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Abstract

Recent findings suggest that Alzheimer’s disease (AD) is a disconnection syndrome characterized by abnormalities in large-
scale networks. However, the alterations that occur in network topology during the prodromal stages of AD, particularly in
patients with stable mild cognitive impairment (MCI) and those that show a slow or faster progression to dementia, are still
poorly understood. In this study, we used graph theory to assess the organization of structural MRI networks in stable MCI
(sMCI) subjects, late MCI converters (IMCIc), early MCI converters (eMClc), and AD patients from 2 large multicenter cohorts:
ADNI and AddNeuroMed. Our findings showed an abnormal global network organization in all patient groups, as reflected by an
increased path length, reduced transitivity, and increased modularity compared with controls. In addition, IMCIc, eMClIc, and
AD patients showed a decreased path length and mean clustering compared with the sMCI group. At the local level, there were
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nodal clustering decreases mostly in AD patients, while the nodal closeness centrality detected abnormalities across all patient
groups, showing overlapping changes in the hippocampi and amygdala and nonoverlapping changes in parietal, entorhinal,
and orbitofrontal regions. These findings suggest that the prodromal and clinical stages of AD are associated with an abnormal

network topology.
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Introduction

Alzheimer’s disease (AD) is a devastating neurodegenerative dis-
order that slowly deprives individuals of their memories and
other essential cognitive functions, including executive, visuo-
spatial abilities and language. There is increasing evidence show-
ing that the progression of these cognitive symptoms occurs in
an orderly fashion, which reflects the accumulation of amyloid
deposits and the spatial distribution of neurofibrillary tangles
(Frisoni et al. 2010). For instance, while memory loss takes place
at early disease stages, reflecting the presence of tangles in med-
ial temporal regions (Scahill et al. 2002; Thal et al. 2002; Thomp-
son et al. 2004); aphasia and apraxia typically occur at later
stages, reflecting the spread of tangles and plaques into neocor-
tical areas (Braak et al. 2006; McDonald et al. 2009). This incre-
mental spread of pathology between interconnected brain
regions suggests that AD might be a disconnection syndrome
characterized by abnormalities in brain networks (Pievani et al.
2011).

Graph theory has become a very useful tool in neuroimaging
to assess the relationship between different brain regions and
their organization into large-scale networks (Filippi et al. 2013).
Using this method, previous studies have shown that healthy in-
dividuals have an efficient network topology, combining a high
level of integration between distant brain regions (short path
length) and a good local communication between neighboring
areas (high clustering). This small-world configuration (Humph-
ries et al. 2006) is thought to be specially suited for cognitive pro-
cessing (Bassett and Bullmore 2006) and has been shown in
previous functional MRI, structural MRI, electroencephalogram,
and diffusion tensor imaging (DTI) studies (Achard and Bullmore
2007; Ferri et al. 2007; Bassett et al. 2008; Iturria-Medina et al.
2008; Gong et al. 2009). The combination of high efficiency and
clustering in a small-world architecture is an attractive principle
of brain network organization as it could deliver both segregated
and integrated information processing (Bullmore and Sporns
2012). For instance, visual processing is a segregated process
that would benefit from the clusters of connections between re-
gions that are topologically close, whereas executive processing
is an integrated process that would benefit from the long paths
that allow transferring information across the whole network
(Bullmore and Sporns 2012). In addition, it has been shown that
regions showing high clustering tend to be very well connected
to areas with the same functional specialization (Sporns and Bet-
zel 2016). In line with this, several studies have shown that the
brain is organized into communities or modules of intercon-
nected regions (Hagmann et al. 2008; Meunier et al. 2009),
which may correspond to large-scale brain systems such as the
executive control, the dorsal attention, and the default-mode
network. This network property is commonly referred to as
modularity and has been shown in healthy individuals by previ-
ous studies (Chen et al. 2008; He et al. 2009).

Graph theory can be applied to different neuroimaging mo-
dalities to assess brain networks in vivo in AD, including DTI,
structural, and functional MRI (for reviews, see Tijms, Moller,

et al. 2013; Tijms, Wink, et al. 2013; Dai and He 2014) as well
as positron emission tomography (PET) (Sanabria-Diaz et al.
2013; Sepulcre et al. 2013; Yao et al. 2015). Using structural MRI,
a few studies have shown that AD patients present changes in
global network organization compared with healthy controls
(Dai and He 2014; Phillips et al. 2015); however, there is surpris-
ingly little agreement about the nature of these changes: while
some studies showed an increased path length and clustering
in the networks of AD patients, others found decreases or no
changes at all (Li et al. 2012; Dai and He 2014). Regarding network
configuration, some studies using structural MRI have found a
preserved small-world organization in AD patients, while others
found random or regular network topologies (Dai and He 2014).
This inconsistency between studies could be due to the inclusion
of small samples of patients with heterogeneous clinical charac-
teristics. Despite this interest in assessing brain connectivity in
AD, to date no studies have assessed modularity in the structural
MRI networks of AD patients.

Amnestic mild cognitive impairment (MCI) is a transition
state between normal aging and AD with a high risk of progres-
sion to dementia (Petersen et al. 1999). Although MCI has been as-
sociated with reduced white matter integrity and abnormal
functional connectivity (Medina et al. 2006; Zhang et al. 2007; Pet-
rella et al. 2011; Binnewijzend et al. 2012), it is not clear whether
these patients also present altered brain network topology: Yao
et al. (2010) found no differences in the path length or clustering
between MCI patients and controls, while Phillips et al. (2015)
found differences that varied according to the network construc-
tion method. There is increasing evidence showing that MCI pa-
tients progress to AD at a rate of approximately 15% per year
(Grundman et al. 2004). The assessment of network organization
in stable MCI patients and those who show a slow or faster pro-
gression to dementia is important as it could provide important
clues into which network changes mark the transition to AD
and improve our understanding on the effects of disease progres-
sion on brain networks.

The aim of the current study was to establish the nature of
structural abnormalities in the organization of brain networks
in stable MCI (sMCI) subjects, patients who show a slow progres-
sion to dementia (late MCI converters, IMCIc), patients who show
a fast progression to dementia (early MCI converters, eMCIc), and
AD patients using graph theory. To achieve this goal, we assessed
over 1000 patients and controls from 2 large multicenter cohorts:
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the
AddNeuroMed study. We calculated various global and local net-
work measures, including the characteristic path length, the
mean clustering coefficient, the small-worldness, the nodal clus-
tering, and the nodal closeness centrality. In addition, in contrast
to previous studies, we calculated for the first time the transitiv-
ity and modularity in the structural MRI networks of MCI and AD
patients. These graph theory measures reflect how well a region
is connected to its neighbouring areas and within brain modules,
providing important information on the network’s ability
for specialized processing to occur within densely intercon-
nected groups of brain regions (Rubinov and Sporns 2010). We
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hypothesized that global network measures would show abnor-
malities across all patient groups, with IMCIc, eMClIc, and AD pa-
tients showing more severe network changes compared with
controls than sMCI patients. In addition, based on previous evi-
dence showing that the sequence of brain abnormalities between
regions of the default-mode network is reminiscent of the spread
of tangle pathology in AD (Buckner et al. 2005, 2009), we hypothe-
sized that patients would show changes in local network mea-
sures in the regions of this network.

