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Abstract
How do youmake a decision if you do not know the rules of the game?Models of sensory decision-making suggest that choices
are slow if evidence is weak, but they may only apply if the subject knows the task rules. Here, we asked how the learning of a
new rule influences neuronal activity in the visual (area V1) and frontal cortex (area FEF) of monkeys. We devised a new icon-
selection task. Oneachday, themonkeys saw2new icons (small pictures) and learnedwhich onewas relevant.We rewarded eye
movements to a saccade target connected to the relevant icon with a curve. Neurons in visual and frontal cortex coded the
monkey’s choice, because the representation of the selected curve was enhanced. Learning delayed the neuronal selection
signals andwe uncovered the cause of this delay in V1,where learning to select the relevant icon caused an early suppression of
surrounding image elements. These results demonstrate that the learning of a new rule causes a transition from fast and
randomdecisions to amore considerate strategy that takes additional time and they reveal the contributionof visual and frontal
cortex to the learning process.
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Introduction
Imagine that you want to learn a new game. There are multiple
ways to learn the rules. For example, you can choose to study
the manual. However, in many cases, the best way to learn is to
try to optimize your strategy while playing, making many errors
at the start. Virtually in all games, youwill have to learn to attend

features thatmatter, for example, the shape of the chess pieces or
the symbols on cards, and to ignore the rest. However, how do
you distribute your attention and make decisions when you do
not yet know the rules?

In previous work, researchers have gained insight into the
neuronal mechanisms underlying sensory decisions. Many
studies have focused on the parietal and motor cortex in tasks
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where monkeys choose to move their eyes to one of a number of
positions (Schall 1991; Schall et al. 1995; Hanes and Schall 1996;
Kim and Shadlen 1999; Gold and Shadlen 2001, 2007; Murthy
et al. 2001; Ding and Gold 2012). These studies revealed that eye
movement decisions are implemented as a race or a competition
between pools of neurons that code for different eye movement
decisions. When the sensory evidence in favor of one of the eye
movements is strong, neurons that code for this eye movement
quickly ramp up their activity, but the buildup of activity is
more gradual and reaction times are prolonged if the evidence
is weak. In these previous tasks, the monkeys were familiar
with the rule so that it was strategic to wait for more evidence
and to postpone the response when the stimulus was weak.
The optimal strategymay be differentwhen the stimulus is clear-
ly visible, but the rules are unknown. How is a decision made in
this situation? Do monkeys also postpone their decision in the
absence of evidence for one or the other decision?

In the present study, wewere interested in the changes in the
representations in the visual and frontal cortex when monkeys
learn anew rule. The role of the frontal cortex in decision-making
has been well established (Schall 1991; Schall et al. 1995; Hanes
and Schall 1996; Kim and Shadlen 1999; Murthy et al. 2001; Ding
and Gold 2012), but we here also investigated the influence of de-
cision-making on neuronal activity in visual cortex because of
the intimate relationship between decision-making and shifts
of attention. The decision tomake an eyemovement is invariably
associated with a shift of attention to the location of the eye
movement target (Kowler et al. 1995; Deubel and Schneider
1996). Furthermore, learning an unknown rule implies that one
learns to attend to the relevant features and to ignore irrelevant
ones. Learning, therefore, has a pronounced influence on the dis-
tribution of attention. Specifically, visual objects that have been
associated with a high reward in previous trials will usually at-
tract attention in later trials (Della Libera and Chelazzi 2009; Ray-
mond and O’Brien 2009; Hickey et al. 2010; Anderson et al. 2011;
Chelazzi et al. 2013). Also at a neuronal level, the representations
of stimuli that have been associated with high rewards are en-
hanced in visual, parietal, and frontal cortex. Their representa-
tions resemble the representation of attended stimuli (Kim and
Shadlen 1999; Maunsell 2004; Serences 2008; Peck et al. 2009;
Stănişor et al. 2013). Because the present study does not aim to
dissociate the influence of attention from the influence of eye
movement selection on neuronal activity, we will use the more
neutral term “selection signal” to describe the effects of stimulus
selection on activity in visual and frontal cortex.

Leveraging on earlier work that examined howmonkeys learn
arbitrary associations between stimuli and responses (Chen and
Wise 1995a, 1995b, 1996; Asaad et al. 1998; Tremblay et al. 1998;
Erickson and Desimone 1999; Jagadeesh et al. 2001; Wirth et al.
2003; Brasted and Wise 2004; Pasupathy and Miller 2005), we de-
vised a new icon-selection task that allowed us to investigate
selection signals related to motor planning in the frontal cortex
and to shifts of attention in the visual cortex. Specifically, we
presented a new pair of shapes (icons) to the monkeys in every
session that were connected by a curve to an eye movement tar-
get (Fig. 1). The monkeys had to learn which of these icons was
rewardedwith juice andwhich onewas not. This design provided
a number of strengths. First, we could expose the monkeys to
a new learning problem in every recording session. Second, we
could place the curves in the receptive fields of V1 neurons
to examine attentional selection signals while keeping the
receptive field stimulus constant. Third, we could place the
saccade targets in the receptive field of FEF neurons, again ensur-
ing that the receptive field stimulation was identical across

conditions. Finally, we could vary the difficulty of the task to in-
vestigate how this factor influences the activity in V1 and FEF.

With this design, we aimed to address the following ques-
tions. 1) Howare eyemovements selected if the rule is unknown?
2) Are random guesses associated with selection signals in the
visual and frontal cortex? 3) What is the influence of learning
on the time course of selection signals in the visual and frontal
cortex?

When themonkeys learned the new rule, we observed a tran-
sition from extremely fast but random decisions at the start of a
session to slower and accurate decisions as themonkeys became
proficient. The longer decision timeswere associatedwith amore
gradual buildup of activity in the frontal cortex and with the
later emergence of selection signals in the visual cortex. Our V1
recordings revealed a cause of the delay, because the learning in-
duced a brief suppression of activity in the vicinity of the relevant
icon allotting additional time for more considerate decisions in
frontal cortex.

