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Synthetic gene circuits are emerging as a versatile means to target
cancer with enhanced specificity by combinatorial integration of
multiple expression markers. Such circuits must also be tuned to
be highly sensitive because escape of even a few cells might be
detrimental. However, the error rates of decision-making circuits in
light of cellular variability in gene expression have so far remained
unexplored. Here, we measure the single-cell response function of a
tunable logic AND gate acting on two promoters in heterogeneous cell
populations. Our analysis reveals an inherent tradeoff between spec-
ificity and sensitivity that is controlled by the AND gate amplification
gain and activation threshold. We implement a tumor-mimicking cell-
culture model of cancer cells emerging in a background of normal
ones, and show that molecular parameters of the synthetic circuits
control specificity and sensitivity in a killing assay. This suggests that,
beyond the inherent tradeoff, synthetic circuits operating in a hetero-
geneous environment could be optimized to efficiently target malig-
nant state with minimal loss of specificity.

synthetic gene circuits | cellular heterogeneity | cancer gene therapy |
cell-state targeting | mammalian synthetic biology

The design of gene circuits capable of precisely targeting
cancer cells is a major challenge in synthetic biology (1–3), in

light of the prospects of using engineered viruses for cancer gene
therapy (4), or designing T cells expressing chimeric antigen
receptors (CAR-T) (5). Ideally, targeting circuits must be highly
sensitive to eradicate all cancer cells, and sufficiently specific to
protect surrounding tissues. Gene expression markers that are
hyperactive in cancer but not in healthy cells are natural candi-
dates for cancer gene therapy (6). However, a single marker does
not suffice because it might be moderately active in normal cells,
which would result in incorrect identification. Combining mul-
tiple markers improves specificity because a weakly active one
will buffer the others by thresholding (7, 8), as in Boolean logic
circuits converting graded inputs into digital-like output (9–14).
The response function of such circuits––input/output activation
threshold, amplitude, and sharpness––can be tuned by DNA
specificity, promoter design, or protein–protein affinity (15, 16).
We previously reported a dual-promoter integrator (DPI) as a

logic AND gate to combine the activity of two cancer-specific
promoters, and express a reporter or killer gene only when both
promoters are decidedly active (17). Subsequently, others used a
multiinput logic circuit based on microRNAs to target cancer
(18). This Boolean approach provides reliable results on average,
but ignores the heterogeneity of cell states. Input values may
span a continuum due to expression noise (19, 20) and cancer
heterogeneity (21). Furthermore, so-called synthetic circuits are
not truly digital all-or-none, but rather analog systems that pro-
duce continuous signals using transcription factors, expression
regulators, and machinery whose concentrations fluctuate (22);
errors in decision-making are hence expected. Consequently, en-
hancing specificity by combining multiple inputs will inevitably

result in cancer cells escaping targeting, whereas increasing sen-
sitivity might lead to targeting of normal cells.
In this paper we consider the inherent tradeoff in specificity

and sensitivity of a targeting circuit. We measured the response
function of a DPI at the single-cell level in transfected colorectal
cancer cells, and observed how decision-making errors emerge
due to cellular heterogeneity in expression. We then measured
how the median and variance of the output distribution depend
on the DPI amplification and activation threshold, which demon-
strates that circuit noise affects the precision of decision-making.
Then, we measured the sensitivity and specificity of various DPI
designs using a model system of stably infected premalignant and
cancer lung fibroblasts. Finally, we performed a killing assay on a
tumor-like model comprising a coculture of the cancer cells sur-
rounded by the nonmalignant ones, which validated that high
sensitivity comes at the expense of reduced specificity.

Results and Discussion
The Sensitivity–Specificity Tradeoff in Targeting Circuits. The main
idea of this paper is demonstrated by considering the task of
targeting a tumor growing in a background of normal cells using
a synthetic AND gate circuit. As inputs we choose two promoters
that are up-regulated in cancer cells, and assume their expression
patterns in the two populations are overlapping due to variability
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(Fig. 1A). The AND gate generates a simple bimodal response with
high output only if both promoter activities are above an activation
threshold (Fig. 1B). However, the overlap in input space implies
that perfect classification of cancer and normal cells as respective
high (true positive) and low (true negative) output states is not
possible. Cancer with inputs below threshold will be identified as
false negative, and hence not targeted. Similarly, noncancer cells
with high inputs will be targeted as false positive identification.
In addition, the AND gate response function is not ideal, with

