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Abstract

Sarcoidosis is a systemic granulomatous disease of unknown etiology. Granulomatous 

inflammation in sarcoidosis may affect multiple organs, including the lungs, skin, CNS, and the 

eyes, leading to severe morbidity and mortality. The underlying mechanisms for sustained 

inflammation in sarcoidosis are unknown. We hypothesized that metabolic changes play a critical 

role in perpetuation of inflammation in sarcoidosis. 1H nuclear magnetic resonance (NMR)-based 

untargeted metabolomic analysis was used to identify circulating molecules in serum to 

discriminate sarcoidosis patients from healthy controls. Principal component analyses (PCA) were 

performed to identify different metabolic markers and explore the changes of associated 

biochemical pathways. Using Chenomx 7.6 NMR Suite software, we identified and quantified 

metabolites responsible for such separation in the PCA models. Quantitative analysis showed that 

the levels of metabolites, such as 3-hydroxybutyrate, acetoacetate, carnitine, cystine, 

homocysteine, pyruvate, and trimethylamine N-oxide were significantly increased in sarcoidosis 

patients. Interestingly, succinate, a major intermediate metabolite involved in the tricyclic acid 

cycle was significantly decreased in sarcoidosis patients. Application of integrative pathway 

analyses identified deregulation of butanoate, ketone bodies, citric cycle metabolisms, and 

transmethylation. This may be used for development of new drugs or nutritional modification.
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 1 Introduction

Sarcoidosis is a multisystem granulomatous disease of unknown etiology (Iannuzzi et al. 

2007; Hunninghake et al. 1999) characterized by a heightened immune response to an 

unknown antigen. The coordination of multiple immune cells including macrophages and 

dendritic cells, as well as T and B cell differentiation and proliferation contribute to 

granuloma formation, ultimately leading to organ dysfunction (Rastogi et al. 2011; Iannuzzi 

et al. 2007; Hunninghake et al. 1999). While the exact mechanisms underlying this disease 

are still unknown, genes and environmental interplay including metabolic derangements may 

play a role in the development and progression of the disease. Interconnections between 

metabolic pathways are particularly complex, yet to identify how cellular metabolism 

influences the immune response is critical in identifying how to exploit metabolic pathways 

to alter immune responses and disease outcome. Recent studies have shown that glucose 

availability and acetyl-CoA production influence epigenetics and drive the T cell 

differentiation program (Wellen et al. 2009). Additionally, several amino acids, including 

glutamine and leucine play important roles in T cell function and may directly influence T 

cell activation through metabolic reprogramming (Wang et al. 2011a; Sinclair et al. 2013). 

Therefore, detection of metabolic alterations in patients with sarcoidosis may be important 

in understanding the mechanisms of sustained inflammation in this disease.

Metabolomics is a systematic investigation of the metabolic responses in biological systems, 

providing a comprehensive and quantitative study of a complete set of intracellular and 

extracellular metabolites (Trujillo et al. 2006). Given the importance of metabolic cues in the 

regulation of inflammatory responses both in macrophages as well as T-cells, metabolomics 

has been used to study such perturbations in numerous diseases (Jayavelu and Bar 2014; 

Wen et al., 2013; Barallobre-Barreiro et al. 2013; Wang et al. 2010; DeFeo et al. 2011; Lu et 

al. 2013; Noga et al. 2012). However, the role of metabolomics in sarcoidosis has not been 

investigated.

In this study, we tested the hypothesis that patients with sarcoidosis may have aberrant 

metabolomic profiles contributing to granulomatous inflammation. Using NMR-based 

analysis, we showed that the concentration of certain serum metabolites is altered in patients 

with sarcoidosis.

 2 Research design and methods

 2.1 Study population

Patients with sarcoidosis were recruited from the Sarcoidosis and Interstitial Lung Disease 

Center at Wayne State University School of Medicine, Detroit Michigan. Adult patients (n = 

20) diagnosed with sarcoidosis using standard guidelines (Hunninghake et al. 1999) were 

enrolled in the study. The presence of known extra-pulmonary organ involvement was 
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recorded according to ATS guidelines (Hunninghake et al. 1999). Healthy subjects matched 

for race, age and BMI from the community (n = 17) with no known lung diseases were 

enrolled as controls.

Pulmonary function tests were performed following ATS guidelines in a licensed laboratory 

in all patients. All spirometric studies were performed using a calibrated pneumotachograph 

and lung volumes were measured in a whole-body plethysmograph (Jaeger Spirometry and 

Sen-sorMedics Vmax 22, VIASYS Respiratory Care, Inc; Yorba Linda, CA, USA) (Redlich 

et al. 2014).

Blood samples were collected before initiation of any treatment after written consent was 

obtained from subjects. Blood was allowed to clot for 30 min at room temperature and 

centrifuged at 2500 rpm for 10 min using SST vacutainer tubes (BD Bioscience, Franklin 

Lakes, NJ, USA). Serum was collected and stored at −80 °C until further analysis was 

performed. The study design and data acquisition were approved by the Institutional Review 

Board at Wayne State University and Detroit Medical Center, Detroit, MI.

