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We study particle and spin transport in a single-mode quantum point
contact, using a charge neutral, quantum degenerate Fermi gas
with tunable, attractive interactions. This yields the spin and particle
conductance of the point contact as a function of chemical potential
or confinement. The measurements cover a regime from weak
attraction, where quantized conductance is observed, to the resonantly
interacting superfluid. Spin conductance exhibits a broad maximum
when varying the chemical potential at moderate interactions, which
signals the emergence of Cooper pairing. In contrast, the particle
conductance is unexpectedly enhanced even before the gas is expected
to turn into a superfluid, continuously rising from the plateau at 1=h for
weak interactions to plateau-like features at nonuniversal values as high
as 4=h for intermediate interactions. For strong interactions, the
particle conductance plateaus disappear and the spin conductance gets
suppressed, confirming the spin-insulating character of a superfluid. Our
observations document the breakdown of universal conductance quan-
tization as many-body correlations appear. The observed anomalous
quantization challenges a Fermi liquid description of the normal phase,
shedding new light on the nature of the strongly attractive Fermi gas.

cold atoms | mesoscopic physics | quantum simulation | superfluidity |
spin transport

Quantum gas experiments provide a tool to study fundamental
concepts in physics, which may be hard to access by other

means. Challenges such as the interplay and dynamics of many
interacting fermions are addressed by interrogating a specifically
tailored quantum many-body system with controlled parameters, an
approach referred to as quantum simulation (1). The outcomes can
then be used to benchmark theory or even as a direct comparison
with different experimental realizations of the same concept. In re-
cent years there has been substantial progress on this path, using cold
atomic gases to realize important models of condensed matter physics,
formulated to describe the bulk properties of materials (2, 3). Here,
neutral fermionic atoms are used to model the electrons in a solid.
In this article we use a quantum gas to study the operation of an

entire mesoscopic device, a quantum point contact (QPC), in the
presence of interactions between the particles. We observe the trans-
port of a charge neutral quantum degenerate gas of fermionic lithium
atoms, which can be prepared in a mixture of two hyperfine states.
These states provide a spin degree of freedom and the attractive in-
teraction between them can be tuned continuously from weak to
unitary, a feature unique to cold atomic gases. The QPC itself is re-
alized by a suitably shaped optical potential, which consists of a short,
one-dimensional channel connected to two large reservoirs (4, 5).
Biasing the reservoirs with different chemical potentials can induce a
direct current. The ratio of the current to the bias is the conductance
of the contact, which is independent of the bias in the linear
response regime.
For spinless, noninteracting particles at low temperature, the con-

ductance is quantized in units of 1=h, the universal conductance
quantum for neutral particles (6). An intuitive understanding thereof
can be gained by considering the temporal spacing τ= h=Δμ of
minimum uncertainty wave packets within one transverse mode and
moving through the channel in response to an applied bias Δμ (7–10).
At zero temperature, within one energetically available mode, each

wavepacket state is occupied by a single particle in accordance with
Pauli’s principle. Hence the maximum current carried by the mode is
I = 1=τ=Δμ=h with 1=h being the upper bound for the contribution
of a single mode to conductance. This bound, set by Heisenberg’s and
Pauli’s principle, holds for all systems where transport proceeds by
fermionic quasiparticles, such as Fermi liquids.
In a gas with two spin components, the conductance of each

component is quantized in units of 1=h, as long as there are no
interactions between them. The picture becomes more intricate
if collisions between the two components play a role. Studies
conducted on solid-state systems have shown that the weak cor-
relations in conventional superconductors yield quantized super-
currents (11, 12) and the emergence of Andreev bound states in
mesoscopic conductors (13–15). Besides, in semiconductor systems,
the Coulomb repulsion between charge carriers subtly modifies the
conductance quantization (16–20), lowering conductance at low
density and leading to strong correlations.
To characterize the transport, one may additionally consider the

spin current, i.e., the relative current of one component with respect
to the other, which is expected to be damped in the presence of
interactions (21). Whereas measuring and inducing spin currents in
clean mesoscopic conductors is a challenge in solid-state systems,
quantum gases naturally allow for spin-resolved observations and
manipulations. For example, the damping of spin currents was
measured in strongly interacting Fermi gases at high temperature,
where many-body effects, in particular pairing, are weak (22–24). In
contrast, the total particle current is conserved in collisions, and thus
the quantization of particle conductance in the channel should be
robust. In fact, it was shown that the applicability of a Fermi liquid
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description in the leads of the contacts guarantees universal con-
ductance quantization (25–27), regardless of the interaction strength.
Our study of spin and particle conductance of a quantum point