a distribution of values around the high/low states, and a tran-
sition that is continuous rather than digital (Fig. 1C). The circuit
will mainly generate a bimodal response, except in cells whose
inputs are close to the activation threshold, which will generate
output ranging from low to high. For this nonideal binary clas-
sifier we need to define a killing threshold, above which output
level is considered sufficient to kill the cell, and that optimally
separates low and high states. Output distribution width and cells
with intermediate output level (gate sharpness) could thus appear
as new sources of detection errors. At this killer gene threshold,
we can reduce the false negative error rate by amplifying the
circuit output (Fig. 1D). Shifting the output distribution to higher
values will increase the fraction of cells detected in the high state.
Consequently, more cancer cells will be killed and the sensitivity
improved. But, this comes at the expense of increased noise at the
low state, resulting in enhanced rate of false positive detection,
which implies reduced specificity. Alternatively, we can shift the

activation threshold to higher values and reduce false positive error
rate (Fig. 1E). The proportion of cells considered as low inputs will
increase and more normal and cancer cells will be protected,
thereby improving specificity at the expense of sensitivity. Con-
versely, reducing the circuit output will increase specificity at the
expense of sensitivity, whereas shifting the activation threshold to
lower values will increase sensitivity at the expense of specificity.

Single-Cell Analysis of the AND Gate. The two inputs of the DPI are
duplicates of endogenous promoters and we chose two highly
active cancer markers (17): the synovial sarcoma X-breakpoint
protein-1 (SSX1), and the chromatin structural protein histone
(H2A1), as well as the Cyclin D1 (CycD1) promoter whose du-
plicate had low activity (Fig. 2A). One input drives expression of
bacterial dockerin DocS fused to the viral VP16 transcription
activation domain (DocS-VP16AD, or AD) and carries a nuclear
localization signal (NLS). The second input drives expression of
bacterial cohesin Coh2 fused to the Yeast Gal4 binding domain
(Coh2-Gal4BD, or BD). The two fusion proteins combine
through the high affinity binding of DocS and Coh2 proteins
(23). Together, they form a synthetic transcriptional complex
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Fig. 1. Targeting cancer cells by an autonomous gene circuit. (A) We con-
sider targeting of cancer cells (red) in a background of normal ones (blue).
Cells are distributed in a dual promoter-based activity map, with overlap due
to cellular heterogeneity. (B) The AND gate operates on duplicates of pro-
moter inputs and generates a nonlinear response function in this cancer
activity space. (C) The convolution of response function (green) with inputs
distributions generates output distributed around OOFF and OON for cells
below or above the activation gate ITh. Treatment defines a threshold OTh

above which a cell is killed, separating normal and cancer cells into protected
and targeted subpopulations. (D) Linearly amplifying the output shifts dis-
tributions toward higher values at fixed ITh, which increases sensitivity (kill-
ing cancer cells) at the expense of specificity (killing normal cells). (E) Shifting
ITh to higher inputs expand low-output populations, improving specificity
(protected normal cells) with a loss of sensitivity (protected cancer cells).
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Fig. 2. Single-cell analysis of a genetic AND gate. (A) Scheme of the DPI.
Duplicates of two endogenous promoter (prom1, prom2) drive expression of
two synthetic proteins and associated reporters (Coh2-Gal4BD and mCherry;
DocS-VP16AD and CFP), which form a synthetic transcriptional complex ac-
tivating YFP output. (B) Single-cell (SC) expression levels of reporters for
HCT116 cells transfected with the 5-WT DPI design, for low (CycD1) and/or
high (H2A1) input promoters (median ± SD, n = 3 experiments). (C) Distri-
butions of SC fluorescence levels (color code as in B, solid line: mean values).
(Insets) Representative fluorescence images of cells. (Scale bar: 200 μm.)
(D) Response function map of 5-WT design (pooled from a 3 × 3 promoter
pair: CycD1, SSX1, and H2A1, 2.7 × 106 cells, 3 experiments). Heat map color
coded in log2 of mean YFP. (E) Probability distributions of output for inputs
along the horizontal and vertical dashed boxes in D. Gray curves represent
the median over SC data (mean ± SD, n = 3 experiments).
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(sTC) that binds Gal4 binding site (BS) repeats, and triggers the
expression of output––a reporter, or killer gene for targeting
cancer cells. By design, output is generated only if both endog-
enous promoters are active above a specific threshold. To con-
trol the DPI output we varied the number of binding repeats 3, 5,
8, and 14 on the output promoter and reduced the AD-BD af-
finity from the wild-type (WT) two-hybrid to reduced affinity
variants M102 and M15 (24). Different DPI designs are hence-
forth termed according to repeat number and AD-BD affinity:
3-WT, 5-M15, 5-M102, etc. Monitoring the input/output (I/O) at
single-cell resolution was done using three fluorescent proteins.
Inputs fused through a 2A self-cleavable peptide (25): CFP to
DocS-VP16AD, mCherry to Coh2-Gal4BD. Output was reported
by YFP. A fourth reporter, Sirius, driven by the constitutive PGK
promoter, was used to screen for transfected cells in the flow
cytometry analysis (SI Appendix, Fig. S1 and Tables S1 and S2).
We measured the distribution of the single-cell I/O of 5-WT DPI