 2.2 Serum metabolomic analysis using 1H NMR

Serum samples were analyzed following filtration through a 3-kD nominal cut-off 

membrane (Amicon Ultra 0.5 mL centrifugal filters, Millipore Corp, Billerica, MA) to 

remove proteins, lipids, lipoproteins, and protein-bound forms of certain molecules. Each 

serum sample was transferred to a prewashed filter and centrifuged at 13,800 g for 60 min as 

previously described (Gregory et al. 2013). The filters were further washed with deuterium 

oxide (D2O) and the filtrate was mixed with the filtered serum in a 1:1 ratio. A reference 

buffer solution containing 5 mmol/L disodium-2,2-dimethyl 2-silapentane-5-sulphonate 

(DSS) and 10 mmol/L imidazole in D2O was added to the samples in a 1:9 ratio. The D2O 

provided a field-frequency lock, whereas DSS was used as the chemical shift reference and 

imidazole as pH indicator for the NMR spectra. A total of 600 µL mixture was transferred to 

a 5 mm NMR tube (Sigma Aldrich, St. Louis, MO). 1H NMR spectra were acquired at 

599.773 MHz frequency and a temperature of 298 K on a 600 MHz Agilent 

spectrophotometer (Agilent Technologies, Santa Clara, CA), using the nuclear Overhauser 

effect spectroscopy (NOESY) pulse sequence with presaturation. A total of 64 scans and a 

10.0 ppm spectral width were obtained. The NMR data were processed using ACD/Spec 

Manager 7.00 software (Advanced Chemistry Development Inc., Toronto, Canada) using 

auto-phase and baseline correction. Intelligent binning was used to divide the spectra into 

1000 integrated regions of 0.01 ppm width each, corresponding to the region of δ10 to 0 

(Chen et al. 2014). The peak ppm values were calibrated with reference to the DSS signal at 

0 ppm. Before conducting the analysis, the region of spectra associated with residual water 

(4.63–5.05 ppm) was removed. The integrated data were normalized to the total integrals of 

each spectrum, and then the spectra were digitized to a table of common integrals and 

exported as a non-negative value text file for further analysis.

 2.2.1 Multivariate data analysis—Processed NMR data was subjected to multivariate 

pattern recognition analysis using Soft Independent Modeling of Class Analogy (SIMCA) P

+13.0 software package (Umetrics, Umeå, Sweden). Data were mean-centered and each 
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variable was divided by the square root of its standard deviation (Pareto scaled). Spectra 

were statistically analyzed by principal component analysis (PCA) and partial least square 

discriminant analysis (PLS-DA). PCA is an unsupervised method of analysis of the spectral 

data meant to visualize inherent clustering between groups. Data were visualized with the 

score plots of the first two principal components (PC1 and PC2), in which the data points 

represent individual samples. The metabolites associated with the group separations were 

visualized in the corresponding loading plots, where each point represents a single NMR 

spectral region segment. Supervised analysis statistics PLS-DA was used to maximize 

identification of the differences among the groups and aid in screening of the metabolites 

responsible for the class separation by removing systematic variations unrelated to 

pathological status. To entirely interpret the model, score and loading plots combined with 

variable importance in the projection (VIP) were used.

 2.2.2 Identification and quantification metabolites—The pre-processed 1H NMR-

spectra were imported into Chenomx NMR Suite 7.6 software (Chenomx Inc., Edmonton, 

Canada). The reference spectral library was calibrated based on the position, intensity, and 

line-width of the reference peak. Essentially, a Lorentzian peak shape model of each 

reference compound was generated from the database and superimposed upon the actual 

spectrum. Spectra were randomly ordered for profiling and compounds were profiled in the 

order of decreasing concentration.

 2.2.3 Metabolic pathway and network analyses—To identify the relevant 

metabolic pathways and networks involved, we applied two programs: (1) MetaboAnalyst 

3.0 software, a web-based metabolomics data processing tool (Xia and Wishart 2011b) and, 

(2) the Kyoto Encyclopedia of Genes and Genomes (KEGG), a self-sufficient, integrated 

resource consisting of genomic, chemical, and network information (Altermann and 

Klaenhammer 2005).

 2.3 Statistical analysis

All data are reported as mean ± SD using SPSS 22.0 software (IBM, Armonk, NY, USA). 

An independent samples t test was applied to detect significant distinction between the 

concentrations of metabolites of the two groups. A Pearson correlation test was applied to 

identify any association between the metabolites found to be altered in sarcoidosis patients, 

as compared with healthy controls. A p value of <0.05 was considered statistically 

significant.