Materials and Methods
Three monkeys (A, J, and G) participated in this study. We re-
corded 2 datasets, one in FEF of monkeys A and J, and the other
one in V1 of monkeys A and G. In a first operation, we implanted
a head holder to stabilize the head and inserted a gold ring under
the conjunctiva of one eye for the measurement of eye position.
For the FEF recordings, we performed a separate surgery to make
a trepanation over area FEF and to place a recording chamber. Be-
fore surgery, the FEF was localized with a magnetic resonance
imaging scan and once the chamber was in place we confirmed
its location by eliciting saccadic eye movements with microsti-
mulation (generally <50 μA). For the V1 recordings, we chronical-
ly implanted arrays of 4 × 5 or 5 × 5 electrodes (Blackrock
Microsystems). The surgical procedures were performed under
aseptic conditions and general anesthesia. Details of the surgical
procedures and the postoperative care have been described previ-
ously (Roelfsema et al. 1998; Khayat et al. 2009). All procedures
complied with the US National Institutes of Health Guidelines
for the Care and Use of Laboratory Animals were approved by
the institutional animal care and use committee of the Royal
Netherlands Academy of Arts and Sciences of the Netherlands.

The stimuli were presented on a monitor with a diagonal of
35.5 cm (14 inch), a resolution of 1024 by 768 pixels, and a refresh
rate of 100 Hz at a distance of 75 cm from themonkey’s eyes. The
objects that appeared on the screen were colorful figures with a
size of approximately 1.0°; we will refer to these as “icons”
(Fig. 1). The saccade targets were red disks with a diameter of
0.8° connected to the icons by a curve that was 2 pixels wide
(0.05°). The eye position was measured using either the double
magnetic induction technique built in house (Bour et al. 1984)
(sampling rate 1 kHz) or an infrared camera system (Thomas
Recording: ET-49B, sampling rate 250 Hz).

Behavioral Task

The animals performed a forced choice task where they had to
select one of 2 icons and thenmade an eye movement to a circu-
lar disk that was connected to this icon by a curve (Fig. 1A). We
presented a new (unfamiliar) pair of icons during every recording
session and the monkey had to learn which of these 2 icons was
associated with reward. A trial started as soon as the monkey’s
eye position was within a 3°×3° square window centered on a
red fixation point (FP) for recordings in FEF or a 1.2°×1.2° window
for recordings in V1. After an interval of 300 ms, the 2 icons as
well as 2 curves and disks appeared on the screen (Fig. 1). We
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presented 3 types of stimuli: easy, intermediate, and difficult. For
the easy condition, the target icon was placed on top of the fix-
ation point, so that the animal could trace this curve to identify
the correct target for an eye movement (Fig. 1B). These trials
were easy, because the monkeys had previously learned to
trace a curve connected to the fixation point (without icons). In
the intermediate condition, the target icon was closer to the fix-
ation point than the distractor icon. In the difficult condition, the
relevant and irrelevant icons were at the same distance from the
FP (with a size of 0.3°) (Fig. 1B). In this condition, the monkey had
to use the identity of the icons for correct performance. The easy,
intermediate, and difficult trialswere randomly interleaved. Note
that the identity of the relevant and irrelevant icon was the same
across difficulty levels. However, care was taken to use distinct
icons (with distinct combinations of shapes and colors) in differ-
ent sessions (examples are shown in the inset in Fig. 1A).

Before the 3 monkeys entered into the icon-selection task,
they had ample experience with a curve-tracing task in which
the target curve was connected to the fixation point. Prior to
data collection, we specifically trained them to consider icon
identity by using the same target and distractor icon across a
number of successive sessions while varying the fraction of trials

of the easy, intermediate, and difficult condition. These early
training sessions where icon identity was stable across days
were not included in the present dataset.

During the recording sessions, the stimulus in the receptive
field (RF) of FEF and V1 neurons was kept constant across condi-
tions. We ensured that the V1 RFs (with a size of ∼1° andmapped
as described below) were activated only by the curves (small rec-
tangles in Fig. 1) and the FEF RFs by curves and disks (larger gray
regions in Fig. 1). Because FEF RFs are large (sometimes >10°), the
2 disks were often positioned in opposite hemifields for the FEF
recordings, whereas they usually were in the same hemifield
for the V1 recordings. In other respects, the stimuli for the FEF
and V1 recordings were comparable.

During the FEF recordings, themonkeys were allowed to initi-
ate their response as soon as the stimulus appeared (reaction-
time task). We imposed an additional fixation delay of 500 ms
after stimulus onset for the V1 recordings before the monkey
couldmake an eyemovement to one of the disks, to have a longer
timewindow to evaluate the influence of target selection inV1. In
this task, the fixation point changed color from red to green as a
cue to initiate a saccade.We rewarded correct choiceswith a drop
of apple juice (∼0.2 mL).

A

B

Figure1. Icon-selection task. (A) After themonkeyfixated a centralfixation point for 300 ms, 2 icons appeared thatwere connected by curves (black lines) to 2 reddisks. The

monkey had tomake a saccade (green arrow) to the target disk (T) that was connected to the target icon (yellow icon). The other icon, curve, and disk were distractors (D).