in HCT116 colorectal cancer cells. The median values showed a
characteristic AND gate behavior (Fig. 2B), with background-level
output when at least one of the inputs was low, (6.6 ± 0.8, 17.7 ±
3.0, and 11.7 ± 1.8 relative fluorescence unit (RFU) with promoter
pairs CycD1/CycD1, CycD1/H2A1, and H2A1/CycD1, respectively)
and up to 300-fold output for two high inputs (2,212 ± 366 RFU,
with H2A1/H2A1). However, the distribution was very broad due
to cell-to-cell input variability, circuit response, and plasmid copy
number (Fig. 2C). Interestingly, despite low average output when
one or two inputs were low, the output distribution exhibited a long
tail of cells expressing high output. Conversely, when both inputs
were highly active on average, the output distribution exhibited a
small peak of low-output expressing cells. These error-making cells
deviate from the all-or-none averaged logic AND gate and appear
negligible in the population. However, they represent false negative
and false positive cell-state identification.
We corrected for extrinsic noise due to variability in plasmid

copy number and cell size and concatenated single-cell data of all
promoter pairs to obtain a single I/O map of the AND gate,
irrespective of promoter identity (Fig. 2D and SI Appendix, Figs.
S2–S4). The AND-gate function is square-shaped with two or-
thogonal activation thresholds along the AD and BD axes. A
higher tip along the diagonal suggests that two identical promoters
enhance the output, possibly due to their synchronous expression.
The distributions along one of the axes when the other is high are
sharply bimodal with a sigmoidal curve with similar minima and
maxima, threshold values, and a Hill coefficient of about 5 (Fig.
2E and SI Appendix, Table S3). However, the output distribution
below the activation gate at fixed high BD shows enhanced vari-
ability compared with at high AD, as for single promoter pair
distributions (Fig. 2C). At high inputs the output saturates but
then decreases in both axes as a new population of low-output
cells emerges, suggesting that forcing very high expression could
be detrimental to the proper function of the AND gate.

Integrator Promoter Binding Repeats Amplify Output and Noise. To
study the effect of binding repeat number we transfected HCT
116 cells by 3-WT, 5-WT, 8-WT, and 14-WT constructs with
H2A1/H2A1 promoter pair inputs, and measured the single-cell
I/O response. The output increased along the diagonal in input
space reaching saturating values, which amplified with the number
of binding repeats (Fig. 3 A and B). The output distribution me-
dian and width increased to higher values with repeat number
(Fig. 3C), yet the distribution normalized by the median was in-
variant (Fig. 3C, Inset). This indicates that both signal and noise
were uniformly amplified across all output values, which implies
improved targeting of cancer cells, but at the risk of false targeting
of normal ones.
We next obtained the single-cell I/O map with 3 × 3 promoters

for all repeats (Fig. 3D and SI Appendix, Fig. S5). We observed
roughly sixfold amplification with increase of repeats from 3 to 14

without major change in input space, activation thresholds, and
overall I/O structure, thus confirming the uniform amplification as
for H2A1/H2A1. The output distributions for high-AD/low-BD
maintained the scaling of width with median for all repeats (Fig.
3E). Interestingly, for low-AD/high-BD the width broadened with
repeat number more than the median (Fig. 3F), which implies
enhanced noise that reinforces the risk of false positive targeting.
To conclude, increasing the number of binding repeats is an im-
portant amplification mechanism that confers sensitivity and ro-
bustness to the AND gate as it separates the low and high response
states, but it may introduce unavoidable noise and thus decrease
the targeting specificity.