contact with tunable interactions uses an atomic Fermi gas in the
vicinity of a broad Feshbach resonance, realizing the Bose–Einstein
condensate (BEC)–Bardeen–Cooper–Schrieffer (BCS) crossover
regime (28). It features a conventional s-wave paired superfluid for
strong attraction and low temperatures, as well as a Fermi-liquid
phase for weak attraction and high temperatures. The nature of the
state in the intermediate regime remains controversial, as it is
governed by a nontrivial interplay of pairing and superfluid fluc-
tuations competing with finite temperature properties of the gas
(29). This richness makes our system an ideal test bed to study
how transport properties change with interactions. On the one
hand, a spin-insulating character, not accessible to high-temper-
ature measurements (22), should emerge as a result of s-wave
pairing. On the other hand, particle transport directly tests the
robustness of conductance quantization as many-body correlations
emerge.

System
Implementation. We capture in an elongated harmonic trap a total
of N = 9.6ð3Þ× 104 6Li atoms in each of the lowest and third-lowest
hyperfine states, labeled ↓ and ↑. The particles interact via the van
der Waals potential, which at the relevant density and energy scales
reduces to a contact interaction characterized by the s-wave scat-
tering length a. The scattering length, controlling the interaction
strength, is adjusted by setting a homogeneous magnetic field be-
tween 673 G and 949 G, covering the regime from 1=kF,resa=−2.0

to 0.6, where kF,res =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEF=Z

2
q

is the Fermi wavevector in the
gas, m is the mass of 6Li atoms, and EF = kBTF = Zωð6NÞ1=3 is the
Fermi energy in the harmonic trap, with ω being the geometric mean
of its frequencies. We reach temperatures of 0.15(2) TF for the
strongest and 0.11(2) TF for the weakest interactions (SI Appendix).
For strong interaction, the temperature is low enough to access the
superfluid regime, as sketched in Fig. 1A. Starting from the trapped
gas, we first imprint a 2D constriction at the center of the cloud, using
an off-resonant laser beam operating at a wavelength of 532 nm

and shaped in a transverse electromagnetic ðTEM01Þ-like mode
propagating along the x axis and hitting the cloud at its center.
This separates the elongated cloud into two reservoirs smoothly
connected by a quasi-2D region, with a maximum vertical trap
frequency along z of νz = 9.2ð4Þ kHz. The quantum point contact
itself, depicted in Fig. 1B, is created by imaging a split gate
structure on the 2D region, using high-resolution lithography
(6). It is characterized by its transverse trapping frequency at the
center, νx, which is adjustable. The Gaussian envelopes of the
beams ensure a smooth connection to the large 3D reservoirs
formed at both ends of the cloud (Fig. 1B). An attractive gate
potential Vg is realized by a red-detuned laser beam focused on
the QPC (6), which tunes the chemical potential in the QPC and
its immediate vicinity (Fig. 1C). The left (L) and right (R) res-
ervoirs connected to the QPC contain Ni,σ atoms and have
chemical potentials μi,σ , with i = L, R and σ = ↑, ↓. Because the
gate potential has a waist larger than the QPC, it also increases
the density at the entrance and exit points (minima of the ef-
fective potential in Fig. 1C), creating a dimple effect that in-
creases the local degeneracy (30).

Initialization. To measure the particle or spin conductances of
the QPC, we prepare either an atom number imbalance ΔN =
ðΔN↑ +ΔN↓Þ=2 ’ 0.4 N or a magnetization imbalance ΔM =
ðΔN↑ −ΔN↓Þ=2 ’ 0.25 N, with ΔNσ =NL,σ −NR,σ . These cor-
respond to a chemical potential bias Δμ= ðΔμ↑ +Δμ↓Þ=2 ’
0.21ð2Þμ � hνz or a spin bias Δb= ðΔμ↑ −Δμ↓Þ=2 ’ 0.24μ, re-
spectively (Fig. 1 D–G and Materials and Methods). In the
weakly interacting regime, we do not find deviations from linear
response within our experimental uncertainties (6). For particle
transport in the strongly interacting regime,

