the neighbours of
those nodes not yet visited, thus arriving to ∂ B(i, 2). We keep going until we visit all the nodes in ∂ B(i, ℓ). At this
point we use the nodes j ∈ ∂ B(i, ℓ) to evaluate CIℓ(i) using Eq. (1). When all the CI values {CIℓ(1), … , CIℓ(N)} have
been calculated, we arrange them in a max-heap, as explained next.

Step2 - Building the max-heap. We build the heap in a bottom-up fashion, from the leaves to the root.
Practically, we first fill the heap with arbitrary values and then we heapify all the levels starting from the lowest
one. In this way the root stores automatically the largest CI value.

Step3 - Removal. We remove from the network the node having the largest CI value, and we decrement by
one the degrees of its neighbors. Since the largest CI value is stored in the root of the max-heap, then, after its
removal, the root has to be replaced by a new one storing the new largest CI value. The easiest way to do this con-
sists in replacing the old root with the rightmost leaf in the last level of the heap, decreasing the size of the heap by
one, and heapifying the heap starting from the new root, as shown schematically in Fig. 3.

Step4 - Updating CI values. Removal of a node perturbs the CI values of other nodes, which must be
recomputed before the next removal. The nodes perturbed by the removal are only the ones placed at distances
1, 2, … , ℓ, ℓ + 1 from the removed one. In other words, only the nodes inside the ball B(i, ℓ + 1) change their CI
values when i is removed, while the others remain the same (see Fig. 4).

The CI values of nodes on the farthest layer at ℓ + 1 are easy to recompute. Indeed, let us consider one of this
node and let us call k its degree. After the removal of the central node its CI value decreases simply by the amount
k − 1. For nodes in the other layers at distance 1, 2, … , ℓ, the shift of their CI values is, in general, not equally
simple to assess, and we need to use the procedure explained in Step1.

When we modify the CI value stored in a node of the heap, it may happen that the new heap does not satisfy
the max-heap rule, and hence we have to restore the max heap-structure after each change of the CI values. First
of all we note that, under the hypothesis that the structure around the removed node is locally tree-like, the new
CI values of the surrounding nodes can only be smaller than their old values (for ℓ ≤ 2 this is always true even
without the tree-like hypothesis). Consequently, we need to heapify only the sub-trees rooted on those nodes. We
stress that the order of the update and heapification operations is important: each node update must be followed
by the corresponding heapification, before updating the next node.

Figure 2. Flow of the CI algorithm. The first part of the algorithm, executed only once, consists of two steps:
i) computing CI for each node, and ii) allocating the CI values in the max-heap. After that, the main loop of the
algorithm follows, which consists of three steps: iii) removing the node with highest CI value along with the
root of the heap; iv) heapifying the heap starting from the new root (see Step3); v) updating the CI values of
the perturbed nodes, and heapifying the sub-trees rooted on each updated node. The loop ends when the giant
component is destroyed.

www.nature.com/scientificreports/

4Scientific RepoRts | 6:30062 | DOI: 10.1038/srep30062

Step5 - Stopping the algorithm. To decide when the algorithm has to be terminated we use a very simple
method, which allows one to avoid checking when the giant component G vanishes. The idea is to monitor the
following quantity after each node removal:

λ =

∑

+

q
i

N k
(;)

CI ()
,

(3)
i

1/(1)

where 〈 k〉 is the average degree of the network for q = 0. Equation (3) gives an approximation of the minimum of
the largest eigenvalue of the non-backtracking matrix when Nq nodes are removed from the network1. For q = 0,
it is easy to show that, for tree-like random graphs, λ(ℓ; 0) = κ − 1, where κ = 〈 k2〉 /〈 k〉 . Removing nodes decreases
the eigenvalue λ(ℓ; q), and the network is destroyed when limℓ→∞λ(ℓ; q = qc) = 1. Practically we cannot take
the limit ℓ → ∞ , but for ℓ reasonably large, the relaxed condition λ(ℓ; q = qc) = 1 works pretty well, as we show

Figure 3. Schematic representation of how to update the heap. In step 1) the root node storing the highest
CI value, node 11 in this case, is removed. In step 2) the root is replaced by the rightmost leaf of the heap, that is
node 3 in this example. In step 3) the new heap does not satisfy the max-heap rule. In step 4) the heapification
starting from the root restores the max-heap structure. The heapification down-moves progressively node 3 in
the heap by swapping it with the largest of its children nodes, until it does satisfy the max-heap property in the
final location.