Methods
Subjects

Data used in the preparation of this article were obtained from
the ADNI database (adni.loni.usc.edu) and the AddNeuroMed
study. In total, 1008 subjects were included, consisting of 301 con-
trols, 425 MCI, and 282 AD patients. Regarding MCI patients, 87
converted to AD after 1 year (eMClc), 71 converted to AD after 3
years (IMCIc), and 110 remained stable after 3 years (sMCI). In
addition, 157 MCI patients remained stable after 1 year but had
no additional follow-ups after that period. We classified these
subjects as sSMCI-1y and compared them with the other groups
in a supplementary analysis. Eight subjects were excluded from
the previous groups due to uncertain diagnosis.

The ADNI was launched in 2003 as a public-private partner-
ship, led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), PET, other biological markers, and clin-
ical and neuropsychological assessment can be combined to
measure the progression of MCI and early AD. In the ADNI cohort,
the inclusion criteria for the control group were Mini-Mental
State Examination (MMSE) scores between 24 and 30, a Clinical
Dementia Rating-Sum of Boxes (CDR-SB) score of 0, and lack of
depression, MCI, or dementia. Inclusion criteria for the MCI
group followed the Peterson criteria (Petersen et al. 1999) for am-
nestic MCI. AD participants met the National Institute for Neuro-
logical and Communicative Disorders and Stroke-Alzheimer’s
Disease and Related Disorder Association (NINDS/ADRDA) cri-
teria for probable AD, had a MMSE score between 18 and 26,
and a CDR-SB of 0.5-1.0. Exclusion criteria comprised history of
structural brain lesions or head trauma, significant neurological
disease other than incipient AD, and the use of psychotropic
medications that could affect memory. For up-to-date informa-
tion about the ADNI study, see www.adni-info.org.

AddNeuroMed is an Integrated Project funded by the Euro-
pean Union Sixth Framework program (Lovestone et al. 2007,
2009). AddNeuroMed aims to develop and validate novel surro-
gate markers of disease and treatment, based upon in vitro and
in vivo models in animals and humans in AD. The neuroimaging
part of AddNeuroMed uses MRI and magnetic resonance spec-
troscopy (MRS) to establish imaging markers for early diagnosis
and detection of disease and efficacy of disease modifying ther-
apy in man, as well as translational imaging biomarkers in ani-
mal models of AD. Human data were collected from 6 different
sites across Europe: University of Kuopio (Finland), University
of Perugia (Italy), Aristotle University of Thessaloniki (Greece),
King’s College London (United Kingdom), University of Lodz (Pol-
and), and University of Toulouse (France) (Lovestone et al. 2009;
Simmons et al. 2009, 2011). The inclusion criteria for the control
group were Mini-Mental State Examination (MMSE) scores be-
tween 24 and 30, a CDR score of 0, 65 years, or above, and lack
of depression, dementia, other neurological diseases, unstable
systematic illnesses, or organ failure. The inclusion criteria for

MCI patients were similar to the control group except for the
CDR score of 0.5 and report of memory problems by the patient
or informant. AD patients met the NINDS/ADRDA and DSM-IV
criteria for probable AD, had a MMSE score between 12 and 28,
had 65 years or above, and did not have significant neurological
or psychiatric illnesses other than AD, unstable systematic ill-
nesses, or organ failure.

MRI Acquisition

Data acquisition for the AddNeuroMed study was designed to be
compatible with ADNI (Jack et al. 2008; Simmons et al. 2009, 2011).
In particular, all participants, both from ADNI and AddNeur-
oMed, were scanned on a 1.5 Tesla MRI system using a sagittal
3D T;-weighted MPRAGE sequence: repetition time (TR)=9-
13 ms; echo time (TE) = 3.0-4.1 ms; inversion time (IT) = 1000 ms;
flip angle (FA) = 8°; voxel size =1.1x 1.1 x 1.2 mm?. Images from
ADNI were acquired in 58 sites, while images from AddNeuroMed
were acquired in 5 sites or centers. We have combined these 2 co-
horts in several previous studies (Spulber et al. 2013; Falahati
etal. 2016), showing that they present similar patterns of atrophy
and predictive power in discriminating patients with AD or MCI
from controls (Westman et al. 2011).

Image Preprocessing

All T,-weighted images were preprocessed using the FreeSurfer
software, version 5.1. Briefly, preprocessing included: correc-
tion of motion artifacts and spatial distortions due to gradient
nonlinearity and B1 field inhomogeneity; removal of nonbrain
tissue using a hybrid watershed/surface deformation procedure
(Segonne et al. 2004); automated transformation into the Talair-
ach standard space; intensity normalization (Sled et al. 1998); tes-
sellation of the gray/white matter boundary; automated topology
correction (Segonne et al. 2007); and surface deformation follow-
ing intensity gradients to optimally place the gray/white and
gray/CSF borders at the location where the greatest shift in inten-
sity defines the transition to the other tissue class (Fischl and
Dale 2000). Once the cortical models were complete, registration
to a spherical atlas took place, which utilizes individual cortical
folding patterns to match cortical geometry across subjects
(Fischl et al. 1999). This was followed by parcellation of the cere-
bral cortex into 68 cortical regions using the atlas by Desikan et al.
(2006) (Fig. 1). In addition to these 68 regions, 7 subcortical struc-
tures were also included: hippocampus, amygdala, thalamus,
caudate, putamen, accumbens, and pallidum (Fig. 1). All data
was preprocessed through the HiveDB database system (Muehl-
boeck et al. 2014). We excluded 8 subjects that were outliers in
cortical thickness and subcortical volume measures.

Network Construction and Analysis

For every cortical region, a linear regression was performed to
control for the effects of age, gender, and education (He et al.
2007). The same procedure was carried out for subcortical regions
including intracranial volume as an additional covariate. To en-
sure that our results were not influenced by the fact that subjects
were scanned at different centers, we included scanning site as
an additional covariate in a supplementary analysis.