��1=kF,resa��< 0.7, we
observe the emergence of nonlinearities, allowing us to identify
the superfluid regime (ref. 31 and SI Appendix). The interaction-
dependent chemical potentials μi,σ and the chemical potential at
equilibrium μ are extracted from the known equation of state of the
tunable Fermi gas (ref. 32 and Materials and Methods). The biases
induce a spin current Iσ and a particle current IN defined as

Fig. 1. Concept of the experiment. (A) Low-temperature phase diagram of the attractive Fermi gas at fixed temperature. In the normal, weakly interacting phase
the two spin components move independently of each other in the QPC. In the superfluid phase large particle currents arise, whereas spin currents are strongly
suppressed due to pairing. (B) Three-dimensional impression of the QPC, connected via an intermediate 2D region to large 3D reservoirs (shown only partly).
(C) Effective potentials in the central region around the QPC along the transport axis y. It is the sum of the zero-point energy of the QPC (green dashed line:
contribution from confinement along x), an attractive gate potential (purple dashed line), and the underlying harmonic trap (Materials and Methods). The black
solid line corresponds to the parameters for which the conductance plateau in Fig. 3A is observed. Thin violet lines show how the effective potential evolves when
Vg is increased from 0.42  μK to 0.82  μK, whereas thin green lines depict the corresponding evolution when νx is increased from 13.2 kHz to 25.2 kHz. Note the two
local minima of the effective potential at the entrance and exit of the QPC. (D) Absorption images of the ↑ and ↓ cloud components prepared before spin
conductance measurements. (E) Chemical potentials and currents in the presence of a spin bias. (F) Absorption image of the atoms prepared for the particle
transport, with identical bias for ↑ and ↓. (G) Chemical potentials and currents in the presence of a chemical potential bias.
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Iσ =−
1
2
d
dt
ΔM =GσΔb

IN =−
1
2
d
dt
ΔN =GNΔμ,

[1]

where Gσ and GN are the spin and particle conductances, respec-
tively. The currents are estimated by measuring the number of
particles transferred after 4 s and 2 s of transport time, respec-
tively, and compared with the bias to obtain the conductances
(Materials and Methods).

Spin Transport
Measurements. We first investigate the spin conductance Gσ as a
function of gate potential Vg, at fixed νx = 23.2ð2.5Þ kHz, but for
different interaction strengths. For noninteracting particles, the
strength of the gate determines the number of transport channels
that are open (6). The results are presented in Fig. 2 A and B. For
the weakest interactions, we observe the onset of spin transport as
the first channel opens around Vg = 0.4 μK, followed by a continuous

increase ofGσ up to the largest gate potentials. The second channel
is expected to open around Vg = 0.8 μK. For intermediate in-
teraction strengths −1.7< ð1=kF,resaÞ< − 1.0, we observe a broad
maximum in Gσ as a function of Vg. The opening of the channel
is still indicated by a sharp increase of Gσ at an interaction-
independent value of the gate potential. With increasing inter-
actions, the center of the broad maximum in Gσ shifts to lower Vg,
and its height is reduced. For 1=ðkF,resaÞ> − 0.5, Gσ vanishes over
the entire range of gate potentials. A complete map of Gσ as a
function of interaction strength and gate potential is shown in
Fig. 2B. The existence of a maximum in Gσ and the negative spin
transconductance dGσ=dVg for strong interactions indicate the ap-
pearance of a spin insulating phase. Indeed, increasing Vg increases
the chemical potential in and around the QPC, reducing the relative
temperature T=TF. The decrease of conductance with decreasing
temperature is characteristic of an insulating behavior (33).

Mean-Field Model. We use a mean-field approach to capture the
phenomenology of the spin transport. It assumes that excitations
are noninteracting, fermionic Bogoliubov quasiparticles. Because
the Cooper pairs are singlets, these excitations carry the spin
current and their populations are controlled by the spin bias. This
allows for a generalization of the Landauer approach to spin
conductance (SI Appendix). The predictions are shown in Fig. 2A,
Inset. The emergence of a maximum as a function of gate potential
is reproduced. It results from the competition between the non-
linearly increasing gap at the entrance and exit of the QPC, hin-
dering spin transport, and the opening of conduction channels.
The position of the maximum along the gate potential axis and

the shape of the conductance variations are reproduced, but the
predictions for the value of the conductance differ by about a factor
of 2. This discrepancy could come from interactions between qua-
siparticles of opposite spin, neglected in the model, in particular
inside the contact where the one-dimensional geometry enhances
scattering (34).