 3 Results

 3.1 Separation of metabolomic profiles of sarcoidosis patients and healthy controls 
using unsupervised and supervised analysis

Patients were recruited at the time of diagnosis in our center and before starting any 

treatment. Sera were collected at the same day of bronchoscopy. Demographics and disease 

characteristics of the sarcoidosis cohort and healthy controls are summarized in Table 1. 

There was no significant difference in age, race and BMI between patients and healthy 
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controls (p > 0.05). As shown in Table 1, none of the patients had evidence of decreased 

oxygen saturation or diminished lung function.

Unsupervised principal component analysis (PCA) was carried out to determine whether it is 

possible to distinguish healthy controls from sarcoidosis patients. Figure 1a, shows a distinct 

separation of the NMR spectra acquired from samples of patients and healthy controls as 

indicated in a 3-dimensional PCA score plot. The first component (PC1) accounts for the 

greatest variability in the data set, and the succeeding component (PC2) accounts for the 

second most variability in the data set. The plot revealed a distinct discrimination along the 

PC2 direction, representing 27 and 34 % variance, respectively (R2X = 0.73, Q2 = 0.66). The 

loading plot in Fig. 1b shows a distinct distribution of variables across PC1 and PC2 that 

provide information about the significance of the contribution of each variable to the pattern 

in the score plots. The cluster closer to the origin of the plot represents the metabolites that 

are similar in both groups, whereas the regions distant from the origin represent the 

metabolites that separate the two groups.

Next, we applied supervised partial least squares-discriminant analysis (PLS-DA) to the data 

set to remove factors unrelated to group characteristics and to maximize the group 

separation and identify discriminating metabolites. The PLS-DA score plot clearly shows 

class separation of spectra of healthy controls and the sarcoidosis group (Fig. 1c). The PLS-

DA score plot provided a stronger clustering for the sarcoidosis group (Fig. 1c), which was 

similar to PCA score plot (Fig. 1a).

To further identify the variables accounting for the separation between the two groups, 

variable importance in projection (VIP) statistics were calculated based on the PLS weights 

and the variability explained by the PLS-DA. A VIP score >1 is considered sufficient to 

discriminate between study groups (Ni et al. 2008). Using a VIP > 1, we initially identified a 

total of 60 variables. Increasing the threshold of VIP from 1 to 2, to reach a more stringent 

analysis, we considered the first 40 variables as optimal discriminating metabolites for the 

clustering of sarcoidosis and healthy subjects. Figure 1d shows that the most relevant regions 

of the spectra identified by the VIP plot (VIP > 2) include 0.9–1.3, 2.9, 3.2, and 3.4–3.8 

ppm, similar to those depicted by the PCA loading plot, validating the consistency of the 

data analyses using two different methodologies.

 3.2 Identification and quantification of metabolites altered in sarcoidosis patients

To further identify the complete signature of metabolites of sarcoidosis patients, Chenomx 

7.6 Suite NMR software was used to scan the metabolomic profiles of study subjects. 1H 

NMR spectra of sera provided well resolved peaks, allowing us to detect over 50 

metabolites, including amino acids, intermediates of the tricarboxylic acid cycle (TCA), 

organic acids, and phospholipid-associated molecules. Representative NOESY 1H NMR 

spectra of major metabolites detected in serum samples from a healthy control and a 

sarcoidosis patient are shown in Fig. 2a, b, respectively. There was a clear difference in the 

chemical shift of spectra between the two individuals. After quantification of each 

metabolite, values were subjected to an independent t-test analysis. Among all the 

metabolites analyzed, we identified numerous metabolites that were significantly increased 

(p < 0.05) in sarcoidosis patients as compared to healthy controls (Table 2A). Metabolites 
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that showed a higher concentration included 3-hydroxybutyrate (3-HB, p = 0.002), 

acetoacetate (p = 0.015), carnitine (p = 0.019), cystine (p = 0.000), homocysteine (p = 

0.023), pyruvate (p = 0.029), and trimethylamine N-oxide (TMAO, p = 0.003). In contrast, a 

number of metabolites showed decreased concentrations in serum of sarcoidosis patients, 

such as glutamine (p = 0.013), isoleucine (p = 0.019), and succinate (p = 0.003) (Table 2B). 

Although, succinate and pyruvate appeared in close proximity in the NMR spectrum (around 

2.4 ppm), they were easy to distinguish owing to their characteristic peaks. All these 

metabolites were identified to MSI level 1. Using box plots, Fig. 3 depicts the relative 

concentration of altered metabolites between controls and sarcoidosis patients.