The lower panel shows examples of target and distractor icons used in different sessions. (B) For easy and intermediate stimuli, the target iconwas on top of or closer to the

fixation point than the distractor icon. In the difficult condition, the distance between the icons and the fixation pointwas identical so that themonkeys could only rely on

icon identity to make a correct choice. RF, receptive field; FP, fixation point.
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Analysis of Behavior

To investigate the progression of learning, we assigned a value of
0 to error trials and 1 to correct trials and then averaged accuracy
across days while smoothing with a boxcar of 15 trials. The re-
sulting accuracy values ranged from 0.5 (chance level) to 1
(100% correct). We also averaged the reaction time across ses-
sions, only including the correct trials. We found that the ani-
mals’ accuracy tended to decline toward the end of the
sessions, and therefore, we excluded these trials (∼20% of the
trials at the end of the session). We considered that icon learning
was successful when the accuracy reached a level higher than
75% in the difficult condition. For the FEF recordings, the animals
performed on average 550 valid trials per session (∼180 trials for
each difficulty level); sessions with less than a total of 300 trials
(e.g., due to loss of isolation of the unit) were not included in
the analysis. For the V1 recordings, there were on average 700
trials per session.

Single Unit Recording and Data Analysis in FEF

Extracellular recordings from single neurons were obtained with
tungsten microelectrodes, which were lowered through the dura
mater with a hydraulic microdrive (Narishige). Action potentials
were amplified, filtered, discriminated, and recorded on-line
using spike-sorter software (Tucker-Davis Technologies). We
confirmed that single units were in FEF by using the recording
electrode for intracortical microstimulation (biphasic current
pulses, 70 ms train duration, 400 Hz). We judged the penetration
to be in FEF if we could trigger a saccade with a current <100 µA
(generally <50 µA) (Bruce and Goldberg 1985).

The activity of 34 FEF single units was recorded from the 2
monkeys (10 from monkey J and 24 from monkey A). We first
mapped the response field (RF) of the neuron by presenting a sin-
gle saccade target at various eccentricities and directions. We
then recorded separate blocks of trials withmapping tasks for ec-
centricity and radial tuning, to obtain a quantitative measure of
the location and extent of the RF. Specifically, we fitted a Gauss-
ian to the radial tuning profile and a spline to the eccentricity pro-
file and assumed that the effects of eccentricity and direction on
a neuron’s response are separable, that is, the overall response
can be described as amultiplication of the effect of these 2 factors
(Khayat et al. 2009). We also employed amemory-guided saccade
task to classify the cells according to the scheme of Bruce and
Goldberg (1985). We classified the 34 cells included in this study
as 7 visual neurons and 27 visuomotor neurons (we excluded
motor neurons). In the learning task, one of the 2 target disks
was placed within the neuron’s RF and the other disk at an
angle of 90° or 135° and at a similar eccentricity (ranging from
8° to 18°) (Fig. 1). Because some FEF neurons exhibit tuning to vis-
ual stimuli (Bichot et al. 1996; Peng et al. 2008), we placed the
icons well outside the RFs, ensuring that differences in activity
between conditions were caused by target selection.

Peristimulus and perisaccade time histograms of single-unit
responses were computed with 10 ms bins and aligned to stimu-
lus appearance and saccade onset, respectively. Only correct
trials were included in our analyses, unless otherwise specified.
Target selection activity of the FEF neurons was defined as the
difference between activity elicited by the target and distracter
curve/disk in spikes per second. This difference is expected to
be zero at response onset followed by an increase or decrease re-
flecting the effect of target selection. On the basis of these as-
sumptions, we fitted a piecewise (100 ms intervals) cubic spline
using least square fitting (de Boor 1978) that was constrained to

be zero at onset. Fits were obtained using the shape prescriptive
modeling toolbox implemented in MATLAB (Mathworks 2009 by
John D’Ericco) and used to estimate the latency of the selection
signal as the time point at which the fitted function reached
33% of its maximum. We used a bootstrap analysis to measure
the significance of differences in the latency of the selection sig-
nal between conditions. We randomly selected the average re-
sponses in one or the other condition for each cell/MUA
recording site and then averaged across all cells. We used the fit-
ting procedure to compute latencies in 10 000 simulated samples
and considered the real latency differences to be significant if
they fell outside 95% of this simulated distribution.

Recording and Data Analysis of Multiunit Activity in V1

We recorded multiunit activity (MUA) from 28 recording sites
simultaneously in 19 sessions in monkey A and from 7 recording
sites simultaneously in 22 sessions in monkey G. MUA was
recorded from chronically implanted multielectrode arrays
(Blackrock Inc.) with TDT multichannel recording equipment.
As in previous studies, the MUA signal was amplified, bandpass
filtered (300–9000 Hz), full-wave rectified, low-pass filtered
(<200 Hz), and sampled at a rate of 763 Hz. The MUA represents
the pooled activity of a number of single units in the vicinity of
the tip of the electrode (Logothetis et al. 2001; SupèrandRoelfsema
2005; Cohen and Maunsell 2009; Xing et al. 2009). The population
response obtained with this method is therefore expected to be
identical to the population response obtained by pooling across
single units and a previous study demonstrated that MUA indeed
provides a reliable estimate of the average single-unit response
(Supèr and Roelfsema 2005).

We calculated the signal-to-noise ratio of the visual response
in single trials at every recording site by dividing the average peak
response (after smoothing with a Gaussian kernel with a σ of
10 ms) by the standard deviation of the spontaneous activity in
a 200-ms window before stimulus onset. We only included
recording sites with a signal-to-noise ratio larger than 1.5 (the
mean was 2.5), so that the visual response was discernable in
almost every trial. We estimated the RF dimensions of neurons
at the recording site by measuring the onset and offset of the
response to a slowly moving white bar on a black background,
in each of 8 directions (Supèr and Roelfsema 2005). The median
area of the RFs was 0.52 deg2 (ranging from 0.1 deg2 to 2.4 deg2).
RF eccentricity ranged from 1.2° to 5.0° with an average of 3.1°.
V1 RFs were selected such that they all fell on one of the curves
and never overlapped with the disks or with the icons.