Figure 4. Left panel: the CI of the red node at the level ℓ is computed using the nodes on the boundary of the
ball of radius ℓ centered on the red node. Right panel: the removal of the red node perturbs the CI values of
nodes located up to a distance ℓ + 1 from it. Accordingly, only the CI values of these nodes, i.e. the black ones,
must be updated before the next removal.

www.nature.com/scientificreports/

5Scientific RepoRts | 6:30062 | DOI: 10.1038/srep30062

in Fig. 5. Therefore, we can stop the algorithm when λ(ℓ; q) = 1. The advantage of using Eq. (3) is that it can be
updated on runtime at nearly no additional computational cost, and therefore does not require additional O(N)
calculations (per node removal) needed to compute the giant component. Figure 6 shows the giant component
attacked by CI and high-degree adaptive in a ER network of 100 million nodes.

The running time of CI algorithm is O(N log N). In fact, Step1 and Step2 take both O(N) operations and they
are performed only once. Step3 and Step4 take each at most O(log N) operations and they are repeated O(N)
times. Therefore the algorithm takes O(N log N + N) ∼ O(N log N) operations. To check the (N log N) scaling of
the CI algorithm we performed extensive numerical simulations on very large networks up to N = 2 × 108 nodes.
The results shown in Fig. 7 clearly confirm that CI runs in nearly linear time.

Figure 5. Giant component G(q) (red dots) computed with CI, second largest cluster (blue triangles), and
the eigenvalue λ(ℓ; q) (black crosses) as given by Eq. (3), as a function of the removed nodes q. Here we used
an ER network of 106 nodes, average degree 〈 k〉 = 3.5, and radius of the CI sphere equal to ℓ = 5. The eigenvalue
λ(q) reaches one when the giant component is zero, as marked also by the peak in the size of the second largest
cluster. In this plot the size of the second largest cluster is magnified to make it visible at the scale of the giant
component.

Figure 6. Giant component G(q) as a function of the fraction of nodes q removed using CI algorithm (red
dots) on a ER network of 108 nodes. The result obtained by using CI is compared with the one obtained by
using the HDA (high degree adaptive) strategy (black crosses), one of the few strategies which is adaptive and
linear in algorithmic time. Indeed, the max-heap trick can be used also for other adaptive algorithms having
the same properties of CI, such as HDA (which corresponds basically to the ℓ = 0 limit of the CI algorithm).
Consequently, HDA has the same running time of its non-adaptive version, i.e., the simple high-degree
centrality. However, exploiting a max-heap is not feasible for general adaptive algorithms, like CIP or BPD.
Therefore, since we are unable to keep their running time linear in the system size when nodes are removed
one-by-one, we cannot apply them on the large network instance used in this example, as their running time for
this network is about 103 years. In the inset we show the giant component G(q) before and after the application
of the reinsertion method discussed in Sec. Implementing CI in linear time at Step6.