The residuals of these regressions were used to substitute the
raw values and build the structural covariance networks. In these
networks, every node corresponded to a brain region and the
edges represented the correlations between them (He et al.
2007). In this study, both cortical thicknesses and subcortical
volumes were used to build the structural networks due to
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Figure 1. Brain regions used in network construction and analysis. The cortical thickness and subcortical volumes were extracted from these regions for every subject.

previous evidence showing the involvement of cortical and sub-
cortical regions in MCI and AD and similarly to previous graph
theory studies (Hosseini et al. 2013; Pereira et al. 2015).

For every group, we built an 82 x 82 association matrix, where
each entry was defined as the Pearson correlation coefficient be-
tween corrected anatomical measures of every pair of regions
across participants (Fig. 2). For each association matrix, a binary
matrix was computed, where the correlation coefficient was con-
sidered 1if it was above a threshold and 0 if it was below (He et al.
2007). Since thresholding association matrices of different groups
may yield networks with a different number of nodes and edges,
we thresholded the association matrices at a range of network
densities D (D min =5% to D max =35%, in steps of 1%) and com-
pared the network topologies across that range. For densities
below 5%, the number of edges was inferior to the number of
nodes, corresponding to a widely disconnected network. For D
above 35%, the networks became similar to random graphs and
showed a small-world index close to 1. All self-connections and
negative correlations were excluded from the analyses.

To detect differences between groups in global network top-
ology, we calculated the characteristic path length, the mean
clustering coefficient, the transitivity, the modularity, and the
small-worldness. The characteristic path length is the average
shortest path length between all pairs of nodes in the network
and indicates how easy it is (on average) to reach a node from
any other node in the network (Watts and Strogatz 1998); this
measure was calculated only within connected components of
the network as implemented in the formulas by Rubinov and
Sporns (2010). The clustering coefficient is the average over the
whole network of the fraction of a node’s neighbors that are
also neighbors of each other; it reflects how well the nodes are
connected to nearby regions forming clusters (Watts and Strogatz
1998). The transitivity is similar to the clustering coefficient but,
instead of being normalized individually by every node, it is nor-
malized by the whole network and is not influenced by nodes
with a low degree (Newman 2003). The modularity describes the
extent to which a network can be divided into modules or

communities of regions with a large number of within-modules
connections and a minimal number of between-module connec-
tions (Newman 2006). The small-worldness is a measure of how
much a network is locally interconnected compared with a ran-
dom network but still retaining global connectivity between dis-
tant brain regions (Watts and Strogatz 1998; Humphries et al. 2006).

To assess differences between groups in regional network top-
ology, we calculated the nodal clustering and the closeness cen-
trality. We selected these 2 nodal network measures, because
they are sensitive to different aspects of network topology and
remain largely unexplored in MCI and AD. Specifically, the nodal
clustering is a measure of segregation, which reflects the ability
for specialized information processing to occur within groups of
brain regions, while the closeness centrality is a measure of inter-
action that reflects the ability to combine information from distrib-
uted brain areas (Rubinov and Sporns 2010). The nodal clustering is
calculated as the mean clustering coefficient but only for a given
node. The closeness centrality is the inverse of the average shortest
path length from 1 node to all other nodes in the network. To com-
pare the roles of the nodes in each module and their differences
between groups, we also calculated the within-module degree
and participation coefficient. The within-module degree measures
the connectivity of the node within the module compared with the
other nodes in the same module. The participation coefficient ex-
presses how strongly a node is connected to other modules and
tends to 1 if a node has a homogeneous connection distribution
with all the modules and 0 if it does not have any intermodule con-
nections (Guimera and Amaral 2005; Guimera et al. 2005).

The formulas that were used to calculate the global and nodal
graph theory measures are provided by Rubinov and Sporns
(2010). We used BrainNet Viewer (http:/www.nitrc.org/projects/
bnv/) for network visualization (Xia et al. 2013).

Comparison of Network Measures Between Groups

We tested the statistical significance of the differences between
groups using nonparametric permutation tests with 1000
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Figure 2. Structural correlation matrices for (A) controls (CTR), (B) patients with stable mild cognitive impairment after 1 year (sMCI-1y), (C) patients with sMCI (after 3
years), (D) IMClc, (E) eMClc, and (F) AD patients. In these matrices, the first rows and columns correspond to the correlations between cortical regions, while the last
ones correspond to the correlations between subcortical areas. The color bar indicates the strength of the correlation coefficients: warmer colors represent stronger

correlations, while colder colors represent weaker correlations.

permutations (Bassett et al. 2008; He et al. 2008). In each permu-
tation, the corrected anatomical values of every subject were ran-
domly reassigned to one of a pair of groups with the same
number of subjects as in the original groups. Then, an association
matrix was built for each pair of randomized groups, and the bin-
ary matrices were calculated at a range of network densities. The
network measures were calculated at each density, and the dif-
ferences between the new randomized groups were computed.
This randomization procedure was repeated 1000 times for
every density value, and the 95% confidence intervals (CI) of
each distribution were used as critical values for a 2-tailed test
of the null hypothesis at P < 0.05. To correct the nodal network re-
sults for multiple comparisons, we used a false discovery rate
(FDR) procedure (Genovese et al. 2002) at a q value of 0.05.

Results

The characteristics of the sample can be found in Table 1. There
were significant differences in gender and years of education
between the groups (P <0.001). For this reason, the cortical thick-
ness and subcortical measures were corrected by these variables
in the current study. As expected, all patient groups showed
lower MMSE scores (P <0.001) and higher CDR scores (P <0.001)
compared with controls. In addition, IMCIc, eMClc, and AD pa-
tients showed lower MMSE scores compared with sMCI patients
(P<0.05). AD patients showed worse MMSE scores compared
with sMCI, IMClIc, eMClIc patients (P <0.05), and sMCI-1y patients
had lower MMSE scores compared with sMCI patients (P < 0.05).

Global Network Analysis

The weighted correlation matrices for each group are presented
in Figure 2. We observed that the correlation patterns of all
groups showed strong correlations between bilaterally homolo-
gous regions.

In general, with progressively higher values of network dens-
ity (D), the characteristic path length and modularity decreased,
the mean clustering coefficient and transitivity increased, and a
small-world topology was observed across all groups (Fig. 3).

Our statistical analyses showed significant increases in
the characteristic path length in the sMCI, IMCIc, eMClc, and
AD groups compared with controls at several network densities
(P range, 0.043-0.001) (Fig. 4). The clustering coefficient also
showed significant changes, being decreased across different
densities in IMClc, eMClIc, and AD (P range, 0.043-0.001) but not
in sMCI patients, compared with controls. The transitivity and
modularity showed the greatest differences between patients
and controls: the transitivity was significantly decreased (P range,
0.049-0.001) and the modularity was significantly increased
(P range, 0.049-0.001) in patients at most network densities
(Fig. 4). We also found significant decreases in the small-world-
ness in the patient groups compared with controls (P range,
0.040-0.010); however, these differences were only observed at a
few network thresholds (Fig. 4).