We computed peristimulus timehistograms in a timewindow
ranging from 100 ms before stimulus onset and up to 800 ms
afterward and smoothed the activity with a Gaussian kernel
(SD 10 ms). To compute population responses, we normalized
activity at individual recording sites to the peak response after
subtraction of the spontaneous activity level (average activity in
the last 100 ms before stimulus onset). The peak responsewas es-
timated as the highest activity in an interval between 0 and
150 ms after the stimulus onset. Target selection activity (atten-
tional modulation) was defined as the difference between re-
sponses evoked by target and distracter curve, and the onset of
the selection signal was estimated with piecewise cubic spline
fitting as the time point when the fitted function reached 33%
of its maximum, as described for the FEF data above. We mea-
sured neuronal activity at the same electrodes of the arrays
across multiple days. For every recording site, we therefore first
averaged the neuronal activity across sessions (only including
sessions with a successful recording from that site) before
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entering it into the dataset. Thus, every recording site contribu-
ted only a single data point to the statistics.

Results
We investigated the time course of learning of an icon-selection
task and the expression of this learning process in FEF and V1. In
every session, the monkeys learned to select one of 2 unfamiliar
icons. These iconswere connected to red disks by a curve and the
monkeys indicated their choice by making an eye movement to
one of the disks (Fig. 1). Eye movements to the disk connected
to the target icon were rewarded, but eye movements to the
other disk that was connected to the distractor icon were not.
To facilitate learning, we used stimuli with 3 levels of difficulty.
In easy trials, the target icon overlapped with the fixation point,
and the monkey could simply trace the target curve to its other
end to identify the target disk. In the intermediate condition,
the target icon was closer to the fixation point than the distractor
icon. These 2 conditions could be solved based on the distance
between the icons and the fixation point. In the difficult condi-
tion, the target and distractor icons were at the same distance
from the fixation point, and the monkey could only rely on icon
identity for a correct response. There were 2 complementary
stimuli in each condition, one for which the RF fell on the target
curve and onewhere the RF fell on the distractor (Fig. 1) resulting
in a total of 6 stimuli, which were randomly interleaved.

Reaction Time Task

In the first experiment, we recorded single units in FEF in 2 mon-
keys (A and J). These animals performed a reaction time version
of the icon-learning task and could make an eye movement im-
mediately after stimulus presentation. We analyzed the behav-
ioral performance data from a total of 104 sessions of monkey A
and from 61 sessions of monkey J; FEF neurons were isolated in a
subset of these sessions. The monkeys made hardly any errors
with the easy stimuli (Fig. 2, blue traces). Accuracy in the inter-
mediate condition also started above chance level (at 70–80%)
and increased to almost 100% at the end of each session (Fig. 2,
green traces). The performance improvement for the difficult
stimuli was more gradual, in accordance with studies using
related tasks (Asaad and Eskandar 2011; Heilbronner and Platt
2013). In the difficult condition, accuracy started at chance level
and increased to values higher than 80% in both animals (Fig. 2,
red traces). To analyze the significance of the improvements in
performance, we calculated the accuracy in the first 30 (early)
trials, and when learning had occurred, we chose trials 101 to
130 for comparison. Accuracy was significantly better in the
later trials in the intermediate (χ2 = 52, df = 1, P < 10−6) and diffi-
cult condition (χ2 = 150, df = 1, P < 10−6). The improvement in per-
formance was accompanied by an unexpected increase in
reaction time in all 3 conditions. We used a 2-way ANOVA to
test the effects of learning (first vs. later trials) and difficulty
level (easy/intermediate/difficult) on reaction time. The reaction
time increased from an average of 213 ms in the early trials to
238 ms in the later trials in monkey A (F1,11 921 = 1021, P < 10−6)
and from 284 to 303 ms in monkey J (F1,10 614 = 200, P < 10−6).
In addition, there was also a significant effect of task difficulty
on reaction time (monkey A: F2,11 920 = 31.8, P < 10−6; Monkey J:
F2,10 613 = 12.3, P < 10−6). In both monkeys, reaction times for the
difficult task were longer than those in the other 2 conditions.
In monkey J, the reaction time in the easy condition was
shortest, but in monkey A the reaction time was shortest in the
intermediate condition.

In many tasks, humans and monkeys trade off accuracy
against speed to optimize reward income (Hanks et al. 2011; Dru-
gowitsch et al. 2012; Heitz and Schall 2012). In the beginning of
the task, the monkeys did not know the identity of the target
icon and postponing their decision in the difficult condition
could therefore not increase their accuracy. However, the trade-
off between speed and accuracy might have changed by the
end of the learning sessions when the monkeys knew which
icon was the target. We, therefore, examined the reaction time
distribution (Fig. 2C) and, in particular, the relation between reac-
tion time and accuracy for the initial trials and for the late trials
(Fig. 2D). For the initial trials, accuracywas around 60%, and as ex-
pected, it did not increase with reaction time. In contrast, accur-
acy in the late trials increased with reaction time from a value of
approximately 60% at 200 ms to approximately 90% at 300 ms.
Thus, in this phase of the session, it was advantageous to shift
the reaction time distribution to higher values. We next com-
puted the expected reward income (inmL juice per s) as function
of reaction time, taking into account the relation between accur-
acy and reaction time as well as the waiting times (intertrial
interval plus fixation time before the stimulus appeared).

Reward income ðRTÞ ¼ Accuracy ðRTÞ × 0:2mL
ðwaiting timeþ RTÞ ;

In this function, juice per correct trial was 0.2 mL, and minimal
waiting was 0.7 s for monkey A (a 300 ms fixation period plus an
intertrial interval of 400 ms) and 0.6 s for monkey J (with an inter-
trial timeof 300 ms) (Fig. 2E). It can be seen that the reward income
in later trials increased more by postponing the response (blue
curves in Fig. 2E) than in early trials (purple curves). In early trials,
the reward income was maximal for reaction times of 210 ms in
monkey A and 290 ms inmonkey J. The optimal reaction times in-
creased to 260 and 350ms, respectively, in the later trials, which is
similar to the monkeys’ increase in reaction time. These results
suggest that the increase in reaction time during the learning ses-
sionsmayhave beena strategic adjustment that optimized reward
income per unit time (Fig. 2E). It is of interest that we observed
similar increases in reaction times in the easy and intermediate
conditions (Fig. 2B). This result suggests that adjustments in the
speed-accuracy trade-off for optimizing performance in the diffi-
cult condition also influenced reaction times for the easier levels.