Particle Transport
Measurements. The total particle current is expected to be robust
against collisions, because they conserve momentum. However,
large interaction effects are observed. We measured GN for sev-
eral interaction strengths as functions of Vg and νx. Fig. 3A shows
the curves for fixed gate potential Vg = 0.42 μK as a function of
horizontal confinement νx. For the weakest interaction strength
1=kF,resa=−2.1, GN shows a distinct plateau at 1=h in agreement
with the Landauer picture. For the tightest horizontal confine-
ment, νx = 23.2 kHz, the QPC is almost pinched off, whereas when
reducing νx below 8 kHz, several transverse modes with closely
spaced energies get populated.
For interaction strengths −2.1< 1=ðkF,resaÞ< − 0.5, a conduc-

tance plateau with a reduced length remains visible in Fig. 3A. The
height of this feature continuously increases above the universal
value and eventually washes out with increasing interaction strength,
leaving a visible shoulder as high as ∼ 4=h for 1=ðkF,resaÞ=−0.5. A
similar observation is made when varying Vg at fixed νx = 23.2 kHz,
as shown in Fig. 3B. There again, plateau-like features with con-
ductances higher than 1=h are observed for interaction strengths
1=ðkF,resaÞ< − 1.3. As interactions are further increased toward
the unitary regime [−0.5< 1=ðkF,resaÞ≤ 0 for Fig. 3 A and C
and −1.3< 1=ðkF,resaÞ≤ 0 for Fig. 3 B and D], no conductance
plateaus can be distinguished, andGN increases continuously from
zero to large values. Contrary to variations of νx, variations of Vg
change the density at the entrance and exit of the QPC, which
probably causes the disappearance of the plateau already at a
lower value of the interaction strength.
The entire crossover from quantized conductance of weakly

interacting atoms to its breakdown for strong interactions is mapped
out in Fig. 3C for fixed Vg and varying νx and in Fig. 3D for fixed
νx and varying Vg. The latter demonstrates most clearly that the

A

B

Fig. 2. Spin conductance of the attractively interacting Fermi gas. (A) Spin
conductance Gσ as a function of the gate potential Vg for different in-
teraction strengths 1=ðkF,resaÞ in the reservoirs. Each data point represents
the mean over nine measurements and error bars indicate 1 SD plotted for
every third point. The thin solid lines are quadratic fits used to identify the
maxima in Gσ . Inset shows Gσ obtained from a mean-field phenomeno-
logical model, reproducing the nonmonotonic behavior of the experimental
data. (B) Two-dimensional color plot of Gσ as a function of 1=ðkF,resaÞ,
with cuts of A indicated as gray dotted lines. The points where Gσ is maxi-
mum, obtained from a parabolic fit along Vg, are displayed as orange circles
for comparison. The black dashed line represents the superfluid critical line
estimated at the entrance and exit regions of the QPC, using the results of
ref. 38.
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conductance plateau, discernible as a green area, shrinks gradually
when the interaction strength is increased from 1=ðkF,resaÞ< − 2 to
1=ðkF,resaÞ< − 1. In this regime the plateau width is well predicted
by a mean-field model accounting for intra- and intermode attrac-
tion in the QPC (SI Appendix). Furthermore, we observe little dif-
ference between the unitary and the molecular regime in the
experimentally accessible region, 0< 1=ðkF,resaÞ< 0.5, where the
reservoirs form a condensate of molecules (35).