 3.3 Concordance between the altered metabolites within a pathway

Correlations, as observed between the concentrations of metabolites in a biological sample, 

may be used to gain additional information about the physiological or patho-physiological 

state of the organism (Steuer et al. 2003). Next, we asked whether there is a correlation 

among metabolites within a pathway. Figure 4 shows the correlation heatmap among thirty-

two metabolites in sarcoidosis subjects using the Pearson’s correlation and Spearman’s rank 

correlation along with hierarchical clustering using hclust function. Table 3 shows Pearson 

correlations between the metabolites, which were significantly expressed. We identified a 

positive correlation between 3-HB and acetoacetate (R = 0.6), these metabolites being 

important in the fatty acid β-oxidation pathway. Homocysteine strongly correlated with 

cystine (R = 0.7) and carnitine (R = 0.6), indicating a connection between the homocysteine 

pathway, and carnitine production (Table 3). Similarly, pyruvate positively correlated with 

carnitine (R = 0.4), TMAO (R = 0.4), and homocysteine (R = 0.4). The highest positive 

correlation was found between TMAO and carnitine (R = 0.8) and TMAO and homocysteine 

(R = 0.8). It has been shown that certain gut microbiota metabolize L-carnitine into 

trimethylamine (TMA), which can be further oxidized to TMAO, a highly atherogenic 

metabolite (Koeth et al. 2013). In addition, even though taurine was not significantly 

different between the two groups, it positively correlated with carnitine (R = 0.5) and TMAO 

(R = 0.5). It is important to note that taurine is an intermediate in the methylamine/

homocysteine pathway.

Isoleucine was negatively correlated with carnitine (R = −0.4), homocysteine (R = −0.4), and 

TMAO (R = −0.4). Similarly, succinate was negatively correlated with 3-HB (R = −0.5) and 

pyruvate (R = −0.5), indicating an alteration in energy production and the TCA cycle in 

sarcoidosis (Table 3). Moreover, succinate was positively correlated with decreased levels of 

isoleucine (R = 0.4), an amino acid that after deamination and decarboxylation yields 

succinyl-CoA to feed into the TCA cycle (Nelson and Cox 2012). A significant correlation 

among the metabolites within these pathways suggests concordance among metabolites 

measured in the sera of sarcoidosis subjects.

To identify metabolic network(s) and biological relevance of the identified metabolic de-

arrangements in sarcoidosis, the MetaboAnalyst 3.0 software (Xia and Wishart 2011b) and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) database were used. The significant 

pathways identified by MetaboAnalyst 3.0 include butanoate metabolism, alanine, aspartame 

and glutamate metabolism, and the synthesis and degradation of ketone bodies. In addition, 
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the TCA cycle, tyrosine, propanoate, and phenylalanine metabolism, cysteine and 

methionine metabolism, and pyruvate metabolism are involved (Table 4; Fig. 5a). The 

impact of the metabolic pathways is determined by the number of hits, false discovery rate 

(FDR), and p-value (Table 4). Similar, using KEGG database, we identified three major 

pathways altered in this disease: (1) fatty acid β-oxidation, (2) glycolysis/TCA cycle, and (3) 

homocysteine/methylamine (Fig. 5b).

 4 Discussion

The “omics” technologies are primarily aimed at the universal detection of genomics, 

transcriptomics, proteomics, and recently metabolomics in a specific biological sample. 

Metabolites are the end products of cellular processes and considered as the ultimate 

response of an organism to genetic and environmental factors, representing the actual 

biological phenotype (Urbanczyk-Wochniak et al. 2003). Metabolomics is a rapidly evolving 

technique that simultaneously studies large numbers of small molecules and can aid to 

complete the knowledge gap in understanding the physiology of an organism. Evaluation of 

metabolomics in human chronic inflammatory diseases is still in the early stage. To our 

knowledge this study is the first to evaluate metabolomics in sarcoidosis using 1H NMR 

spectroscopy.

Sarcoidosis is an inflammatory disease of unknown etiology and is characterized by 

granuloma formation in different organs with an increase in T-helper type 1 (Th1)—

mediated cytokines. The presence of activated macrophages and the expansion of 

oligoclonal T and B cells suggest a sustained activation of inflammatory pathways in this 

disease (Iannuzzi et al. 2007; Rastogi et al. 2011). Recently, it has been recognized that 

metabolic reprogramming is a prerequisite for inflammation and immunological responses 

to diverse stimuli, both in macrophages and lymphocytes (Tannahill et al. 2013; Wang et al. 

2011a; Sinclair et al. 2013). However, most of these studies were done in animal models or 

isolated macrophages and lymphocytes (Tannahill et al. 2013). How metabolic 

reprogramming might relate to sustained inflammation in chronic inflammatory diseases or 

respiratory diseases, including sarcoidosis, has not been studied. To decrease confounding 

factors such as chronic respiratory diseases, we only enrolled subjects, who were recently 

diagnosed with symptomatic sarcoidosis, not on any treatment and had only minimal 

abnormalities in pulmonary function testing.