Target Selection in FEF

We next investigated the neuronal correlates of target selection
in FEF. Figure 3A shows the stimuli in one of the recording ses-
sions. The RF of the example FEF neuron fell on the circular
disk and on the more eccentric segment of one of the curves so
that the stimulus in the RF was always identical. The neuron
was activated more strongly when the target disk fell in the RF
than if the distractor disk fell in the RF (Fig. 3B), a modulation
caused by the selection of the target of an eye movement (Schall
1991; Schall et al. 1995;Murthy et al. 2001; Khayat et al. 2009; Poor-
esmaeili et al. 2014). The latency of this selection signal (the dif-
ference in activity elicited by target and distractor) increasedwith
difficulty, as has been observed previously (Sato et al. 2001; Cohen
et al. 2009; Pooresmaeili et al. 2014).

We observed the same effects when we pooled data across all
FEF neurons, selecting all correct trials from a session (Fig. 4).
Also at the population level, the activity evoked by the target
disk was significantly stronger than the activity evoked by the
distractor in all difficulty conditions (paired t-test 50–250 ms
after stimulus onset, n = 34, all 3 Ps <10−5) (Fig. 4). To examine
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how the onset of the target-selection signal depended on task
difficulty, we estimated the latency with a curve-fitting method
(see Materials and Methods). Target selection occurred later
when the task was more difficult. The latency was 145 ms in
the easy condition; it increased to 155 ms in the intermediate
condition and to 175 ms in the difficult condition (Fig. 4A) (boot-
strap test, N = 10 000, P < 0.05 for all 3 comparisons). Interestingly,
the amplitude of the response elicited by the target curve reached
a similar level across difficulty conditions in a 50-mswindow just
before saccade onset, but the distractor elicited more activity if
the taskwas difficult (Fig. 4B).We found significantdifferences be-
tween distractor activity in the difficult condition and the 2 other
conditions (paired t-test, n = 34, both Ps < 0.01), but difference be-
tween the easy and intermediate conditionswasnot significant (P
> 0.05). The present task thereby reproduces previous findings on
saccade target selection. Neuronal activity accumulates toward a
relatively fixed threshold, which is reached around the time of
the saccade. The accumulation process takes more time if the
task is difficult (Sato et al. 2001; Gold and Shadlen 2007).

The Effects of Learning in FEF

Our main aim was to investigate how learning influences the ac-
tivity of FEF neurons. How does the time course of the neuronal

activity change when the monkeys learn which of the 2 icons is
the target and which one is the distractor?

To investigate the effects of learning, we compared activity in
the difficult condition in an early epoch (the first 15 correct trials
with the RF on the target and the first 15 correct trials with the RF
on the distractor in the difficult condition) when the monkeys’
accuracy was low to that in a later epoch (trials 101–130) when
performance had improved (Fig. 2). For both epochs, we then
averaged activity elicited by the target or distractor curve across
sessions (Fig. 5A). Besides a reduction in the initial visual peak re-
sponse, which may have been caused by adaptation, we did not
find a change in the total amount of activity evoked by target or
distractor, nor an increase in the strength of modulation with
learning or the peak activity around the time of the saccade
(P > 0.1, bootstrap test, N = 10 000). However, we did find a differ-
ence in the latency of the selection signal. The latency increased
significantly from 145 ms at the start of the session to 185 ms in
the later epoch (Fig. 5A) (P < 0.05, bootstrap test,N = 10 000) for the
difficult condition. When we analyzed the data of the 2 monkeys
separately, we found that the increase in latency was 40 ms in
both of them. The increase in latency with learning was signifi-
cant inmonkey J (P < 0.05) but not inmonkey A (P > 0.05), presum-
ably due to the small sample size in this animal (n = 10 single
units). The latency of the selection signal did not change
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significantly with learning in the easy and intermediate condi-
tion (both Ps > 0.1).

The early FEF selection signals in the difficult condition at the
start of the task occurred during a period when the monkey had
no preference for one or the other icon and performed at chance
level (Fig. 2). Thus, our results suggest that FEF neurons initially
implemented a fast but random selection of one of the disks.
This interpretation was confirmed when we analyzed the error
trials in the difficult condition. In error trials, the selection signal
was inverted, that is, the FEF neurons selected the distractor
curve (Fig. 5B), as has been observed previously (Thompson
et al. 2005; Pooresmaeili et al. 2014). These results therefore dem-
onstrate that learningwas associatedwith a transition froma fast
but random selection of one of the curves to a more accurate, yet
delayed selection of the target curve (Fig. 5A). Thus, themonkeys
allotted additional time for the accurate selection of the target
icon (Fig. 2) and, accordingly, the selection FEF signal occurred
at a later point in time.

Delayed Response Task

We next investigated how learning in the icon-learning task
changes activity in the visual cortex. We targeted area V1,
where the representation of relevant curves and icons is en-
hanced relative to the representation of distractors (Roelfsema

et al. 2003; Moro et al. 2010). For the V1 recordings, we used a de-
layed version of the icon-selection task that gave us the oppor-
tunity to analyze neural responses in a longer time window.
The monkeys had to maintain fixation for 500 ms after stimulus
onset before theywere cued tomake a saccade by a change in the
color of the fixation point (Fig. 6). We obtained behavioral data
from 22 recording sessions in each monkey (A and G). Figure 7
shows the influence of learning on accuracy and reaction time,
averaged across sessions. The increase in accuracy was pro-
nounced in the difficult condition, whereas the monkeys hardly
made any errors for the easy and intermediate stimuli. In the dif-
ficult condition, monkey A reached an accuracy higher than 75%
after approximately 100 trials, comparable to his learning rate in
the reaction time task used with the FEF recordings (Fig. 2) and
the learning curve of monkey G was somewhat steeper. A com-
parison of early trials (1–30) and later trials in the difficult condi-
tion (trials 121–150 in monkey A; 61–90 in monkey G; gray bars in
Fig. 7) revealed that the increase in accuracy was highly signifi-
cant (monkey A: χ2 = 95.3, P < 10−6; monkey G: χ2 = 60.6, P < 10−6,
Chi-Square test).