When we compared the different patient groups, we observed
thatIMClIc, eMClc, and AD patients had a decreased characteristic
path length (P range, 0.048-0.001) and clustering coefficient
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CTR (n=301) sMCI-1y (n=157) sMCI(n=110) IMCIc(n=71) eMClc(n=87) AD (n=282) For (P value)
Age 751 (5.7) 75.0 (6.5) 74.7 (7.5) 74.8 (7.0) 74.1(6.7) 75.6 (7.0) 0.9 (0.475)
Gender (m/f)>Pede 156/145 88/69 74/36 43/28 54/33 130/152 19.2 (0.002)
Education (y)f@ghiiklemde 14 9 (4 4) 11.8 (5.2) 15.7 (3.0) 16.1 (3.0) 13.9 (4.2) 12.2 (4.9) 21.2 (<0.001)
MMSEF@gnhibolede 29.1 (1.1) 27.0 (1.6) 27.6 (1.7) 26.7 (1.7) 26.6 (1.8) 22.4 (3.5) 272.8 (<0.001)
CDRfa-gnhbede 0 0.5 0.5 0.5 0.5 0.9 (0.4) 880.2 (<0.001)

Note: Means are followed by standard deviations. Differences in age, years of education, and MMSE scores were assessed using an analysis of variance (ANOVA).
Differences in CDR scores were assessed using a Kruskal-Wallis test and differences in gender were assessed using a y? test. CTR, controls; sMCI, stable mild cognitive
impairment after 1 year (SMCI-1y) or 3 years (sMCI); IMCIc, late mild cognitive impairment converters; eMClIc, early mild cognitive impairment converters; AD, Alzheimer’s

disease; MMSE, mini-mental state examination; CDR, clinical dementia rating scale.

“Significant differences between CTR and sMCI patients (P < 0.05).
PSignificant differences between sMCI-1y and AD patients (P <0.05).
“Significant differences between sMCI and AD patients (P <0.05).
dSignificant differences between IMCIc and AD patients (P < 0.05).
“Significant differences between eMClc and AD patients (P <0.05).
fSignificant differences between CTR and sMCI-1y patients (P < 0.05).
&Significant differences between CTR and IMClIc patients (P < 0.05).
Bsignificant differences between CTR and AD patients (P <0.05).
iSignificant differences between sMCI-1y and sMCI patients (P < 0.05).
JSignificant differences between sMCI-1y and IMClc patients (P < 0.05).
kSignificant differences between sMCI-1y and eMClc patients (P < 0.05).
ISignificant differences between sMCI and eMClc patients (P <0.05).
MSignificant differences between IMCIc and eMClIc patients (P <0.05).
"Significant differences between CTR and eMClIc patients (P <0.05).
Significant differences between sMCI and IMClc patients (P < 0.05).

Figure 3. Changes in global network measures as a function of network density. Characteristic path length (A), clustering coefficient (B), transitivity (C), modularity (D), and
small-worldness (E) for controls (CTR), patients with stable mild cognitive impairment after 1 year (sMCI-1y), patients with sMCI (after 3 years), IMCIc, eMClc, and AD

patients.

(P range, 0.042-0.001) compared with sMCI patients (Fig. 5). There
were no significant differences in transitivity or modularity be-
tween these groups. In addition, there were no differences in glo-
bal network topology between IMCIc, eMClc, and AD patients.
The global network comparisons carried out in the sMCI-1y
group can be found in Supplementary Figure 1. These patients
showed evidence of larger paths (P range, 0.045-0.004) and

changes in the clustering (P range, 0.044-0.018) at a few network
thresholds, but no changes in the transitivity or modularity com-
pared with controls, in contrast to the other MCI groups. They
also showed higher clustering compared with eMClc (P range,
0.046-0.018) and AD patients (P range, 0.043-0.016) and higher
transitivity (P range, 0.048-0.019) compared with AD patients at
several densities. The modularity and small-worldness did not
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Figure 4. Differences between controls, sMCI, IMCIc, eMClIc, and AD patients in global network measures. Plots showing the differences between controls (CTR) and sMCI
patients; CTR and IMCIc; CTR and eMClIc; CTR and AD patients in the characteristic path length (A), clustering coefficient (B), transitivity (C), modularity (D), and small-
worldness (E). The plots show the upper and lower bounds of the 95% confidence intervals (CI) (in gray) and the differences in the network measures between groups (in
orange circles) as a function of network density. If these differences fall outside the CIs, there is a statistical significant difference at P <0.05.
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Figure 5. Differences between sMCI, IMCIc, eMClIc, and AD patients in global network measures. Plots showing the differences between sMCI and IMCIc patients; sMCI and
eMClIc patients; sMCI and AD patients in the characteristic path length (A) and clustering coefficient (B). The plots show the upper and lower bounds of the 95% confidence
intervals (CI) (in gray) and the differences in the network measures between groups (in orange circles) as a function of network density. If these differences fall outside the

CIs, there is a statistical significant difference at P <0.05.

show significant changes in sMCI-1y compared with the other
patient groups.

To assess whether our results were influenced by different
scanning centers, we repeated the analyses comparing controls
to the patient groups after including the centers as an additional
covariate. These analyses showed similar differences in the char-
acteristic path length, mean clustering, transitivity, and modu-
larity between patients and controls, suggesting that the
differences in scanning sites did not influence our results (see
Supplementary Table 1).

Nodal Network Analysis

We identified several changes in nodal network measures be-
tween groups. In summary, the nodal clustering was decreased
in patients compared with controls and showed widespread
changes only in the AD group. The nodal closeness centrality
was decreased in the bilateral hippocampi and amygdala across
all patient groups and showed increases in medial parietal,
medial temporal, and limbic regions that varied according to
the patient group. Below, we describe these changes in greater
detail.

After correcting for multiple comparisons (FDR, q <0.05), we
observed that sMCI patients showed clustering decreases in the
left superior frontal gyrus, while eMCIc patients showed

decreases in the right postcentral gyrus compared with controls.
In AD patients, the nodal clustering decreases involved several
regions: the bilateral precuneus, superior frontal gyri, lateral orbi-
tofrontal gyri, middle temporal gyri, inferior temporal gyri, fusi-
form, hippocampi, and amygdala; the left pars triangularis
gyrus, postcentral gyrus; and the right caudal middle frontal
gyrus, pars opercularis gyrus, and lateral occipital gyrus (Fig. 6
and Table 2). AD patients also showed significant clustering de-
creases in the left postcentral gyrus compared with sMCI patients
(FDR, g <0.05).