www.nature.com/scientificreports/

6Scientific RepoRts | 6:30062 | DOI: 10.1038/srep30062

Step6 - Reinsertion. We conclude this section by discussing a refinement of CI algorithm, which we use to
minimize the giant component in the phase G > 0. This is useful when it is impossible to reach the optimal perco-
lation threshold (where G = 0), but one still wants to minimize G using the available resources, i.e., the maximum
number of node removals at one’s disposal. The main idea is based on a reinsertion method, according to which
nodes are reinserted in the network using the following criterion. We start from the percolation point, where the
network is fragmented in many clusters. We add back in the network one of the removed node, chosen such that,
once reinserted, it joins the smallest number of clusters. Note that we do not require that the reinserted node joins
the clusters of smallest sizes, but only the minimum number of clusters, independently from their sizes. When
the node is reinserted we restore also the edges with its neighbors which are in the network (but not the ones with
neighbors not yet reinserted, if any). The procedure is repeated until all the nodes are back in the network. When
implementing the reinsertion, we add back a finite fraction of nodes at each step. In our simulations we reinserted
0.2% of nodes at each step. Moreover, we observed that using a fraction smaller than 0.2% does not change the
results. In the inset of Fig. 6 we show the giant component G(q) as a function of the fraction of removed nodes q
before and after the reinsertion step.

CI propagation
In this section we present the CI-propagation algorithm (CIP), which extends the CI algorithm to take into
account the global information beyond the local CI sphere. However, the main idea of CIP remains the same, i.e.,
minimizing the largest eigenvalue of the non-backtracking (NB) matrix1. Indeed, CIP is obtained asymptotically
from CIℓ as ℓ → ∞ .

The NB is a non-symmetric matrix and it has different right and left eigenvectors. As we will see the right and
left eigenvectors corresponding to the largest eigenvalue provides two different, yet intuitive, notions of node’s
influence. The left eigenvector

��
L is a vector with 2M entries Li→j, where M is the total number of links, that satisfies

the following equation:

∑λ λ
= ≡ .→

∈∂
→ →

�� ˆL L L1 1 ()
(4)

i j
ax k i j

k i
ax

T
i j

m \ m

A similar equation holds for the right eigenvector
→
R :

∑λ λ
= ≡→

∈∂
→ →

��ˆR R R1 1 () ,
(5)

i j
ax k j i

j k
ax

i j
m \ m

where ̂ is the NB matrix. Both left and right eigenvectors can be thought of as two sets of messages traveling
along the directed edges of the network. This becomes more apparent if we transform Eqs (4–5) in dynamical
updating rules for the messages Li→j and Ri→j as:

∑

∑

∑ ∑

λ λ

λ λ

λ

= ≡

= ≡

= = .

→ −
∈∂

→
−

− →

→ −
∈∂

→
−

− →

−

→
→
−

→
→
−

��

��

L L L

R R R

L R

1 1 () ,

1 1 () ,

() ()
(6)

i j
t

t
k i j

k i
t

t
T

i j

i j
t

t
k j i

j k
t

t i j

t

i j
i j
t

ll i j
i j
t

max
1

\

1

max
1

max
1

\

1

max
1

max
1

All

1 2

A

1 2

The interpretation of Eq. (6) is the following. For each directed edge i → j, the message →Li j
t at time t from i to j is

updated using the messages →
−Lk i

t 1 incoming into node i at time t − 1, except the message →
−Lj i

t 1. Therefore, the left
message →Li j

t represents the amount of information received by node i from its neighbours, other than j. On the

Figure 7. Running time of the CI algorithm (including the reinsertion step) for ER random graphs of
average degree 〈k〉 = 3, as a function of the network size, and for different values of the radius ℓ of the ball.
(To generate very large ER random graphs we used the algorithm of ref. 8). For a graph with 0.2 billion nodes
the running time is less than 2.5 hours with ℓ = 2 and ∼ 5 hours with ℓ = 3.

www.nature.com/scientificreports/

7Scientific RepoRts | 6:30062 | DOI: 10.1038/srep30062

contrary, the right message Ri→j is updated using the sum of the outgoing messages from node j to nodes k other
than i, and thus it measures the amount of information sent by node j to its neighbours, other than i.