The reaction time profile differed from the reaction time task
(Fig. 2B), because the monkeys were now required to fixate an
extra 500 ms. Reaction times in monkey G were often relatively
long and decreased slightly during learning, whereas monkey
A tended to respond quickly after the cue to make a saccade.
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A 2-way ANOVAwith factors “epoch” (early vs. late) and difficulty
(easy, intermediate, difficult) revealed that only the reaction
times of monkey G decreased significantly during learning
(F1,3262 = 37, P < 10−6). However, in both monkeys, reaction times
were longer in the difficult condition than in the other conditions
(monkey A, F2,3357 = 30, P < 10−6; monkey G, F2,3261 = 40, P < 10−6).

Target Selection in V1

Wealways configured the stimuli in such away that the RFs of the
MUA recording sites either fell on the target curve or on the

distracter curve, and the RF stimulus was identical across condi-
tions (Fig. 6). Figure 8A shows the average normalized MUA re-
sponses of all recording sites (28 recording sites in monkey A
and 7 inmonkeyG combined), an average that includes all correct
trials from the sessions. The initial visual response triggered by
the appearance of the curve in the RF was identical for the 2 con-
ditions, but after a delay of 100–200 ms, the activity elicited by the
target curve became stronger than that elicited by the distractor
in all 3 conditions. Thus, V1 neurons also select the relevant
curve.

The temporal profile of the selection signal differed between
the difficulty levels. In the easy and intermediate conditions, re-
sponse modulation started early with a brief period of stronger
modulation. The selection signal built up more gradually in the
difficult condition and, accordingly, the strength of the response
modulation differed between conditions in both monkeys
(ANOVA; monkey A, F2,81 = 6.91, P < 0.01; monkey G, F2,18 = 26.6,
P < 0.01), whereas the strength of the selection signal became
comparable around the time of the saccade. The main difference
between difficulty levels was the latency of the selection process.
It was 104 ms in the easy condition, 113 ms in the intermediate
condition, and 202 ms in the difficult condition. In particular,
the latency in the difficult condition was strikingly longer com-
pared with that in other 2 conditions. The differences in latency
between conditions were significant for bothmonkeys (bootstrap
test, N = 10 000, Ps < 0.05) with exception of the difference be-
tween easy and intermediate for monkey G.

The Effects of Learning in V1

To investigate the effect of learning on the V1 selection signal, we
compared activity in the early epoch to that in the later epoch (for
the definition of these epochs, see Fig. 7). Learning delayed the
onset of the selection signal in the difficult condition from 205
to 269 ms (N = 35, P < 0.01, bootstrap test, N = 10 000). Learning
did not delay the onset of the selection signal in the intermediate
and easy conditions (P > 0.05) (Fig. 8B and 9A). The increased la-
tency in the difficult condition was associated with an early in-
version of the selection signal (“+” symbols in Fig. 8B), implying
that the activity elicited by the target curve first decreased
below the activity elicited by the distractor. This suppression be-
came significantly stronger when the animals became proficient
in the difficult condition (paired t-test, P < 10−5) (Fig. 9B). Thus,
learning caused a brief episode of suppression of the V1 re-
presentation of contour elements of the target curve adjacent
to the target icon, which the animals learned to select. This sup-
pression was associated with an additional delay in the onset of
the selection signal for the target curve.

Error Trials in V1

Wehypothesized that the early suppression of the target curve is
caused by an initial selection of the target icon, which might be
associated with a suppression of the activity of the adjacent ele-
ments of the target curve. To investigate this possibility, we ana-
lyzed the error trials where themonkeys selected thewrong icon.
Error trials were associated with an early suppression of activity
elicited by the distractor curve, followed by an increase in the ac-
tivity evoked by this curve, that is, an inversion of the activity pro-
file in correct trials (Fig. 9C). These results suggest that the
selection of one of the icons caused a brief suppression of the ad-
jacent contour elements of the connected curve, which changed
into a later enhancement, as has been illustrated in Figure 10.
Interestingly, this suppression did not occur in the easy and
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intermediate conditions where the animals could select the icon
closest to fixation so that they did not have to rely on its identity.

Discussion
We investigated the time course of response selection in a task
where monkeys had to learn a new rule and obtained a number
of new findings. First, we found that the learning process starts
with a phase of fast and random decisions and ends with a
phase with more accurate but slower decisions. Learning in-
creased the reaction time by approximately 40 ms (Fig. 2) and it
induced a comparable delay in the selection signals in frontal
cortex (Fig. 5), implying that the monkeys allotted additional

time for an influence of newly learned icon identity on the deci-
sion. The results differ from previous studies that investigated
decision-making in tasks where the rule was known, but the
strength of sensory evidence varied (Kim and Shadlen 1999; Roit-
man and Shadlen 2002). If the rule is familiar, the decision pro-
cess takes longer if the sensory evidence is weak (Pooresmaeili
et al. 2014).