Regarding the closeness centrality, in addition to the signifi-
cant decreases found in the hippocampi and amygdala in sMCI,
IMCIc, eMCI, and AD patients compared with controls, there
were additional decreases in the right pericalcarine gyrus in
sMCI and IMClIc patients; the right accumbens in eMCIc patients.
The increases in closeness centrality were observed in the left
posterior cingulate in sMCI patients; the left pallidum, right in-
sula, right temporal pole, right entorhinal in IMCIc patients; the
left posterior cingulate, right lateral orbitofrontal gyrus, bilateral
insula, bilateral entorhinal in AD patients (Fig. 7 and Table 3).

There were also significant differences in closeness centrality
between the patient groups, mostly in temporal, occipital, and
subcortical regions (for further details, see Table 3).

In Table 4, we present a summary of the most relevant global
and nodal network results found in the current study.
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Figure 6. Significant decreases in the nodal clustering coefficient in sMCI, eMClIc, and AD patients. CTR, controls; sMCI, stable MCI; eMClc, early MCI converters, AD,
Alzheimer’s disease. The regions showing clustering decreases in patients are listed in Table 2.

Brain Modules

We identified 4 modules in controls; 3 modules in sMCI, IMClc,
and eMClIc patients; and 5 modules in AD patients (Fig. 8). For a
full list of the regions belonging to each module, see Table 5.

Briefly, in controls, Module I included the superior frontal gyri,
posterior cingulate, and supramarginal gyri, which are part of the
default-mode network. Module II included the entorhinal gyri
and subcortical regions. Module III was the largest, including sev-
eral lateral frontal, parietal, and occipital regions. Module IV in-
cluded the parahippocampal gyri.

In sMCI, IMClc, and eMClIc patients, the modules were similar
to those in controls. However, Module I did not include the super-
ior frontal, lateral parietal, or posterior parietal regions and Mod-
ule II included additional areas in the patient groups. In AD
patients, Module II lost several regions that formed 2 new mod-
ules, which were not present in the other groups: one composed
of the caudate, putamen, accumbens, and pallidum (Module IV)
and the other composed of the bilateral thalami (Module V).

To assess differences between groups in the previous mod-
ules, we measured the within-module degree and participation
coefficient. We found significant increases in the within-module
degree and decreases in the participation coefficient in AD pa-
tients compared with controls, after FDR corrections (Table 6).

The within-module degree increases were observed in the left
postcentral, left superior parietal, right pars opercularis gyri,
and right insula, which were part of Module I and Module III.
The participation coefficient decreases were observed in the left
pars orbitalis and bilateral cuneus, which were part of Module III.
Although they did not survive correction for multiple compari-
sons, IMCIc and eMCIc patients also showed within-module de-
gree increases and participation coefficient decreases in some
of these regions, compared with controls (Table 6).

Discussion

This study is the largest to date to assess network topology in MCI
patients that remain stable, show a slow or fast progression to de-
mentia as well as AD patients. Our findings revealed an abnormal
organization in the networks of all patient groups as reflected by
an increased path length, reduced transitivity, and increased
modularity, compared with controls. The clustering coefficient
showed a different pattern, being decreased in IMCIc, eMClIc,
and AD but not in sMCI patients. Altogether, these findings sug-
gest that the prodromal and clinical stages of AD are associated
with a reduced ability to integrate information across distributed
brain regions and an altered communication between neighbor-
ing areas and modules.



Table 2 Significant differences in the nodal clustering coefficient
between groups (FDR-corrected)

Region CTR sMCI P value
Lh Superior frontal G 0.83 0.50 0.002
CTR eMClIc
Rh Postcentral 0.94 0.56 0.001
CTR AD
Lh Superior frontal G 0.83 0.57 0.001
Lh Lateral orbitofrontal G 0.81 0.51 0.001
Lh Pars triangularis G 0.90 0.65 0.001
Lh Postcentral G 0.96 0.68 0.001
Lh Precuneus 0.78 0.58 0.001
Lh Middle temporal G 0.78 0.62 0.017
Lh Inferior temporal G 0.94 0.64 0.002
Lh Fusiform 0.79 0.56 0.004
Lh Hippocampus 1 0.33 0.001
Lh Amygdala 1 0.33 0.001
Rh Superior frontal G 0.78 0.52 0.001
Rh Caudal middle frontal G 0.92 0.77 0.009
Rh Lateral orbitofrontal G 0.71 0.45 0.003
Rh Pars opercularis G 0.96 0.62 0.001
Rh Precuneus 0.80 0.62 0.017
Rh Lateral occipital G 0.74 0.60 0.007
Rh Middle temporal G 0.81 0.61 0.016
Rh Inferior temporal G 0.90 0.66 0.003
Rh Fusiform 0.84 0.53 0.001
Rh Hippocampus 1 0.33 0.001
Rh Amygdala 1 0.33 0.001
sMCI AD
Lh Postcentral 0.95 0.68 0.001

Note: CTR, controls; sMCI, stable mild cognitive impairment; IMCIc, late mild
cognitive impairment converters; eMClc, early mild cognitive impairment
converters; AD, Alzheimer’s disease; Lh, left hemisphere; Rh, right hemisphere;
G, gyrus.

In the current study, we found a larger path length across all
patient groups compared with controls, indicating an abnormal
global network organization. Previous evidence suggests that a
short path length ensures rapid information transmission across
remote brain regions that are thought to be the basis of cognitive
functioning (Sporns and Zwi 2004). The path length increases
found in our study show that the distance between any 2 regions
was greater in the patient’s networks, making the communica-
tion between them less efficient. This finding is in line with
those of previous graph theory studies in AD, which found an in-
creased path length in the structural and functional networks of
these patients (He et al. 2008; Lo et al. 2010; Sanz-Arigita et al.
2010; Yao et al. 2010; Shu et al. 2012). In one of these studies
using DTI to build individual white matter networks, the path
length increases were associated with worse MMSE performance
(Shu et al. 2012), suggesting that this measure might indeed be a
marker of cognitive dysfunction in AD.

Our analyses also showed decreases in the mean clustering
coefficient in IMClIc, eMClIc, and AD patients relative to controls,
indicating that there were fewer connections between neighbor-
ing areas in their networks. This result is in line with some
(Tijms, Moller, et al. 2013; Tijms, Wink, et al. 2013) but not all
previous studies (He et al. 2008; Yao et al. 2010), suggesting that
differences in methodology, sample sizes, and patient character-
istics might lead to different network findings. In a previous
study, Li et al. (2012) found that MCI converters presented
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longitudinal decreases of the clustering coefficient suggesting
thatreductions in this network measure are associated with con-
version to dementia in AD.