Now we come to the problem of minimizing the largest eigenvalue λmax of the NB matrix ̂ by removing nodes
one-by-one. Let us consider the non-backtracking matrix ̂ of the network. When we remove a node from the
network, the NB matrix ̂ changes as a consequence of the node deletion. Let us call δ−ˆ ˆ the NB matrix of the
network with one node less. Similarly, also the right and left eigenvectors of ̂ change after the node removal. We
call δ−
�� ��
R R and δ−

�� ��
L L the right and left eigenvectors of the perturbed NB matrix δ−ˆ ˆ . Then, the eigenvalue

equation for the matrix δ−ˆ ˆ reads:

δ δ λ δλ δ− − = − −
�� �� �� ��ˆ ˆ R R R R()() ()(), (7)

where λ − δλ is the new eigenvalue after the node removal. We also note that δλ ≥ 0, and that the entries of the
matrix δ̂ are non-negative. Assuming that all the terms δ ˆ , δ

��
R and δλ can be treated as small, so that we can

neglect contributions of order δ δ
��

‖ ˆ ‖O R() and δλ δ
��

‖ ‖O R(), we obtain the following simpler eigenvalue equation:

δ δ λδ δλ+ = + .
�� �� �� ��ˆ ˆR R R R (8)

Now, by scalar multiplying on the left both sides of Eq. (8) by the left eigenvector
��
L of the NB matrix ̂, we

obtain the following equation for the eigenvalue shift δλ due to removal of a node:

∑δλ δ δ=
⋅
⋅

=
⋅

.
→ →

→ → → →

�� ��
�� �� �� ��

�
� �

ˆL R
L R L R

L R() 1

(9)i j k
i j i j k k

,
,

Next, we notice that the matrix δ̂ has non-zero components only on the pairs of non-backtracking edges
(i → j, k → ℓ) containing the removed node in any position. If we call i the removed node, then δ ˆ has non-zero
components, equal 1, only for the following pairs of non-backtracking edges:

→ → ← ← → → ← ←k i j k i j i k j i k j, , , (10)

for all j, k ∈ ∂ i. Taking into account only the contributions in Eq. (10) to evaluate the sum on the r.h.s of
Eq. (9), we find:

∑δλ λ
= →

⋅
→ + .
∈∂

→ → → →
L R

L R L R2 ()
(11)j i

i j i j j i j i

From Eq. (11) is clear that the node i which decreases the most the largest eigenvalue λ of the NB matrix ̂ after
its removal, is the one that maximizes the sum on the r.h.s. of Eq. (11). We call this sum the Collective Influence
Propagation of node i, which we define as:

∑= + .
∈∂

→ → → →i L R L RCI () ()
(12)j i

i j i j j i j iP

The quantity CIP(i) combines both the information received and the information broadcasted by node i. The
interpretation of this quantity comes directly from the recursive Eqs (4) and (5). Indeed, if we plug the recursive
Eq. (4) for Li→j into (12), and we keep iterating ℓ times, we obtain the sum of all the messages L→Ball(i, ℓ) incoming
into the ball of radius ℓ centered on i. Similarly, by plugging Eq. (5) for Ri→j into (12) and iterating ℓ times, we
obtain the sum of all the messages R→Ball(i, ℓ) outgoing from the ball of radius ℓ centered on i (analogous inter-
pretations hold for Li→j and Ri→j). With a bit of verbal playfulness, we could say that Eq. (12) quantifies both the
“IN-fluence” and the “OUT-fluence” of node i.

Having defined the main quantity of the CIP algorithm, we move to explain the few simple steps to implement it.

(1) Start with all nodes present and iterate Eq. (6) until convergence.
(2) Use the converged messages Li→j and Ri→j to compute the CIP(i) values for each node i.
(3) Remove node i* with the highest value of CIP(i*) and set to zero all its ingoing and outgoing messages.
(4) Repeat from 2) until λmax = 1.

The CIP algorithm produces better results than CI. As we show in Fig. 8 for the case of a random cubic
graph, CIP is able to identify the optimal fraction of influencers, which is known analytically to be qc = 1/410.
Unfortunately the CIP algorithm has running time O(N2) and thus cannot be scaled to very large networks,
as we show in Fig. 9, where we also compare with the time complexity of the BPD algorithm of ref. 12 and
with the original CI algorithm. We also note that in the implementation of CIP there is no need to compute
explicitly the giant component, and the algorithm is terminated when the largest eigenvalue of the NB matrix
equals λmax = 1.