Thus, these 2 sources of uncertainty, unfamiliar rules, and
weak evidence, have fundamentally different influences on re-
sponse selection. This difference can be explained by a trade-
off between speed and accuracy that optimizes reward income
(Bogacz et al. 2010; Heitz and Schall 2012). If the rule is known
but evidence is weak, it is strategic to wait for more evidence to
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improve accuracy before committing to a choice. If the rule is un-
known, however, postponing the decision neither increases ac-
curacy nor reward income, and decisions can therefore be
made fast. However, as soon as the monkeys learned the icon
identities in our task, the trade-off favored longer reaction
times and they postponed their decisions. The additional delay
was associated with a brief suppression of V1 activity elicited
by the target curve near the target icon, which counteracted the
later enhancement of the neuronal response elicited by this
curve (Fig. 10). This result suggests that the monkeys started to
focus on the target icon, causing a delay in the selection of the
connected curve and eye movement target.

The second new finding is that selection signals are fed back
to early visual cortex even at the start of the learning task when
the monkeys are still guessing. V1 neurons selected the same
curve as did FEF neurons, the right one in correct trials and the
wrong one in erroneous trials. Theoretical studies suggested
that feedback signals about the chosen action to visual cortex
may play a role in the guidance of neuronal plasticity, by focusing
synaptic changes on the visual representations that are related to
the choice (Roelfsema et al. 2010; Rombouts et al. 2012, 2015). The
feedback signals are delayed relative to the onset of the visual

stimulus, presumably because they depend on recurrent interac-
tionswithin and between areas of the frontal, parietal, and visual
cortexwhere neurons jointly select one of the 2 curves (Bruce and
Goldberg 1985; Schall et al. 1995; Khayat et al. 2009; Pooresmaeili
et al. 2014) and in accordance with theories that stress the im-
portance of reentrant processing (Di Lollo et al. 2000; Lamme
and Roelfsema 2000; Roelfsema 2005; Cichy et al. 2014; Tsotsos
and Kruijne 2014).

Fast but Random Decisions

In the easy condition of the icon-selection task, FEF neurons
started to discriminate between the target and distractor curve
after approximately 145 ms, which is comparablewith the timing
of FEF selection signals in pop-out search (Thompson et al. 1996)
and a simple curve-tracing task (Pooresmaeili et al. 2014). At the
same time, the selection signal occurred earlier than the value of
235 ms in a motion discrimination task (Kim and Shadlen 1999;
Ding and Gold 2012). If this motion discrimination task is made
difficult because motion is weak, the accumulation of evidence
for an eye movement decision can last up to several hundreds
of milliseconds (Kim and Shadlen 1999; Roitman and Shadlen
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2002). In contrast, target selection in the difficult condition of the
icon-selection task during the phase of random eye movement
selection was rapid (see also Uchida et al. 2006). We do not know
what drove these fast yet randomdecisions, but the rapid ramping
of activity in the icon-selection taskmay be related to so-called ur-
gency signals (Churchland et al. 2008; Drugowitsch et al. 2012),
which have been proposed to enforce fast decisions if they are
strategic. If the odds are unknown, these fast responses optimize
reward income and can be used to quickly probe target identity.

A Transition to Slower and More Accurate Decisions

The monkeys’ reaction times increased by approximately 40 ms
when the animals became proficient with the difficult version

of the icon-selection task. In the early phase, trials of the difficult
conditions could be correct only by chance, whereas in the later
trials the accuracy in the difficult condition increased to >80%.
This additional delay of 40 ms was apparently sufficient for the
newly learned meaning of the icons to influence the decision.
Interestingly, this delay is in accordance with Stanford et al.
(2010) who systematically varied the amount of timewheremon-
keys could sample a visual stimulus before they made their deci-
sion in a color discrimination task. Also in their task, a delay of
30 ms was sufficient for the transition from random decisions
to near-perfect performance. The increase in reaction time was
accompanied by a delay in the onset of the FEF selection signal
of approximately 40 ms. Comparable variations in the onset
time of the activity increase in FEF have been observedpreviously
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(Pouget et al. 2011). In the easy and intermediate conditions, the
monkeys’ reaction times also increased with trial number. In
these conditions, the monkeys could rely on the distance be-
tween the fixation point and the icons, which is a rule that they
knew well and did not require new learning. Accordingly, the
timing of the selection signal in FEF and in V1 in the easy and
intermediate conditions hardly changed. At first sight, it may
seem surprising that the reaction time increased, while the tim-
ing of the selection signal was stable. However, previous studies
in FEF demonstrated that there is a variable delay between atten-
tional selection and movement initiation so that delays in atten-
tional selection contribute to reaction time, but are not the only
determinant (Thompson et al. 1996; Murthy et al. 2001; Sato et al.
2001). A recent psychophysical study with human participants
that carried out a variant of the curve-tracing task also obtained
evidence for a variable and time-consuming process that trans-
forms the perceptual decision into a motor response (Zylberberg
et al. 2012). Our finding that the reaction time also increases in
the easy and intermediate conditions even if it is only beneficial
for the accuracy in the difficult condition suggests that the pro-
cess responsible for the longer reaction time does not fully dis-
criminate between the difficulty levels.

In contrast to the easy and intermediation conditions, we did
observe an increase in latency of the FEF selection signal in the
difficult condition, where the monkeys could only rely on the
newly learned identity of the target icon. This increase in the la-
tency of selection differs from results in prefrontal cortex and the
basal ganglia in a task where monkeys had to learn the associ-
ation between a symbol and a specific eye movement and their
reversals (Asaad et al. 1998; Pasupathy and Miller 2005). In this
task, learning decreased the onset of a selection signal from
700 to 250 ms. However, in these studies the monkeys fixated
for 1.5 s, preventing them frommaking fast but randomdecisions
when the odds are unknown.

It is likely that the increase in the latency of the selection sig-
nal contributed to the increase in reaction times in the difficult
condition. We also considered the possibility that the slowing
was caused by fatigue. However, the reaction times increased
from the very beginning of the learning sessions, when the ani-
mals were highly motivated to do the task (Fig. 2B). Furthermore,
wehave also reanalyzed the pattern of reaction times in a search-
then-trace task where we cued the color of the target icon at the
fixation point so that new learning was unnecessary (Roelfsema
et al. 2003). In this task, the reaction times did not increase with
trial number, which suggest that the increase of reaction time ob-
served in the present study is related to the learning of the icons.