Furthermore, our study is the first to assess transitivity and
modularity in the structural networks of MCI and AD patients.
We found that these measures identified greater abnormalities
in the networks of all patient groups compared with the path
length or clustering, reaching significance across most network
densities. Similarly to the clustering coefficient, the transitivity
is a measure that reflects how well a region is integrated within
its local cluster. However, in contrast to the clustering, the transi-
tivity is less influenced by nodes with fewer connections (Rubi-
nov and Sporns 2010), being a superior measure in networks
with poorly connected nodes. Hence, we recommend the use of
this measure in future studies assessing structural networks in
amnestic MCI and AD as it offers greater sensitivity to the effects
of the disease. The modularity is a more sophisticated measure
that describes the existence of communities of regions within
the network (Newman 2004). This network measure increases
when brain regions are well connected within their module but
are poorly connected with regions belonging to other modules.
In the current study, we found significant modularity increases
in sMCI, IMCIc, eMClc, and AD patients compared with controls,
indicating higher intramodule connectivity and lower connectiv-
ity between modules. This finding indicates that there is a worse
communication between modules in patients, suggesting that
their whole-brain networks were fragmented into a few large,
isolated components. The within-module degree increases and
participation coefficient decreases we found in frontal, parietal,
and occipital regions in the patient groups compared with con-
trols further confirm that the modules were well connected with-
in themselves but not between each other in patients. In a
previous fMRI study, significant modularity increases were also
found in patients with Parkinson’s disease with mild cognitive
impairment, who have a higher risk of developing dementia (Bag-
gio et al. 2014). These increases in modularity can be interpreted
as an abnormal process by which the connections between brain
areas belonging to a certain module increase, leaving the other
modules relatively isolated. In that study, the abnormal modular-
ity increases were associated with worse memory and visuo-
spatial performance in Parkinson’s patients, confirming they
were pathological and related to greater clinical decline (Baggio
et al. 2014). In our study, we also observed that, despite having
similar modules to controls, the regions belonging to each mod-
ule changed across the patient groups, with AD patients showing
2 modules that were not present in the other groups. Hence, our
findings suggest that there is a reorganization of the modules in
sMCI, IMCIc, eMClIc, and AD patients. Similarly to previous stud-
ies assessing modularity in structural MRI networks (Chen et al.
2008, 2011; Wu et al. 2012), we did not find an exact correspond-
ence between the brain modules and previously reported resting-
state fMRI networks (Greicius et al. 2004).

In addition to global network changes, we also observed
alterations in the topology of specific brain regions. We found
there were decreases in the nodal clustering of several areas in
AD patients compared with controls, indicating worse local com-
munication between neighboring areas. Some of these areas be-
longed to the default-mode network and included the precuneus
and superior frontal gyri (Greicius et al. 2004), in line with our ini-
tial hypothesis and with previous studies showing pathological
changes within this network in AD (Buckner et al. 2005, 2009; Li
et al. 2013). In addition, we also observed clustering decreases
in other frontal and temporal regions in AD patients, suggesting
that the regional clustering changes were quite widespread, in
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Figure 7. Significant differences in the closeness centrality between controls and sMCI, IMCIc, eMClIc, and AD patients. CTR, controls; sMCI, stable mild cognitive
impairment; IMCIc, late MCI converters; eMClc, early MCI converters; AD, Alzheimer’s disease. The regions showing significant closeness centrality decreases are
colored in blue, while the regions showing closeness centrality increases in patients are colored in orange. These regions are listed in Table 3.



Table 3 Significant differences in the nodal closeness centrality
between groups (FDR-corrected)

Region CTR sMCI P value
Lh Posterior cingulate 0.30 0.48 0.001
Lh Hippocampus 1 0.29 0.001
Lh Amygdala 1 0.34 0.001
Rh Pericalcarine 0.38 0.28 0.001
Rh Hippocampus 1 0.38 0.001
Rh Amygdala 1 0.33 0.001
CTR IMClIc
Lh Pallidum 0.39 1 0.001
Lh Hippocampus 1 0.39 0.001
Lh Amygdala 1 0.34 0.001
Rh Insula 0.28 0.53 0.001
Rh Pericalcarine 0.38 0.30 0.001
Rh Temporal pole 0.29 0.46 0.001
Rh Entorhinal 0.22 0.45 0.001
Rh Hippocampus 1 0.44 0.001
Rh Amygdala 1 0.33 0.001
CTR eMClIc
Lh Posterior cingulate 0.30 0.54 0.001
Lh Lingual G 0.43 0.56 0.001
Lh Temporal pole 0.39 0.49 0.001
Lh Hippocampus 1 0.26 0.001
Lh Amygdala 1 0.35 0.001
Lh Accumbens 0.36 1 0.001
Rh Insula 0.28 0.49 0.001
Rh Temporal pole 0.29 0.45 0.001
Rh Entorhinal 0.22 0.46 0.001
Rh Hippocampus 1 0.32 0.001
Rh Amygdala 1 0.32 0.001
Rh Accumbens 0.54 1 0.001
CTR AD
Lh Insula 0.38 0.51 0.001
Lh Posterior cingulate 0.30 0.55 0.001
Lh Entorhinal 0.29 0.44 0.001
Lh Hippocampus 1 0.31 0.001
Lh Amygdala 1 0.31 0.001
Rh Lateral orbitofrontal G 0.47 0.58 0.006
Rh Insula 0.28 0.53 0.001
Rh Entorhinal 0.22 0.44 0.001
Rh Hippocampus 1 0.31 0.001
Rh Amygdala 1 0.31 0.001
sMCI IMClIc
Lh Postcentral G 0.41 0.58 0.005
Lh Pallidum 0.21 1 0.001
Rh Postcentral 0.41 0.61 0.001
sMCI eMClc
Lh Pericalcarine 0.26 0.41 0.001
Lh Transverse temporal G 0.40 0.54 0.001
Lh Accumbens 0.21 1 0.001
Rh Lingual G 0.32 0.50 0.001
Rh Accumbens 0.21 1 0.001
sMCI AD
Lh Postcentral G 0.41 0.60 0.001
Lh Pallidum 0.21 1 0.001
Rh Pericalcarine 0.28 0.37 0.001
Rh Pallidum 0.21 1 0.001
IMCIc eMClIc
Lh Accumbens 0.30 1 0.001
eMClIc AD
Lh Lingual 0.55 0.43 0.001
Rh Frontal pole 0.34 0.45 0.001

Note: CTR, controls; sMCI, stable mild cognitive impairment; IMClIc, late mild cognitive
impairment converters; eMClc, early mild cognitive impairment converters; AD,
Alzheimer’s disease; Lh, left hemisphere; Rh, right hemisphere; G, gyrus.
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line with evidence showing extended brain atrophy at advanced
stages of AD (Lehmann et al. 2011). The MCI patient groups only
showed clustering decreases in a few frontal and parietal regions,
in contrast with the widespread changes observed in AD patients.