We close this section by noticing that CIP is a parameter-free algorithm, i.e., it does not require any fine tuning
and can be applied straight away thanks to its low programming complexity. The introduction of tunable param-
eters in the algorithm may improve its performance, but would not reduce its running time. Furthermore, the
quasi-optimal performance of CIP for finding minimal percolation sets in small systems in Fig. 8 leaves little room
for improvement, and so we do not develop the algorithm further.

www.nature.com/scientificreports/

8Scientific RepoRts | 6:30062 | DOI: 10.1038/srep30062

Collective Immunization
In this section we formulate the optimal percolation problem as the limit of the optimal immunization prob-
lem in the SIR –Susceptible-Infected-Recovered– disease spreading model11, and we present the Collective
Immunization algorithm, or CIBP, based on Belief Propagation.

According to the SIR model, a variable =x S I R{ , , }i
t encodes the state of each node i at time step t. A node in

a state xi = I stays infected for a finite time, and in this state, it may infect a neighboring node j if xj = S. After the
infectious period, the infected node i recovers. Nodes in state R stay in R forever, being immune to further infec-
tion. Thus in the long time limit, the disease state ∞xi of any node i is either R or S. In this limit one can compute
the marginals of x∞ on any node, knowing the initial state x0, in a ‘message passing’ manner. The message that
node i passes to node j is the probability ν |→

∞x x()i j i i
0 that node i ends in state ∞xi knowing it starts in state xi

0,
assuming that node j is absent.

According to the dynamic rule of SIR model, we have the following set of relations:

Figure 8. Giant components G(q) computed with σi = 1 (red dots) and CIBP (blue triangles) algorithms,
and the eigenvalue λ(q) (black crosses) computed with CIP, as a function of the removed nodes q, in a
Random Regular Graph of 105 nodes, and degree k = 3. The vertical line at q = 0.25 = qc marks the position of
the analytical exact optimal value of the percolation threshold10.

Figure 9. Running time of CI (red dots) at level ℓ = 3, CIP (black squares), and the BPD algorithm of
ref. 12 (blue triangles), as a function of the network size N, for ER networks of average degree 〈k〉 = 3. The
CI algorithm is the only one that scales almost linearly with the system size, while both BP algorithms, CIP and
BPD, scale quadratically with the network size N. The vertical dashed line is at N = 2 × 108: for this network
size, the running time of CI at level ℓ = 3 is roughly 5 hours (and ∼ 2.5 hours for ℓ = 2), while both CIP and BPD
would take a time of ∼ 3,000 years to accomplish the same task. (To measure the running time of CIP and BPD
we used the same number of iterations of the messages. In all three algorithms nodes were removed one-by-one.
Data are in log− log scale.) To draw the curve corresponding to the BPD algorithm we used the original source-
code provided by the authors of ref. 12 (power.itp.ac.cn/zhouhj/codes.html).

www.nature.com/scientificreports/

9Scientific RepoRts | 6:30062 | DOI: 10.1038/srep30062

ν ν

ν

ν

= | = = − = | =

= | = =

= | = = .

→
∞

→
∞

→
∞

→
∞

x R x S x S x S

x S x R

x S x I

() 1 (),

() 0,

() 0 (13)

i j i i i j i i

i j i i

i j i i

0 0

0

0

Therefore, it is clear that the knowledge of the sole ν = | =→
∞x S x S()i j i i

0 is enough to reconstruct the long
time limit of the marginal of ∞xi . Next, we assume that each node is initially infected with probability γ, i.e., at
time 0 a randomly chosen set of γN sites are infected. We also introduce a binary variable ni for each node i, taking
values ni = 0 if node i is immunized (i.e. removed in the language of optimal percolation), and ni = 1 if it is not (i.e.
present). For a locally tree-like network where the interactions satisfy the cluster decomposition property (i.e.
nodes far apart in the tree do not interfere), the probabilities (messages) received by node i from its neighbors j
can be considered as uncorrelated. This allows one to calculate self-consistently the messages through the follow-
ing equations:

∏ν γ β ν= | ≠ = − − − = | ≠→
∞

∈∂
→

∞x S x R x S x R n() (1) [1 (1 ())],
(14)

i j i i
k i j

k i k k k
0

\

0

where β is the transmission probability of the disease (or the spreading rate). The optimal percolation problem is
found in the limits γ = 1/N → 0 and β → 1.

The marginal probability that node i is eventually susceptible given that node i is not one of the immunizators
is obtained through:

∏ν γ β ν= | ≠ = − − − = | ≠ .∞

∈∂
→

∞x S x R x S x R n() (1) [1 (1 ())]
(15)

i i i
k i

k i k k k
0 0

From now on we drop the argument in the probabilities ν i→j and ν i, and we simply write ν ν= ≠ =∞x S x R()i i i i
0 .

The best immunization problem amounts to find the minimal set of initially immunized nodes that minimizes
the outbreak size ν= ∑ −F n (1)i i i . This problem can be equivalently solved by minimizing the following energy
(or cost) function:

∑ ν= − .
E n n() log()

(16)i
i i

The energy function in Eq. (16) has the virtue of describing a pairwise model, and therefore is easier to treat.
Indeed, substituting (15) into (16) one can rewrite the energy function as:

∑

β ν β ν

=

= − − − − − −
< >

→ →

E n U n n

U n n n n n n

() (,),

(,) log[1 (1)] log[1 (1)], (17)

ij
ij i j

ij i j i j i j j i j i

where we drop an useless constant term. We found useful to make the following change of variables:

σ
=
−n 1
2

, (18)i
i

so that σi = 1 when node i is removed or immunized, and σi = − 1 when it is present or not immunized. The min-
imum of the energy function (17) can be found by solving the following equations:

∑µ σ σ σ σ= − +

− + +

−

− − +

σ σ∈∂

→ →
h U h U hmax (1,)

2
max (1,)

2
,

(19)
i

k i
ik k

k i

k ik k

k i

k
k k

∑µ σ σ σ σ= − +

− + +

−

− − +

σ σ

→
∈∂

→ →h U h U hmax (1,)
2

max (1,)
2

,
(20)

i j
k i j

ik k
k i

k ik k
k i

k
\ k k

where the variable hi is the log-likelihood ratio:

=

h i
i

log probability that is removed
probability that is present

,
(21)

i

and μ is a parameter (chemical potential) that can be varied to fix the desired fraction of removed nodes q. The
value of σi is related to hi via the equation:

σ = .hsign() (22)i i

Equations (14), (19), (20) and (22) constitute the full set of equations of the immunization optimization
problem, which, for γ = 0 and β = 1, is analogous to optimal percolation since, in this case, the best immuniza-
tors are those that optimally destroy the giant connected component. These equations can be solved iteratively
as follows:

www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:30062 | DOI: 10.1038/srep30062

•	 Choose a value for μ, γ, β, and initialize all the state variables σi and hi→j to random values.
•	 Then iterate Eqs (14) until convergence to find the values of ν i→j.
•	 Then iterate Eqs (20) until convergence to find the values of hi→j.
•	 Compute the new hi using (19), and the the new state σi of node i via Eq. (22).
•	 Repeat until all the fields {hi} have converged.

In cases where the equations (20) do not converge, we use the reinforcement technique9. Once a solution to
the equations has been found, the configuration σ→⁎ is the output of the algorithm: if σ =⁎ 1i the node is removed,
and if σ = −⁎ 1i it is present. The CIBP algorithm has the same performance as the CIP algorithm, as we show for
the case of random cubic graphs in Fig. 8, reproducing the exact result of ref. 10 for small system size and leaving
virtually no room for improvement for these systems. However, while it improves over CI, it suffers the same
deficiency for large systems as CIP and BDP since it is a quadratic algorithm which can be applied only to small
networks.