We investigated the metabolomic profiles of patients with sarcoidosis compared to healthy 

controls by analyzing serum metabolites using 1H NMR spectroscopy. Using an untargeted 

approach, a complete scan of the metabolomic profile was performed using NMR Suite 

Chenomx software. As a cross-validation, the chemical shift of the altered metabolites 

matched the regions identified by the PCA loading plot and VIP analysis, confirming that 

these metabolites represent a novel signature and might be associated with the overall 

pathobiology of this disease. Applying a web based metabolomics data analysis tool, 

MetaboAnalyst 3.0 (Xia and Wishart 2011a) to enrich and identify metabolic pathways and 

relevant networks, several significant pathways were detected (Fig. 5; Table 4). Major 

aberrant pathways with high impact were as following, butanoate metabolisms, synthesis 

and degradation of ketone bodies, glutamate metabolism, TCA cycle and cysteine 
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metabolism. Several pathways shared compounds, for instance network analysis identified 

several significant amino acid pathways as indicated by low p-value and low FDR, such as 

alanine, phenylalanine, tyrosine as well as arginine, glutamate and proline. We summarized 

the alterations in three critical pathways: (1) fatty acid metabolism (β-oxidation), (2) 

glycolysis/TCA cycle, and (3) the homocysteine/methylamine pathways in sarcoidosis 

patients (Fig. 5b). Furthermore, both MetaboAnalyst 3.0 and the KEGG data base analyses 

of our data pointed towards aberrant microbiota and colon microbiome, identifying 

abnormalities in butanoate metabolism and methylamine (TMAO). Gut microbiota, 

especially anaerobic bacteria are the major producer of butyrate (Louis et al. 2004). 

Interestingly, butyrate has been shown to be important in the modulation of T cell immunity 

and it affects histone acetylation (Furusawa et al. 2013, Donohoe et al. 2012). In addition, 

metabolism of L-carnitine by intestinal microbiota has been recently linked to increased 

levels of inflammation and cardiovascular risk (Koeth et al. 2013). Wang et al. have shown 

that metabolism of choline and phosphatidylcholine, as well as dietary L-carnitine (abundant 

in red meat) by gut microbiota leads to production of the hepatic metabolite trimethylamine 

(TMA), which is further oxidized to trimethylamine N-oxide (TMAO). That study showed 

that generation of TMAO from dietary TMA is dependent on the composition of intestinal 

microbiota, as suppression of gut microbiota with oral broad-spectrum antibiotics led to a 

decrease in plasma TMAO (19). Both TMA and TMAO are found to be directly linked to the 

composition of the intestinal microbiota and are considered biomarkers for inflammation 

and atherosclerosis (Koeth et al. 2013, Wang et al. 2011b). Taken together, our untargeted 

metabolomic analysis revealed elevated TMAO levels and abnormalities in butanoate 

metabolism in patients with sarcoidosis raising concern for an association of abnormal gut 

microflora and chronic inflammation in these patients.

Several metabolites associated with the fatty acid β–oxidation pathway were increased in 

patients with sarcoidosis, including 3-HB, acetoacetate, and carnitine. Initial steps of β–

oxidation occur in the cytoplasm, where fatty acid oxidation is catalyzed through acyl CoA 

ligase (Nelson and Cox 2012), and then transported into the mitochondria via an acyl-

carnitine intermediate (McClelland 2004). In the mitochondria, saturated acyl-CoA is 

degraded by oxidation at the β-carbon. An increase in ketone bodies (3-HB, acetoacetate) 

suggests activation of mitochondrial β-oxidation as a marker for lipolysis (Fig. 5b) in 

sarcoidosis. Further, it is known that acylcarnitines originate as intermediates during 

transport of substrates across mitochondrial membranes and increased concentrations could 

indicate an increased flux into the β-oxidation pathway (Bhuiyan et al. 1992). Additionally, 

there is a possibility that the butanoate pathway through aberrant gut microbiota contributes 

to increased ketone body production, as it has been shown that acetate is normally regarded 

as an end product of anaerobic fermentation and is an integral part of the butyrate pathway 

(Duncan et al. 2004).

In addition, the level of carnitine was significantly increased (p < 0.05) in sarcoidosis 

patients, indicating that its higher concentration is not the limiting factor of transfer of 

acetyl-CoA or its analogs into the mitochondria for further utilization via the TCA cycle or 

β-oxidation. Recently O’Sullivan et al., using an isolated murine T cell system, have shown 

that differentiation of memory T cells requires fatty acid oxidation to generate ATP for 

development and survival (Weinberg and Chandel 2014; O’Sullivan et al. 2014). In their 
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system, murine memory T cells display a distinct metabolic profile as compared to effector 

T cells. Sarcoidosis is characterized by increased local and circulating inflammatory 

cytokines, the presence of non-caseating granuloma and a lack of cutaneous reaction to 

tuberculin skin testing (anergy) (Iannuzzi et al. 2007). Anergy in sarcoidosis is associated 

with lymphatic proliferation, as these patients often present with generalized 

lymphoadenopathy and splenomegaly (Iannuzzi et al. 2007). How the metabolism, including 

β-oxidation, contributes to this immunological paradox is not known.