The nodal closeness centrality showed both increases and de-
creases in sMCI, IMCIc, eMClIc, and AD patients compared with
controls. The decreases were mainly observed in the bilateral
hippocampi and amygdala across all patient groups, indicating
a loss of number of connections between these structures and
other regions of the network. This could be related to white mat-
ter integrity loss or disruption of white matter fibers connecting
these brain areas, which has been previously observed in MCI
and AD patients in DTI studies (for a review, see Chua et al.
2008). The increases of closeness centrality were mainly observed
in the posterior cingulate, temporal pole, entorhinal cortex, in-
sula, and orbitofrontal regions. The closeness centrality is a
measure of interaction between regions; the fact that it is in-
creased in regions showing pathological changes in AD (Braak
and Braak 1991; Thal et al. 2002; Frisoni et al. 2010) could be re-
lated to shared mechanisms in neurodegeneration (Zhu et al.
2012). Within the graph theory framework, 2 regions might cor-
relate with each other not only if they are structurally or function-
ally connected but also if they become atrophied at the same rate
(Alexander-Bloch et al. 2013). Thus, since medial temporal, med-
ial parietal, and limbic regions show atrophy since early stages of
AD, it seems natural that they might strongly interact with other
regions in the network that become atrophied with disease
progression.

In the current study, we also compared global and local net-
work topology between the patient groups. We observed that
sMCI patients had a larger path length and reduced nodal close-
ness centrality in several regions compared with the other
patients, indicating that they presented greater abnormalities
in the communication or interaction between distant brain
areas. Previous evidence suggests that the initial pathological
changes occurring in AD do not target regions that are close to
each other but rather distant brain areas (Zhou et al. 2012),
which are often connected by long and poorly myelinated
axons. Hence, it is possible that these changes are more promin-
ent in sMCI patients, which are potentially at earlier stages of AD.
In contrast to the path length, the clustering coefficient was
reduced in IMClIc, eMClIc, and AD patients compared with sMCI
patients, suggesting that the loss of connections between neigh-
boring areas reflects better the changes occurring in patients that
are on the path to develop AD or already have dementia.

In the past few years, there has been increasing evidence
showing that there is substantial heterogeneity among MCI pa-
tients. For instance, many MCI subjects remain stable for several
years, while others show a fast progression to dementia and
some can even fully reverse to normal cognition (Koepsell and
Monsell 2012). Moreover, there are several non-AD pathologies
that may produce amnestic MCI such as frontotemporal demen-
tia (Yaffe et al. 2006), vascular dementia (Zanetti et al. 2006), and
hippocampal sclerosis (Dickson et al. 1994). In the current study,
we observed heterogeneity in the network topology abnormal-
ities between the MCI groups. Specifically, sMCI-1y patients
showed evidence of increased clustering and almost no changes
in the transitivity and modularity compared with controls (see
Supplementary Fig. 1), in contrast to the other MCI patients. It
is possible that the sMCI-1y group included a mixture of subjects
who remained stable, converted to dementia after a few years,
had a non-AD related disorder or simply did not have any neuro-
degenerative disease (the cognitive deficits they presented were
due to a transient medical condition). This heterogeneity might
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Table 4 Summary of the most relevant global and nodal network results

Measures CTRvs.sMCI CTRvs.IMCIc CTRvs.eMCIc CTRvs.AD sMCIvs.IMCIc sMCIvs.eMCIc sMCIvs. AD
Characteristic path length 1 1 1 1 1 1
Clustering coefficient — 1 1 1 1 1 1
Transitivity 1 1 1 1 — — —
Modularity 1 1 1 1 — — —
Small-worldness 1 1 1 1 — — —
Nodal clustering 1 — 1 1 — — 1

1 region 1 region 21 regions 1region
Nodal closeness centrality | 1 1 1 — — —

5 regions 5 regions 4 regions 4 regions

T 1 T T 1 1 1

1 region 4 regions 8 regions 6 regions 3 regions 5 regions 4 regions

Note: Compared with controls, all patient groups showed an increased path length and modularity as well as changes in the nodal closeness centrality. The mean
clustering coefficient was decreased only in IMClc, eMClc, and AD groups, while the nodal clustering showed the most prominent changes in AD patients by being
decreased in a total of 21 regions compared with controls. Compared with sMCI patients, the other patient groups showed a decreased path length, mean clustering
coefficient, and increased closeness centrality. There were also nodal clustering decreases in 1 region in AD patients compared with sMCI patients.

Figure 8. Brain modules in controls and sMCI, IMCIc, eMClIc, and AD patients. CTR, controls; sMCI, stable mild cognitive impairment; IMCIc, late MCI converters; eMClc,
early MCI converters; AD, Alzheimer’s disease. Four modules were identified in the networks of CTR; 3 modules were identified in sMCI, IMCIc, and eMClIc patients; 5
modules were identified in the networks of AD patients. For each group, the left and right lateral (top) and medial (bottom) brain views are shown.

account for the lack of changes in the transitivity and modularity
in sMCI-1y, in contrast to the other groups that were more homo-
geneous. Studies assessing network topology in MCI subjects
should consider their results with respect to this important
heterogeneity.

Although brain networks are sparse, current neuroimaging
analyses build network representations that are continuous as-
sociation matrices (Fornito et al. 2013). For this reason, many
studies apply a threshold to these matrices in an attempt to re-
tain the true brain connections and remove the potentially spuri-
ous ones. One way of applying a threshold is to retain the
connections that overcome a level of significance. However, this
approach will result in different groups of subjects having

different numbers of edges or connections. In the current
study, we applied a threshold to the connectivity matrices of
each group by retaining the most significant connections, while
ensuring an equal number of connections across groups. Al-
though this step would ideally consist of applying a single
threshold to the connectivity matrices of different groups, there
is currently no absolute way of determining which threshold is
best (Fornito et al. 2013). For this reason, we decided to test for
group differences across a range of densities, similarly to previ-
ous studies (He et al. 2008; Yao et al. 2010). Since it does not
make sense to compute topological measures in networks that
have a random configuration, in the current study we defined
the higher bound of this range using the small-world index,
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Table 5 Brain modules in controls, sMCI, IMClIc, eMClIc, and AD patients