Superfluid Transition. In the strongly interacting regime (dark purple
regions in Fig. 3 C and D), deviations from a linear response to the
bias are observed (36, 37) in agreement with our previous mea-
surements for a QPC in a unitary superfluid (31) (SI Appendix).
Indeed, for the temperature imposed by the reservoirs, increasing
Vg or the interactions leads to the onset of superfluidity in the
minima of the effective potential (Fig. 1C), i.e., at the entrance and
exit of the QPC. The local critical temperature at those points thus
corresponds to the maximum critical temperature over the entire
cloud, and we refer to it as Tc for the remainder of this article. To
extract it, we use the state-of-the-art calculation of Tc=~TFð1=ð~kFaÞÞ
(38) in local density approximation, with kB ~TF = Z2~k

2
F=ð2mÞ=

Z2ð6π2nÞ2=3=ð2mÞ being the Fermi energy of a homogeneous gas

with density n. We estimate n at the entrance and exit of the
QPC from the trap geometry and the equation of state of the
low-temperature, tunable Fermi gas (SI Appendix). The resulting
critical line is displayed in Figs. 2B and 3 C and D. It closely tracks
the maxima of the spin conductance in Fig. 2B, as well as the
disappearance of the conductance plateaus in Fig. 3.

Conductances in the Single-Mode Regime. We now focus on the
conductances in the single-mode regime, where universal quanti-
zation is observed for weak interactions. For this purpose, we dis-
play in Fig. 4 the conductances as a function of T=Tc, measured at
the position of the plateau center in the weakly interacting regime.
These are extracted from Fig. 3C for fixed νx = 14.5 kHz and from
Fig. 3D for fixed Vg = 0.64 μK. We observe that the resulting con-
ductances now coincide within error bars. This demonstrates that
T=Tc is a key control parameter of the transition, despite the fact
that the two datasets correspond to different geometries in the
single-mode regime. The fast increase of particle conductance co-
incides with a sharp drop in the spin conductance around T=Tc = 1,
demonstrating directly the intimate connection between pairing and
superfluidity. The regime of nonuniversal quantization, with a
conductance larger than 1=h as identified by our measurement

A B

C D

Fig. 3. Particle conductance of the attractively interacting Fermi gas. (A and B) Particle conductance GN as a function of the horizontal confinement frequency νx of
the QPC, at fixed gate potential Vg = 0.42  μK (A) and as a function of the gate potentialVg at fixed confinement frequency νx = 23.2 kHz (B), for different interaction
strengths 1=ðkF,resaÞ in the reservoirs. The solid lines are theoretical predictions for 1=ðkF,resaÞ=2.1 and 1.9, respectively, based on the Landauer formula including
mean-field attraction (SI Appendix). Each data point represents the mean over five measurements and error bars indicate 1 SD. (C and D) Two-dimensional color plot
of GN as a function of interaction strength 1=ðkF,resaÞ and horizontal confinement (C) or gate potential (D). Both plots contain the cuts of A and B (gray dotted lines)
and an estimation of the local superfluid transition at the QPC exits (black dashed line).
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method and accuracy, extends from T=Tc ∼ 1, corresponding to
the shoulder observed at ∼ 4=h, to far above the superfluid
transition, up to T=Tc ∼ 2.5. This suggests that in this regime,
where T >Tc at every point in the cloud, current is not carried
by fermionic quasiparticles, challenging a description in terms
of Fermi liquids.

Discussion
A possible interpretation for the anomalously high conductance,
i.e., exceeding 1=h in the normal, single-mode regime, is the
presence of strong superfluid fluctuations in the reservoirs, due
to the large critical region around the superfluid transition (39,
40). The critical fluctuations are qualitatively similar to those of
the Luttinger liquid in one dimension with attractive interactions
in the leads, where they are known to yield an enhanced con-
ductance (25–27). Another possibility is preformed pairs above
Tc that could form in particular in the contact region (41),
leading to a channel with a bosonic character, where large con-
ductances are expected (42, 43). Evidence for such non-Fermi
liquid behavior in the BEC–BCS crossover was found using
photoemission spectroscopy (29), in contrast to results based on
the equation of state (44, 45). Our findings, covering the at-
tractively interacting regime, complement the observations made
with repulsively interacting electrons in solid-state QPCs. Future
work could also explore the known conductance anomalies ob-
served in electronic QPCs (19, 20).