Integrator Strength Determines AND Gate Threshold and Error Rates.
The AD-BD affinity, kD-C, determines the concentration of func-
tional sTC, but also the proportion of BD transported into the
nucleus along with AD carrying the NLS (Fig. 4A). We studied the
effect of the affinity on the output signal and noise by transfecting
HCT116 cells with 5-WT, 5-M15, 5-M102 DPI designs using
H2A1/H2A1 promoter pair and measured the single-cell I/O. As
expected, the median output along the inputs diagonal was reduced
by an order of magnitude in 5-M102 compared with 5-WT, with a
milder reduction for 5-M15 (Fig. 4B).
The I/O for all 3 × 3 promoter pairs showed that weaker af-

finity shifted the activation threshold toward higher input values
along the AD axis by a decade compared with 5-WT (Fig. 4 C
and D and SI Appendix, Fig. S6). This shift is expected because at
low binding affinity a higher concentration of AD is required to
transport the complex into the nucleus. Interestingly, the shift along
the BD axis was smaller, likely because transport is no more a
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limiting factor in excess of AD-NLS. We conclude that reduced
integrator affinity works differently than binding repeats on pro-
moter, acting to shift the activation threshold on top of a general
output reduction. On the one hand, the shift in gating threshold
expands the range of low inputs for which output is low. Along with
the overall output reduction this protects against false positive er-
rors. On the other hand, the noise at high inputs is increased and a
clear threshold separation between the low and high output states is
compromised (Fig. 4D), which strongly increases the false negative
error rate. With weak affinity designs, the gain in specificity is
counterbalanced by a loss in sensitivity.

Specificity and Sensitivity Analysis in Mixed Malignant and Premalignant
Cells. To illustrate the specificity–sensitivity tradeoff we used T3
and T/NEO lineages derived from WI38 human lung fibroblasts:
(i) WI38/T3 is hTERT immortalized, p53 knockdown, and
H-RasV12 over-expressing; (ii) WI38/hTERTfast/NEO is hTERT im-
mortalized and fast proliferating, but otherwise does not show other
cancer phenotype and has been classified as premalignant (26–28).
We first transfected the two cell lines, choosing SSX1 (AD input)
and H2A1 (BD input) as two independent cancer-related markers
with a wide dynamic range of activity, and measured single-cell I/O
response (SI Appendix, Fig. S7). T3 and T/NEO input spaces were
strongly overlapping but T3 cells showed a higher output level at all
input. Results were noisy due to low transfection efficiency; there-
fore, we stably infectedWI38 cells using third-generation lentiviruses
(29) (Fig. 5A and SI Appendix, Fig. S8). Inputs fluorescent reporters
were removed and we fused the YFP output reporter via P2A to the
conditional killer gene Thymidine Kinase 1 from Herpes Simplex
Virus (HSV-TK1), which triggers cell death upon addition of
Ganciclovir (GCV). For cell-type identification, we labeled each cell
type by a second reporter under the constitutive Ubiquitin C pro-
moter (hUbCp) CFP and mKate2 for T/NEO and T3 cells, re-
spectively (Fig. 5B).
We cultured mixtures of T3 and T/NEO cells infected by

5-M102, 3-WT, and 5-WT DPIs for 4 d and measured the single-
cell output (Fig. 5 C and D). We observed a bimodal response
with one population below 100 RFU and a high one with level

about 300, 1,000, and 8,000 RFU for 5-M102, 3-WT, and 5-WT,
respectively. As in HCT116 cells, for both cell types the output
for 5-M102 was low compared with WT constructs and in-
creasing binding repeats led to amplification. Expectedly, the
output distribution of the two cell types was overlapping, which
implies compromising between targeting cancer cells (i.e., sen-
sitivity) and protecting premalignant ones (i.e., specificity).
To quantify this tradeoff we considered a hypothetical killing