Hemisphere Brain region Modules CTR Modules sMCI Modules IMClIc Modules eMClc Modules AD
Left Superiorfrontal I 111 111 111 111
Left Frontalpole I I 111 I I
Left Rostralmiddlefrontal I II 111 111 111
Left Caudalmiddlefrontal 111 111 111 11 111
Left Parsorbitalis 111 I 111 I I
Left Lateralorbitofrontal I I I I I
Left Parstriangularis 111 I 11 111 I
Left Parsopercularis 111 I 11 111 I
Left Medialorbitofrontal I I I I I
Left Rostralanteriorcingulate I I I I I
Left Caudalanteriorcingulate I II I I I
Left Insula I II I I I
Left Precentral 1II I III III I
Left Postcentral II III I II II
Left Supramarginal I I 111 111 111
Left Superiorparietal 111 111 111 111 111
Left Inferiorparietal 111 111 111 111 111
Left Paracentral 111 111 111 111 111
Left Posteriorcingulate I 11 111 11 I
Left Isthmuscingulate I II I 111 I
Left Precuneus 111 I I 11 111
Left Cuneus I 111 111 I I
Left Pericalcarine 111 111 111 111 111
Left Lingual I I 111 I I
Left Lateraloccipital juit jui i 111 111
Left Transversetemporal 111 I 111 111 11
Left Bankssts III III III III I
Left Superiortemporal 111 I I 111 111
Left Middletemporal 111 I I I 111
Left Inferiortemporal 111 I I 111 111
Left Temporalpole I I I 11 \Y%
Left Entorhinal 1I II II 1I v
Left Parahippocampal v il I 11 \Y%
Left Fusiform I II II 111 111
Left Thalamus 1I II II II VI
Left Caudate 11 I I 1I 1I
Left Putamen 1I II II 1 1
Left Pallidum I I I I I
Left Hippocampus 11 I I 11 \Y%
Left Amygdala 1I II II 1I \Y%
Left Accumbens 1I II II II II
Right Superiorfrontal I 111 111 I I
Right Frontalpole I I 111 I I
Right rostralmiddlefrontal I 111 111 I I
Right Caudalmiddlefrontal 111 111 111 111 111
Right Parsorbitalis I I 111 I I
Right Lateralorbitofrontal I I I 11 I
Right Parstriangularis 111 I 11 I I
Right Parsopercularis 111 111 111 111 111
Right Medialorbitofrontal I I 111 11 I
Right Rostralanteriorcingulate I I I I I
Right Caudalanteriorcingulate I I I I I
Right Insula I I I 11 I
Right Precentral 111 I 111 111 111
Right Postcentral 111 111 111 111 111
Right Supramarginal I 111 111 111 111
Right Superiorparietal 111 11 111 111 111
Right Inferiorparietal 111 111 111 111 111
Right Paracentral 111 i 111 111 111
Right Posteriorcingulate I 111 I 111 I
Right Isthmuscingulate I 111 I 11 I
Right Precuneus 11 I I III III

Continued
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Table 5 Continued

Hemisphere Brain region Modules CTR Modules sMCI Modules IMCIc Modules eMClc Modules AD
Right Cuneus II III 111 I I
Right Pericalcarine 11 111 111 111 111
Right Lingual 11 I I 11 11
Right Lateraloccipital 111 111 111 111 111
Right Transversetemporal 111 I I 111 111
Right Bankssts 111 it I 111 111
Right Superiortemporal I I I 11 \Y%
Right Middletemporal I I I I v
Right Inferiortemporal 111 I I 11 I
Right Temporalpole I I I 11 v
Right Entorhinal 11 I I 11 v
Right Parahippocampal v II I 11 v
Right Fusiform I II II 11 v
Right Thalamus I II II I VI
Right Caudate 1I 1I 11 11 11
Right Putamen II 1I I II II
Right Pallidum il I II I il
Right Hippocampus 11 11 I 11 v
Right Amygdala II 1I 1I II v
Right Accumbens 1 I I I I

Note: CTR, controls; sMCI, stable mild cognitive impairment; IMCIc, late mild cognitive impairment converters; eMClIc, early mild cognitive impairment converters; AD,

Alzheimer’s disease.

Table 6 Differences in the within-module degree and participation
coefficient between groups

Within-module degree CTR IMCIc P value
Region

Rh Pars opercularis G -3.29 0.53 0.002
Within-module degree CTR eMClc P value
Region

Lh Postcentral G —-0.35 1.22 0.004

Lh Superior Parietal G -0.35 0.99 0.017
Within-module degree CTR AD P value
Region

Lh Postcentral G -1.12 0.70 0.001

Lh Superior Parietal G -1.12 0.89 0.002

Lh Superior Temporal G 0.39 1.86 0.003

Rh Pars Opercularis G -2.81 0.42 0.001
Participation coefficient CTR AD P value
Region

Lh Lateral Occipital G 0.66 0.23 0.004

Rh Postcentral G 0.66 0.24 0.008

Rh Lateral Occipital G 0.66 0.32 0.001

Note: CTR, controls; sMCI, stable mild cognitive impairment; IMClIc, late mild
cognitive impairment converters; eMClc, early mild cognitive impairment
converters; AD, Alzheimer’s disease; Lh, left hemisphere; Rh, right hemisphere;
G, gyrus. Differences between controls and AD patients survived corrections for
multiple comparisons with FDR, while the other differences between groups
were significant at an uncorrected level (P <0.05).

which indicates whether the networks are meaningfully orga-
nized. Our results showed that there were significant differences
between groups at different densities, suggesting they were
consistent.

We would like to highlight that the present study has some
limitations. First, despite providing useful information, the

analysis of structural covariance networks does not allow correl-
ation analyses to be performed with clinical measures since there
are no individual networks but only a network per group. Never-
theless, Tijms et al. (2012, 2016), Tijms, Moller, et al. (2013), and
Tijms, Wink, et al. (2013) have overcome this limitation by provid-
ing a method that can create single-subject structural networks
using structural MRI; this method could be considered in future
graph theory studies assessing structural networks in large co-
horts of AD and MCI patients. Secondly, we had limited longitu-
dinal data regarding the clinical diagnosis of patients of only up
to 3 years. Hence, it is possible that many of the individuals in-
cluded in the sMCI group converted to dementia shortly after
this period.

In conclusion, our study is the largest to date to assess struc-
tural network topology in stable MCI, progressive MCI, and AD by
including 1008 patients and controls from 2 large multicenter co-
horts. Our findings show, for the first time, that the transitivity
and modularity are important graph theory measures that offer
greater sensitivity to MCI and AD compared with the path length
and clustering coefficient, which have been used more frequently
in graph theory studies in AD. In addition, in contrast to previous
studies, we provide a detailed description of nodal network
changes in sMCI, IMCIc, eMClc, and AD patients. Specifically,
we show that while the nodal clustering showed widespread
changes in AD patients, the closeness centrality detected altera-
tions in several regions in all groups, showing overlapping
changes in the hippocampi and amygdala and nonoverlapping
changes in medial parietal and limbic areas in sMCI, IMClIc,
eMClIc, and AD patients. These results offer an important glimpse
into how AD progresses across different brain regions and ultim-
ately leads to changes in global network organization.
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