We conclude this section by emphasizing that all the algorithms discussed in this work leverage on the
assumption about the locally tree-like structure of the network, while real networks may violate this hypothesis.
Nonetheless, the tree-like approximation, also known as the Bethe ansatz, is a very good mean-field theory for
complex networks, and corrections due to the presence of loops of finite length may be, in principle, accommo-
dated systematically. Indeed, it would be very interesting and useful to develop further, for example, the theory of
optimal percolation by including loop corrections, following the theoretical lines of, e.g., refs 13–16.

Conclusions
We have shown how to implement the CI algorithm introduced in ref. 1 in nearly linear time when nodes are
removed one by one. This is possible thanks to the finite radius ℓ of the CI sphere, which in turn allows one to
process the CI values in a max-heap data structure.

Moreover, we have introduced CIP , a modified CI algorithm taking into account the global rearrangement of
the CI values after each node removal, and, in this respect, it corresponds to the ℓ → ∞ limit of CI. We have also
presented CIBP , a new algorithm to solve the optimal percolation problem, which blends the dynamics of the SIR
disease spreading model with message passing updating rules. The analysis of these algorithms (including BDP
as well) reveals that the improvements over CI are small and, more importantly, they are made at the expense of
increasing the computational complexity from linear (CI) to quadratic (BP) in the system size N, rendering BP
unfit for large datasets.

Therefore, CI remains the viable option of a nearly-optimal-low-complexity influencer search engine, which
is applicable to massively large networks of several hundred million of nodes, while the global CIP algorithm can
still be used to find small corrections in small networks when time performance is not an issue. Furthermore,
from a theoretical point of view, the simplicity of the CI analysis based on the NB eigenvalue remains as a good
option for theoretical generalization of optimal percolation to more complicated topologies, as shown in17,18 for
brain network of networks with interdependencies and other more complex applications that are being presently
developed.

References
1. Morone, F. & Makse, H. Influence maximization in complex networks through optimal percolation. Nature 524, 65–68 (2015).
2. Pei, S. & Makse, H. A. Spreading dynamics in complex networks. J. Stat. Mech. P12002 (2013).
3. Pei, S., Muchnik, L., Andrade, J. S. Jr., Zheng, Z. & Makse, H. A. Searching for superspreaders of information in real-world social

media. Sci. Rep. 4, 5547 (2014).
4. Freeman, L. C. Centrality in social networks: conceptual clarification. Social Networks 1, 215–239 (1979).
5. Wasserman, S. & Faust, K. Social Network Analysis (Cambridge Univ. Press, Cambridge, 1994).
6. Kitsak, M. et al. Identification of influential spreaders in complex networks. Nature Phys. 6, 888–893 (2010).
7. Kempe, D., Kleinberg, J. & Tardos, E. Maximizing the spread of influence through a social network. Proc. 9th ACM SIGKDD Intl.

Conf. on Knowledge Discovery and Data Mining p137–p143, doi: 10.1145/956750.956769 (2003).
8. Batagelj, V. & Brandes, U. Efficient generation of large random networks. Phys. Rev. E. 71, 036113 (2005).
9. Braunstein, A. & Zecchina, R. Learning by message passing in networks of discrete synapses. Phys. Rev. Lett. 96, 030201 (2006).