threshold of output (in YFP RFU), and computed the sensitivity
as the ratio of T3 cells above this threshold to total T3 cells,
and specificity as the ratio of T/NEO cells below threshold to total
T/NEO cells. We then scanned the threshold values for all con-
structs, obtaining predictive true positive and true negative rates of
each cell classifier (Fig. 5E). When increasing the killing threshold,
namely higher output required to kill a cell, we observed a de-
crease in sensitivity and a reciprocal increase in specificity for all
constructs. Moreover, for strong DPI constructs as 5-WT, the
sensitivity was close to 1 up to higher threshold values but speci-
ficity remained low. Conversely for weak ones as 5-M102, sensi-
tivity rapidly dropped with threshold values. We calculated a
single score for the DPI as a binary classifier using standard
analysis of receiver operating characteristic curve (30), which takes
into account the tradeoff in sensitivity/specificity for all threshold
values (SI Appendix, Fig. S9). We obtained values of 0.70, 0.66,
and 0.65 for 5-WT, 3-WT, and 5-M102, respectively. This implies
that 5-WT design is predictably the best cell classifier regardless of
the killing threshold used. However, in practice the optimal circuit
design will depend on the GCV treatment condition and effective
killing threshold. In a more general context, it will also depend on
the input promoters and cell types considered; hence, promoter
activities, expression capability, and drug response should be
assessed for every cell line.

Targeted Killing in a 2D “Tumor Model” Coculture. We next vali-
dated the sensitivity/specificity tradeoff in TK1 killing assays
(Fig. 6A). By depositing a drop of a few hundred T3 cells before
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n = 3 experiments). (C) Response function map of 5-M102 design (9 × 105 cells,
single experiment). (D) Probability distributions of the output for cells at high
BD (dashed box in C). The gray curve is the profile of 5-WT, given as a reference.
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Fig. 5. An in vitro targeting model using cancer and premalignant cells.
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constitutive fluorescence for T/NEO (CFP, blue) and T3 (mKate2, red). (Scale bar,
100 μm.) (C) Fluorescence microscopy image of cocultured T/NEO (blue) and T3
(red) cells infected with the 5-WT design (YFP output in green). (Scale bar,
200 μm.) (D) Output distributions of 5-M102, 3-WT, and 5-WT DPI designs
measured by flow cytometry (3 × 104 cells for each cell line, pooled from three
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plating T/NEO cells, we obtained an ∼1-mm-diameter “tumor”
surrounded by a “healthy tissue.” The growth of the coculture
was monitored daily by fluorescence microscopy and the output
expression level was measured for each population according to
pixels identified by the constitutive reporters (Fig. 6B and SI
Appendix, Fig. S10). The output expression increased with time
in both T3 tumors and in surrounding T/NEO tissues, with T3
displaying higher median output at all times. We also observed that
T/NEO cells at the periphery of the tumor showed an increase in
output expression, probably due to short distance communication
between the tumor and its direct surroundings (Fig. 6B, Bottom).
Without treatment, T3 outgrew all of the T/NEO cocultures in

time, which is consistent with the loss of contact inhibition, fast
growth rates, and multilayer formation of cancer cells. In con-
trast, after 24 h of a 10-μMGCV treatment, tumors kept expanding
for 2 d before regressing in area, and with higher killing rates for
the 5-WT and 3-WT than 5-M102 (Fig. 6 C and D). Tumors with a
DPI lacking the output gene kept growing, consistent with specific
kill due to TK1 expression. T/NEO tissues displayed slow growth
before reaching a plateau between day 5 and 10, similar to growth
reduction due to tumor expansion observed in negative control
samples (Fig. 6E). A single treatment did not completely eradicate
the tumor and we gave an additional treatment at day 11. The
model tumors continued to decrease in all of the DPI samples, but
for 3-WT and 5-WT, T/NEO tissue also decreased in area after this
second treatment (Fig. 6E).
An end-point measurement of the treatment was done after

35 d for one experiment, clearly showing the differential sensi-
tivity and specificity in targeting by DPIs (Fig. 6C). The 5-M102
demonstrated the highest specificity, protecting T/NEO cells
from treatment, but proved to be insufficient to completely
remove the tumor, and a small islet of T3 cells restarted growing
(Fig. 6C). On the contrary, 3-WT and 5-WT resulted in a com-
plete eradication of T3 cells after 1 mo but with a significant

decline in T/NEO population, demonstrating the increased false-
positive identification rate of designs with high sensitivity.