Materials and Methods
Preparation of the Cloud. Interacting Fermi gases are produced by a two-step
evaporative cooling procedure. We first create a balanced mixture of the
lowest two hyperfine states of 6Li and perform evaporative cooling at a
magnetic field of 302 G down to temperatures of the order of the Fermi
temperature. A Landau–Zener radio frequency transition then transfers
the full population from the second to the third hyperfine state, and the
magnetic field is ramped up to 689 G, the center of a Feshbach resonance

(46), where the s-wave scattering length diverges. A second step of forced
evaporation is then performed using a magnetic field gradient, yielding
the low-temperature clouds used for the transport measurements. The
magnetic field is then ramped in 200 ms to the desired value between 673
G and 949 G to vary the interaction strength during transport. In the ab-
sence of the point contact and gate beam, the atoms reside in a hybrid
trap where the confinement along x and z is ensured by an optical dipole
trap and along y by the residual curvature of the magnetic field. The trap
frequencies along the x and z directions are 194Hz and 157Hz, respectively.
The trap frequency along y ranges between 28.0ð5Þ Hz and 33.2ð6Þ Hz,
depending on the value of the magnetic field.

Creation of the Spin Bias. To create a symmetric spin bias Δμ↑ =−Δμ↓ between
the two reservoirs (Fig. 1E), we ramp the magnetic field before the Landau–
Zener transfer in 10 ms from 302 G down to 52 G, where the lowest and
second lowest hyperfine states have different magnetic moments, and apply
at the same time a magnetic field gradient along the transport axis. This in-
duces dipole oscillations with different frequencies and different amplitudes
for the two states. We wait for roughly one period of the faster oscillation
before we abruptly switch on an elliptic repulsive gate laser beam separating
the reservoirs (47). The magnetic field is then ramped back to a value close to
its initial value, from where we transfer all of the atoms in state j2æ to state j3æ,
using an adiabatic Landau–Zener radio frequency transfer. After evaporation
at the Feshbach resonance, we obtain an opposite atom number imbalance for
the two states, ΔN↑ ’ −ΔN↓ ’ 0.25. We ensured that this preparation scheme
does not increase the temperature compared with the one for the
particle transport.

Effective Potential. For the computation of the conductance we use adia-
batic approximation (48, 49), which allows for a separation of longitudinal
(y) and transverse (x, z) coordinates. We verified numerically that it is
a very good approximation for the geometry of our QPC. In the
resulting one-dimensional Schrödinger equation the transverse energy
E⊥ðyÞ= ð1=2ÞhνxfxðyÞ+ ð1=2ÞhνzfzðyÞ acts as an additional potential, with
fx,zðyÞ describing the spatial variation of the trapping frequencies of the QPC.
Together with the gate potential VgðyÞ=−VgfgðyÞ, and the harmonic trap-
ping potential VtrapðyÞ= ð1=2Þmω2

yy
2 along y, and a residual repulsive po-

tential EresidðyÞ= Eresid,0f2z ðyÞ arising from residual light in the nodal line of
the intensity profile of the TEM01-like laser mode creating the 2D confine-
ment (50), it forms the effective potential Veff = E⊥ +Vg +Vtrap + Eresid, which
is shown in Fig. 1C. The involved envelope functions are listed in Table 1. The
prefactor in Eresid has been calibrated to Eresid,0 = 0.14ð7Þ μK, using a con-
ductance measurement with only the 2D confinement present. The central
maximum in a generic profile Veff is due to the x confinement of the QPC,
and the two minima to each side of it are a result of the combined potential
of E⊥ and Vg. We define the entrance and exit of the QPC as the position of
these minima. They represent the positions of highest density and thus of
lowest T=~T F.

Compressibility and Spin Susceptibility of the Trapped Gas. To evaluate the
interaction-dependent chemical potentials μ↑ and μ↓, compressibility κ, and spin
bias Δb we use the equation of state of the two-component, homogeneous
Fermi gas Pðμ↑, μ↓, aÞ (32).

Integrating it over the trap provides the thermodynamic potential
Ptrap =

R
d~r   Pðμ↑ −Vð~rÞ, μ↓ −Vð~rÞ, aÞ, with Vð~rÞ the known trapping poten-

tial (including the QPC region) and ϑ the Heaviside function. The particle
number N and the magnetization M in a single reservoir are then given by
N= ð1=2Þð∂Ptrap=∂μÞb and M= ð1=2Þð∂Ptrap=∂bÞμ with μ= ðμ↑ + μ↓Þ=2 and b=
ðμ↑ − μ↓Þ=2. The factors of 1=2 arise because the size of the two identical
reservoirs is half of the entire cloud. Given the measured N and M, one can
solve numerically for μ↑ and μ↓ or, equivalently, for μ and b.