Selection Signals in Visual Cortex

By examining the development of selection signals within a sin-
gle recording session, the present results complement studies
that examined perceptual learning in the visual cortex across
many days (Schoups et al. 2001; Lee et al. 2002; Schwartz et al.
2002; Furmanski et al. 2004; Kourtzi et al. 2005; Sigman et al.
2005; Law and Gold 2008; Li et al. 2008). Learning across days in-
creased the neuronal sensitivity to relevant feature variations,
with some studies reporting strongest effects in early visual cor-
tex (Sigman et al. 2005) and others in areas outside visual cortex
(Law and Gold 2008). Unlike these previous studies, we did not
measure the neuronal tuning for the to-be-learned visual stimuli,
but signals related to the selection of one of these stimuli for a be-
havioral response.

The selection of one of the 2 icons boosted the V1 representa-
tion of the curve connecting it to the eye movement target. The

easy condition in the icon-selection task was comparable to
previous curve-tracing studies, because monkeys could simply
trace the curve that started at the fixation point (Roelfsema
et al. 1998; Roelfsema 2006). During curve tracing, the V1 cells ini-
tially code the contours, but after a delay the target curve elicits
stronger activity than a distractor. The latency of this selection
signal depends on task difficulty (Roelfsema and Spekreijse
2001; Pooresmaeili et al. 2014). In the easy and intermediate con-
ditions, the latency appeared to be even shorter in V1 than in FEF
(104 and 113 ms vs. 145 and 155 ms). However, caution is war-
ranted, because the V1 and FEF data were obtained in different
monkeys and in different versions of the task (reaction time vs.
delayed response). Although many theories propose that selec-
tion signals in visual cortex are caused by feedback from areas
of frontal and parietal cortex (Hochstein and Ahissar 2002;
Moore and Armstrong 2003; Ekstrom et al. 2008; Buffalo et al.
2010; Noudoost and Moore 2011; Zhou and Desimone 2011), se-
lection signals in V1 and FEF in the curve-tracing task have a
similar latency, which is compatiblewith amore active participa-
tion of visual cortex (Pooresmaeili et al. 2014). In accordancewith
this view, V1 neurons selected the wrong curve in error trials,
which were abundant at the start of the learning process (see
also Roelfsema and Spekreijse 2001).

The Emergence of a 2-Step Selection Process in Visual
Cortex

The V1 selection signal occurred later in the difficult condition
than in the easier conditions, because the animals had to rely
on icon identity. When the animals learned to consider icon
identity, this delay increased even further, just as in FEF. Learning
to select the correct icon caused a brief early phase of inhibition
of the V1 representation of the connected curve. This suppres-
sion is reminiscent of studies demonstrating that attentional se-
lection sometimes takes the form of a Mexican hat with an
enhanced representation of the relevant shape and a suppres-
sion of nearby items (Tsotsos 1990; Schall et al. 1995; Müller
and Kleinschmidt 2004; Hopf et al. 2006; Tsotsos et al. 2008)
(Fig. 10). The inferotemporal cortex is a putative source for top-
down influences that boost the representation of the relevant
icon and suppress the adjacent curve (middle panel of Fig. 10). Ja-
gadeesh et al. (2001) trained monkeys to select one of 2 pictures,
whichwas consistently pairedwith reward, with a design that re-
sembles the present icon-selection task. They found that the re-
presentation of the rewarded picture was enhanced in the
inferotemporal cortex during learning, whereas the representa-
tion of unrewarded pictures was suppressed. Neurons in the in-
ferotemporal cortex (and perhaps area V4) that represent the
rewarded icon with enhanced activity might feed back to early
visual cortex to increase the representation of this icon and to
suppress the adjacent curve. Interestingly, suppression of the
target curve did not occur for the easy and intermediate difficulty
levels (Fig. 8B), and it has also not been observed in previous
curve-tracing studies where all contour elements of the target
curve were always highlighted with extra neuronal activity
(Roelfsema 2006; Pooresmaeili and Roelfsema 2014). Thus, the
suppression in the difficult condition may be specifically related
to the learning of the identity of the target icon. When the
animals had learned the target icon, it took additional time
before the inhibition was overcome, and the target curve was
highlighted with additional activity.

These results imply that the monkeys’ final strategy trans-
formed into a 2-step selection process (Thompson et al. 1996;
Carpenter 2004), where they first selected the relevant icon and
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subsequently the connected curve and eyemovement target. Pre-
viouswork examinedmultistep selection processes during visual
routines thatwere composed of successive curve-tracing and vis-
ual search operations. In these tasks, neurons in visual cortex se-
lected visual objects consecutively, at the time that they become
relevant so that the progression of the routine could be moni-
tored with high temporal precision (Ullman 1984; Roelfsema
et al. 2003; Moro et al. 2010). For example, if the monkey first
has to search for an icon with a particular color that cues the
start of the target curve, V1 activity elicited by this target icon in-
creases before the enhanced activity spreads across the target
curve (Roelfsema et al. 2003; Moro et al. 2010). In the present
icon-selection task, we therefore obtained evidence for the inser-
tion of an additional icon-selection process before curve tracing
that delayed the selection of the eye movement target in FEF.
The present results thereby also contribute to our understanding
of the emergence multistep selection processes in the brain dur-
ing learning. The neuronal correlates of such a multistep visual
selection task in low-level visual areas as well as in the frontal
cortex lend strong support for reentrantmodels of visual process-
ing (Di Lollo et al. 2000; Lamme and Roelfsema 2000; Roelfsema
2005; Cichy et al. 2014; Tsotsos and Kruijne 2014).
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