Likewise, choline and its metabolite, betaine, are methyl donors, and are metabolically 

linked to transmethylation pathways, including synthesis of the cardiovascular disease 

(CVD) risk factor homocysteine. Our results did not show a significant difference in choline 

and betaine concentrations, but homocysteine and cystine were significantly increased in 

sarcoidosis patients, indicating an alteration in the transmethylation pathway. High levels of 

homocysteine were also previously associated with alteration in immune cell function, 

perhaps inducing T cell and monocyte activation, resulting in T cell differentiation into a 

Th1 phenotype (Dawson et al. 2004).

Our metabolomic analysis revealed a significant increase in the level of pyruvate suggesting 

activation of the glycolytic pathway. Because it is known that macro-phage activation leads 

to glycolysis and enhanced anaerobic metabolism, we expected to have increased levels of 

lactate in our patients. Although, the lactate levels were increased in our patients, they did 

not reach statistical significance (p > 0.05). Surprisingly, we found significantly decreased 

levels of succinate in sarcoidosis patients compared to healthy controls (p = 0.003). The 

levels of other TCA intermediates were not significantly different in the two groups. 

Pyruvate plays a central role in human metabolism. Two key enzymes regulate pyruvate 

metabolism (1) pyruvate dehydrogenase and (2) pyruvate car-boxylase, by which pyruvate is 

transformed to acetyl-CoA or through carboxylation of pyruvate to form oxaloacetate 

(Nelson and Cox 2012). Both can be shuttled through the TCA cycle. It was reported that 

during hypoxia or inflammation, citrate plays an important feature of the metabolic switch 

regulating mitochondrial dysfunction (Tannahill et al. 2013). Citrate can be converted into 

cytosolic acetyl-CoA without passing through the conventional clockwise steps of the TCA 

cycle (O’Neill and Hardie 2013). Acetyl-CoA generated by this pathway can function as a 

precursor for fatty acid synthesis (Pearce et al. 2013; O’Neill and Hardie 2013). These 

alternative pathways may contribute to restoration of other TCA intermediates (malate, 

oxaloacetate and citrate) and could explain their normal levels compared to succinate. 

Additionally, isoleucine and glutamine which feed into TCA cycle to generate succinate 

were similarly decreased (Table 2B).

It has been shown that macrophages in response to Tolllike receptor 4 (TLR4) activation 

switch their metabolism from oxidative phosphorylation to glycolysis, leading to rapid 

accumulation of succinate (Tannahill et al. 2013). The same study showed that such 

increased succinate is dependent on glutamine. We found increased glycolysis as indicated 

by increased pyruvate levels, but this was not associated with an increase in succinate. In 

contrast, succinate and important branched amino acids such as isoleucine and glutamine 

were decreased. These findings in sarcoidosis patients indicate a disturbance in the amino 

Geamanu et al. Page 9

Metabolomics. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



acid and energy metabolism and might provide a connection with the overall decreased 

energy levels and elevated fatigue noted at clinical diagnosis (Lower et al. 2013).

Glutamine is an abundant free amino acid in the circulation and in the intracellular amino 

acid pool of most tissues. Previously, it has been shown that glutamine is beneficial in severe 

metabolic stress, by decreasing inflammation and improving the gut barrier function (De-

Souza and Greene 2005; Singleton et al. 2005b; Wischmeyer et al. 2003). It has been 

proposed that the anti-inflammatory effects of glutamine are due to a decrease in cytokine 

release and nuclear factor-kB activation (Singleton et al. 2005a). In addition, glutamine is an 

important amino acid that is known to be a key nutrient for T lymphocytes (Nakaya et al. 

2014). Recently, it has been reported that the ASC amino acid transporter 2 (ASCT2) is a 

key regulator of glutamine uptake in CD4+ Th cells and influences the development of pro-

inflammatory Th1 and Th 17 responses in vitro and in vivo (Nakaya et al. 2014). The cell-

mediated immune-response depends on the availability of glutamine, which can directly 

impact several metabolic programs required for T cell proliferation and function (Nakaya et 

al. 2014). Interestingly, one previous study showed increased glutamine levels in subjects 

with chronic obstructive pulmonary disease (Ubhi et al. 2012), in contrast patients with 

sarcoidosis exhibited low levels of glutamine, in addition to increased TMAO levels possibly 

due to altered intestinal microbiota, we speculate that these metabolites may contribute to 

the high inflammatory state and disturbed energy metabolism found in these patients. These 

data augment our findings that sarcoidosis patients exhibit an increase in β-oxidation 

pathway along with decreased intermediates of the TCA cycle, such as succinate.

There is a paucity of the studies addressing the role of metabolomics in respiratory diseases. 

There are only a few studies examining the metabolomics in human samples in chronic 

respiratory diseases (Ubhi et al. 2012). The current study is a novel approach in the field of 

sarcoidosis and unravels metabolic pathways affected in these patients. Several metabolites 

found to be altered in the present study have been previously associated with atherosclerosis 

and CVD, indicating a connection between these inflammatory diseases and sarcoidosis. 