The compressibility and spin susceptibility of a single reservoir are given by
κ= ð1=4Þð∂2Ptrap=∂μ2Þb and χ = ð1=4Þð∂2Ptrap=∂b2Þμ, respectively. The additional
factors of 1/2 the definitions of N and M arise because in our definitions of κ
and χ, we require that κ→ ð∂N↑ð↓Þ=∂μ↑ð↓ÞÞb for b→0.

Fig. 4. Particle and spin conductances in the single-mode regime. GN (solid
circles) and Gσ (open triangles, every second error bar displayed) for various in-
teraction strengths are presented as a function of the reduced temperature
T=Tc , which varies due to the dependence of Tc on density and scattering
length. Blue data points are obtained from the measurements shown in Figs. 2
and 3 B and D for Vg = 0.64 μK and νx = 23.2 kHz. Red data points are obtained
from themeasurements shown in Fig. 3A and C for Vg = 0.42 μK and νx = 14.5 kHz.
GN tends to the conductance quantum 1=h (horizontal dashed-dotted line)
for weak interactions (T=Tc � 1). Error bars contain statistical and systematic
errors (Materials and Methods).

Table 1. Envelope functions determining the effective potential

Envelope function Waist Description

fxðyÞ=expð−y2=w2
x Þ wx = 5.6ð6Þ μm QPC, x confinement

fzðyÞ= expð−y2=w2
z Þ wz =30ð1Þ μm QPC, z confinement

fgðyÞ=expð−2y2=w2
gÞ wg = 25ð1Þ μm Gate potential
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For a symmetric spin bias, we have Δb=2b. It ranges from 0.18μ to 0.34μ for
interaction strengths −2.0≤ 1=ðkF,resaÞ≤ − 0.5, corresponding to a mean value
of 0.24μ.

Extraction of the Conductances. GN is determined within linear response as in
ref. 6. We use the relation ΔN= κΔμ, yielding

d
dt

ΔN=−
2GN

κ
ΔN. [2]

We indeed observe an exponential decay of ΔN as a function of time (except
for the deep superfluid regime; SI Appendix). The characteristic time τN is
related to GN through GN = κ=2τN . To determine GN , we evaluate κ (see
above) and determine τN by measuring ΔN at t = 0 and after a transport time
of ttr = 2s. From the solution of Eq. 2 we obtain

1
τN

=
1
ttr
  ln

�
ΔN
N

ðt = 0Þ
�
−

1
ttr
  ln

�
ΔN
N

ðt= ttrÞ
�
. [3]

Gσ is extracted slightly differently: A linear response relation similar to Eq. 2
cannot be established for ΔM because the magnetic susceptibility depends in
a nonlinear way on b. In particular, χ starts close to zero for low b due to the
superfluid gap. We define Gσ as Gσ = Iσ=Δb. We evaluate Δb from the initial
magnetization imbalance ΔM0 (see above) and determine Iσ from

Iσ =ΔM0=ð2τσÞ, [4]

where τσ is the time constant of the observed exponential decay of the
magnetization imbalance ΔMðtÞ. τσ is determined by measuring ΔM=N at
t =0 and after a transport time of ttr = 4s and evaluating

1
τσ

=
1
ttr
  ln

�
ΔM
N

ðt = 0Þ
�
−

1
ttr

ln
�
ΔM
N

ðt = ttrÞ
�
. [5]

Error Bars. Error bars in Figs. 2 and 3 are statistical and indicate 1 SD. Error bars in
Fig. 4 represent the uncorrelated combination of 1 SD statistical and systematic
uncertainties. The systematic uncertainty in the conductance amounts to 11%. It
represents the uncorrelated combination of the uncertainties in the compress-
ibility, which are due to the calibration error in the total particle number, an
uncertainty in the overall trapping potential, and an uncertainty due to the use
of the zero temperature equation of state. The statistical error in T=Tc is due to
the determination of T and amounts to 10%. The systematic uncertainty in T=Tc
is mainly due to the uncertainty in our estimate of Tc . It is caused by the overall
uncertainty in the effective potential, which is due to the uncertainties in νz, νx ,
Vg and their spatial dependencies. None of these uncertainties could explain the
departure of conductance from 1=h observed in Figs. 3 and 4.
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