10. Bau, S., Wormald, N. C. & Zhou, S. Decycling numbers of random regular graphs. Random Struct. Alg. 21, 397–413 (2002).
11. Kermack, W. O. & McKendrick, A. G. A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. London A. 115,

700–721 (1927).
12. Mugisha, S. & Zhou, H. J. Identifying optimal targets of network attack by belief propagation. arXiv:1603.05781.
13. Parisi, G. & Slanina, F. Loop expansion around the BethePeierls approximation for lattice models. J. Stat. Mech. Theory Exp. L02003

(2006).
14. Montanari, A. & Rizzo, T. How to compute loop corrections to the Bethe approximation J. Stat. Mech. Theory Exp. P10011 (2005).
15. Ferrari, U. et al. Finite size corrections to disordered systems on Erdös-Rényi random graphs. Phys. Rev. B. 88, 184201 (2013).
16. Lucibello, C., Morone, F., Parisi, G., Ricci-Tersenghi, F. & Rizzo, T. Finite-size corrections to disordered Ising models on random

regular graphs. Phys. Rev. E. 90, 012146 (2014).
17. Morone, F., Roth, K., Min, B., Stanley, H. E. & Makse, H. A. A model of brain activation predicts the neural collective influence map

of the human brain (submitted, 2016) http://bit.ly/1YuumcS.
18. Roth, K., F. Morone, B. Min & H. A. Makse. Emergence of robustness in network of networks, arXiv: 1602.06238.

Acknowledgements
We thank NSF, NIH and Army Research Laboratory Cooperative Agreement Number W911NF-09-2-0053 (the
ARL Network Science CTA) for financial support.

Author Contributions
F.M., B.M., L.B., R.M. and H.A.M. designed the research, performed the research and wrote the paper.

http://bit.ly/1YuumcS

www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:30062 | DOI: 10.1038/srep30062

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Morone, F. et al. Collective Influence Algorithm to find influencers via optimal
percolation in massively large social media. Sci. Rep. 6, 30062; doi: 10.1038/srep30062 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images
or other third party material in this article are included in the article’s Creative Commons license,

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this
license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Collective Influence Algorithm to find influencers via optimal percolation in massively large social media
	Implementing CI in linear time
	Step 1 - Computing CI.
	Step2 - Building the max-heap.
	Step3 - Removal.
	Step4 - Updating CI values.
	Step5 - Stopping the algorithm.
	Step6 - Reinsertion.

	CI propagation
	Collective Immunization
	Conclusions
	Acknowledgements
	Author Contributions
	Figure 1.  Max-heap data structure used to implement the CI algorithm.
	Figure 2.  Flow of the CI algorithm.
	Figure 3.  Schematic representation of how to update the heap.
	Figure 4.  Left panel: the CI of the red node at the level ℓ is computed using the nodes on the boundary of the ball of radius ℓ centered on the red node.
	Figure 5.  Giant component G(q) (red dots) computed with CI, second largest cluster (blue triangles), and the eigenvalue λ(ℓ q) (black crosses) as given by Eq.
	Figure 6.  Giant component G(q) as a function of the fraction of nodes q removed using CI algorithm (red dots) on a ER network of 108 nodes.
	Figure 7.  Running time of the CI algorithm (including the reinsertion step) for ER random graphs of average degree 〈k〉 = 3, as a function of the network size, and for different values of the radius ℓ of the ball.
	Figure 8.  Giant components G(q) computed with σi = 1 (red dots) and CIBP (blue triangles) algorithms, and the eigenvalue λ(q) (black crosses) computed with CIP, as a function of the removed nodes q, in a Random Regular Graph of 105 nodes, and degre
	Figure 9.  Running time of CI (red dots) at level ℓ = 3, CIP (black squares), and the BPD algorithm of ref.

 application/pdf

 Collective Influence Algorithm to find influencers via optimal percolation in massively large social media

 srep , (2016). doi:10.1038/srep30062

 Flaviano Morone
 Byungjoon Min
 Lin Bo
 Romain Mari
 Hernán A. Makse

 doi:10.1038/srep30062

 Nature Publishing Group

 © 2016 Nature Publishing Group

 © 2016 Macmillan Publishers Limited
 10.1038/srep30062
 2045-2322

 Nature Publishing Group

 permissions@nature.com

 http://dx.doi.org/10.1038/srep30062

 doi:10.1038/srep30062

 srep , (2016). doi:10.1038/srep30062

 True