These findings support previous studies that reported the presence of proatherogenic 

lipoprotein particles in sarcoidosis patients (Vekic et al. 2013; Ivanisevic et al. 2012). Future 

work should include a larger population sample and other chronic inflammatory diseases, 

such as lupus and cystic fibrosis, to confirm the specificity of the metabolites identified in 

this study.

 5 Conclusion

In summary, the metabolomic profiling of patients with sarcoidosis revealed changes in the 

energy production, homocysteine, and amino acid metabolism, as well as a potential role of 

aberrant gut microbiota. The number of potential pathways involved underscores the 

complexity of the metabolic reactions to systemic inflammatory response. We view the 

observed changes as global perturbations and the interpretation of the resulting pattern of 

correlations between metabolites as a global fingerprint of the physiological or 

pathophysiological state. This altered pattern of correlations, in addition to changes in 

average metabolite levels may indicate changes in the underlying state of the system (Steuer 

et al. 2003). Therefore, metabolomics has great potential to become a critical tool used to 
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gain more insight into the molecular cascades that lead to the patho-genesis of sarcoidosis. 

Ongoing studies are set to validate and complement the initial discoveries, leading to a novel 

and non-invasive methodology for the study of sarcoidosis and other chronic diseases.
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 Abbreviations

ASCT2 Amino acid transporter 2

BMI Body mass index

CD4+ Cluster of differentiation 4

D2O Deuterium oxide

DSS Disodium-2,2-dimethyl 2-silapentane-5-sulphonate

KEGG Kyoto Encyclopedia of Genes and Genomes

NMR Nuclear magnetic resonance

NOESY Nuclear Overhauser effect spectroscopy

PC Principal component

PCA Principal component analysis

PLS-DA Partial least square discriminant analysis

SIMCA Soft independent modeling of class analogy

TCA Tricarboxylic acid cycle

Th1 T-helper type 1

TLR4 Toll-like receptor 4

TMA Trimethylamine

TMAO Trimethylamine N-oxide

VIP Variable importance in the projection
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Fig. 1. 
Characterization of the serum metabolomic changes in sarcoidosis patients and healthy 

controls. a 3D_NOESY_PCA score plot. Each circle represents one patient spectrum with 

varying concentrations of metabolites, whereas each star represents one healthy control. b 
PCA loading plot revealing important regions (3.5–3.75, 1.29, 3.2–3.4, and 2.4 ppm) in the 

spectra containing metabolites responsible for the clustering shown by the score plot. These 

metabolites strongly contribute to discrimination between sarcoidosis patients and healthy 

controls. c The partial least-square-discriminant analysis (3D_NOESY_PLS-DA) score plots 

based on metabolic fingerprints. d Variable importance in the projection (VIP) plot provides 

a ranked list of the 40 most important spectra regions (ppm) which lead to the distinction 

between the sarcoidosis patients and healthy control groups
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Fig. 2. 
Representative 1H NMR spectroscopy of serum samples obtained from a healthy control (a) 

and a patient with biopsy proven sarcoidosis (b). Metabolites were identified using the 

Chenomx NMR Suite 7.6 software. Major metabolites recognized include 1 Valine; 2 3-

Hydroxybutyrate; 3 Lactate; 4 Alanine; 5 Homocysteine; 6 Acetoacetate; 7 Pyruvate; 8 
Citrate; 9 Choline; 10 Carnitine; 11 Trimethylamine-N-oxide; 12 Cystine; 13 Glucose
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Fig. 3. 
Relative levels of metabolites found to be altered in sarcoidosis patients as compared with 

healthy controls, represented by box plots. a 3-Hydroxybutyrate; b Acetoacetate; c 
Carnitine; d Cystine; e Homocysteine; f Pyruvate; g Trimethylamine N-oxide; h Glutamine; 

i Isoleucine; j Succinate. For the box plots, the bottom and top of the boxes represent the 

25th and 75th percentile, respectively. The top and bottom bars represent the entire stretch of 

the data points for the subjects, except the extreme points, which are indicated with circles 
(o). The hyphen indicates the median value. The y axis represents the relative concentrations 

of the metabolites
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Fig. 4. 
Correlation and Clustering result of 32 metabolites in form of a Heatmap. Clustering was 

performed using the hclust function in package stat, MetaboAnalyst 3.0 software. 