Discussion
Varying the DPI activation threshold and amplification and
measuring the single-cell I/O in HCT116 cells revealed just how
cellular variability and circuit noise limits precise targeting. Thus,
single-cell analysis is a predictive tool to understand the origin of
errors made by cell-state classifiers. For example, the noise ob-
served with 5-M15 and 5-M102 at high inputs (Fig. 4C and SI
Appendix, Fig. S5), or with increased binding repeats at high BD
(Fig. 3E and SI Appendix, Fig. S4) reveals limitations of the mo-
lecular modules used to modify the response function. Neverthe-
less, the analysis showed an inherent tradeoff between sensitivity
and specificity due to expression heterogeneity, and input space
overlap between targeted and protected cells. Generally, a “weak”
DPI leads to highly specific targeting but insufficient killing of
cancer cells, whereas a “strong” one is highly sensitive, but lacks
specificity, hence will kill most of the normal cells. This tradeoff
implies a limitation on expression-based cell-classifier designs. Higher
specificity can be achieved by shifting the activation threshold or
by using multiinput gates. However, multiple inputs will reduce
the overlap between the input space of cancer cells and the circuit
high-output region (Fig. 1B), which implies loss of sensitivity.
Therefore, for cancer therapy, in which escape of even a few cells
is detrimental, excessive increase of the targeting specificity will
come at the expense of the required sensitivity.
The targeting experiments with T3 and T/NEO were chal-

lenging because these are closely related cell lineages despite
their different morphology and malignancy state. We confirmed
the differential targeting efficiency of our DPI designs for a
specific killer gene (HSV-TK1) and one treatment condition.
The specificity was increased when using 3-WT instead of 5-WT
and even more with the mutant 5-M102, clearly showing a
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different level of protection of T/NEO cells surrounding the T3
tumor. But, under these experimental conditions, the effect of
amplification on targeting sensitivity was hardly observed from
3-WT to 5-WT. Although the 5-WT was predicted to be optimal for
targeting in reporter gene analysis (Fig. 5), we observed better re-
sults with 3-WT. Treatment parameters should therefore be further
optimized for improved targeting methodology. For example, GCV
concentration and treatment duration and frequency can be tuned
to shift the tradeoff to higher sensitivity or higher specificity.
Moreover, we obtained higher sensitivity in the actual killing

results than expected from analysis of reporter output (Fig. 5D),
in which a subpopulation of T3 cells displayed very low output
level. This stronger killing efficiency may be the result of the
bystander effect of TK1 activity, mediated by cell–cell transfer of
phosphorylated GCV via cellular gap junctions (31). The cell-
specific growth rate may also explain this imbalance as GCV kills
cells upon division and may not have the same dose–response
effect in each cell line. The faster division rate of T3 cells may
increase the cell-death probability during treatment duration.
Another source of difference between single-cell analysis and

tumor-model results is the role of cell–cell communication and
spatial organization in such assays. Interestingly, additional mi-
croscopy experiments showed that output expression in T/NEO
cells increased when mixed with T3, compared with those grown
alone (SI Appendix, Fig. S10). This observation suggests commu-
nication between cocultured cells (32) and may have important
implication for the dynamics of malignant states in populations.
However, further elucidation is required to account for cell–cell
communication, bystander effect, or gene/drug penetration when
addressing the targeting of spatially constrained cells. For example,

3D-tumor models closer to real-life tumors are important to
study the actual capability of synthetic circuits in cancer therapy
(33–35). Toward a predictive sensitivity/specificity model, the
intrinsic response function of the circuit should be combined
with spatial organization and cell-type-specific features such as
kinetics of growth, overall metabolism, and dose–response (36).
This optimization approach can also be implemented for non-

viral gene delivery systems (37) or in other targeting scenarios such
as CAR-T cells. CAR-based (38, 39) and synNotch/CAR AND
gates (40) were designed to increase the safety of adoptive T-cells
therapy by targeting only cells that display two cancer-specific
surface markers. Nevertheless, it may also come at the risk of
tumor cells escaping the treatment due to antigens heterogeneity
and immunoediting. Finally, synthetic circuit optimization may
become part of a personalized cancer therapy toolbox (41).

Materials and Methods
Materials and methods are fully described in the SI Appendix. In short, hu-
man colorectal tumor cell lines HCT 116 were transfected with various DPI
designs. Inputs, output, and constitutive fluorescence were measured by
flow cytometry after 48 h. Human lung cancer WI-38/T3 and WI-38/T/NEO
cell lines were infected by third-generation lentiviruses to stably express DPI
designs and a cell-identification reporter; fluorescence was measured either
by flow cytometry or by epifluorescence microscopy. For the tumor model, a
1-mm islet of T3 cells was cocultured in a T/NEO background, 10 μM GCV was
added for 24 h at day 4 and 11, and proliferation monitored daily.
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