Hierarchical cluster analysis, each sample begins as a separate cluster and the algorithm 

proceeds to combine them until all samples belong to one cluster. Two parameters need to be 

considered when performing hierarchical clustering. The first one is similarity measure-

Euclidean distance, Pearson’s correlation, Spearman’s rank correlation. The other parameter 

is clustering algorithms, including average linkage (clustering uses the centroids of the 
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observations), complete linkage (clustering uses the farthest pair of observations between the 

two groups), single linkage (clustering uses the closest pair of observations) and Ward’s 

linkage (clustering to minimize the sum of squares of any two clusters)
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Fig. 5. 
Schematic networks detected in sarcoidosis patients illustrating the most predominant 

altered metabolic pathways and the biochemical linkage among the metabolites detected in 

sarcoidosis. a MetaboAnalyst 3.0 output. NMR data were uploaded into MetaboAnalyst 3.0 

software and significant metabolic pathways arranged according to the scores from the 

enrichment analysis (y axis) and from the topology analysis (x axis). b The three major 

pathways include fatty acid metabolism, glycolysis/TCA cycle, and homocysteine/

methylamine pathway. The metabolites that are significantly increased in sarcoidosis 

patients are depicted in red, whereas the metabolites that are reduced are in blue (p < 0.05). 

Dashed arrows indicate multiple step processes
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Table 1

Subject demographics, organ involvements, pulmonary function tests

Patients Controls

Age years 44.4 ± 11 40.6 ± 11.8

BMI (kg m−2) 31.9 ± 5.2 31.0 ± 7.1

Gender [N (%)]

  Male 6 (30) 5 (30)

  Female 14 (70) 12 (70)

Race [N (%)]

  African American 20 (100) 17 (100)

Smoking status

  Yes 3 (15) 0 (0)

  No 17 (85) 17 (100)

Organ involvement

  Lung 20 (100) N/A

  Skin 12 (60)

  Eye 7 (35)

  Multi-organ 19 (99)

PFT values

  FEV1 % 88 (5.7) N/A

  FVC % 95 (4.5) N/A

  Baseline O2 saturation 98 (0.37) N/A

Results are reported as mean ± SEM

N (%) number of subjects and percent given in parentheses, BMI body mass index, PFT pulmonary function test, FEV1 % percent predicted forced 
expiratory volume, FVC % percent predicted forced vital capacity
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Table 2

Serum metabolites quantified to be altered in sarcoidosis patients as compared with healthy controls

Metabolite Peak regions (ppm) Change p value KEGG No.

(A)

3-Hydroxybutyrate 1.2, 2.3, 2.4, 4.1 ↑ 0.005 C01089

Acetoacetate 2.3,3.4 ↑ 0.011 C00164

Carnitine 2.4, 3.2, 3.4, 4.6 ↑↑ 0.002 C00318

Cystine 3.2, 3.4, 4.1 ↑↑ 0.000 C00491

Homocysteine 2.1,2.2,2.6,2.7,3.9 ↑↑ 0.000 C00155

Pyruvate 2.4 ↑ 0.006 C00022

Trimethylamine-N-oxide 3.3 ↑↑ 0.001 C01104

(B)

Glutamine 2.1,2.2,2.4,2.5,3.8,6.9,7.6 ↓↓ 0.002 C00064

Isoleucine 0.9,1.0,1.2, 1.5, 2.0,3.7 ↓↓ 0.003 C00407

Succinate 2.4 ↓↓ 0.002 C00042

Serum metabolites found to be significantly higher (A) or lower (B) in sarcoidosis patients, as compared with healthy controls. The metabolites 
were quantified using the Chenomx 7.6 NMR Suite database and significance was obtained using the Independent Sample T-test, SPSS, p < 0.05
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Table 3

Correlation of metabolites found to be altered in patients with sarcoidosis as compared with healthy controls

3-HB Carnitine TMAO Homocysteine

Acetoacetate   0.78**   0.1   0.3   0.0

Pyruvate   0.29   0.37*   0.27   0.43*

Isoleucine −0.2 −0.44* −0.28 −0.38*

Carnitine   0.25   1   0.74**   0.59**

Cystine   0.32   0.18   0.22   0.63**

Homocysteine   0.16   0.59**   0.7**   1

Taurine −0.05   0.52**   0.5**   0.28

Values represent Pearson correlation, N = 15.

*
p < 0.05;

**
p < 0.01.

SPSS software

3-HB 3-Hydroxybutyrate, TMAO trimethylamine N-oxide

Metabolomics. Author manuscript; available in PMC 2016 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Geamanu et al. Page 24

Table 4

MetaboAnalyt 3.0 identified highly significant pathways

Pathway name Hits p-value −log(p) FDR

Butanoate metabolism 4 1.2797E–5 11.266 0.0010237

Alanine, aspartate and glutamate metabolism 3 9.9926E–5 9.2111 0.0039971

Synthesis and degradation of ketone bodies 2 2.3105E–4 8.3729 0.0061613

Citrate (TCA) cycle 2 0.002837 5.865 0.049516

Tyrosine metabolism 3 0.0030948 5.778 0.049516

Phenylalanine metabolism 2 0.013984 4.2699 0.15981

Cysteine and methionine metabolism 2 0.021227 3.8525 0.02938

Arginine and proline metabolism 2 0.038491 3.2573 0.30793

Pathway name, hits, significance, −log(p) as well as false discovery rate (FDR)
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