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Energy transfer with an associated spin change of the donor and
acceptor, Dexter energy transfer, is critically important in solar energy
harvesting assemblies, damage protection schemes of photobiology,
and organometallic opto-electronic materials. Dexter transfer between
chemically linked donors and acceptors is bridge mediated, presenting
an enticing analogy with bridge-mediated electron and hole transfer.
However, Dexter coupling pathways must convey both an electron
and a hole from donor to acceptor, and this adds considerable richness
to the mediation process. We dissect the bridge-mediated Dexter
coupling mechanisms and formulate a theory for triplet energy trans-
fer coupling pathways. Virtual donor–acceptor charge-transfer exciton
intermediates dominate at shorter distances or higher tunneling en-
ergy gaps, whereas virtual intermediates with an electron and a hole
both on the bridge (virtual bridge excitons) dominate for longer
distances or lower energy gaps. The effects of virtual bridge exci-
tons were neglected in earlier treatments. The two-particle path-
way framework developed here shows how Dexter energy-transfer
rates depend on donor, bridge, and acceptor energetics, as well as on
orbital symmetry and quantum interference among pathways.
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Acompelling challenge in supramolecular chemistry is to di-
rect the flow, fission, and fusion of excitons in molecular

assemblies (1–4). When donor or acceptor species undergo a
spin change during energy transfer, a two-particle or Dexter in-
teraction enables the energy transfer because the Förster (dipole–
dipole) coupling is spin forbidden (5). Developing design prin-
ciples for Dexter energy transfer is a considerable challenge
compared with that of single-electron (hole) transfer because of
the combinatorial growth in the number of mediating (virtual)
two-particle states with system size (6–9). As with single-particle
(electron or hole) transfer, Dexter energy transfer arises from
donor–acceptor coupling mediated by molecular species (10).
Here, we develop a coupling pathway theory for bridge-mediated
Dexter energy transfer and explore the relative contributions of
bridge and donor–acceptor charge-transfer excitons to the transport.
A wide variety of critical chemical systems rely on bridge-

mediated Dexter transfer of triplet excitons. The lowest-energy
electronic excited states of transition metal complexes used for
solar-energy harvesting are often high spin, and the excitation
energy usually flows to a low-spin ground state acceptor (3). In
the electro-optics underpinning light-emitting diodes based on
metal-containing chromophores, the exchange of energy between
low- and high-spin excited states is crucial for device efficiency
(11). As well, protection of biological light-harvesting machinery
from damage induced by sensitized singlet oxygen formation relies
on a Dexter energy transfer quenching mechanism (12). The
strong dependence of the Dexter coupling on the bridge structure
indicates that triplet energy-transfer materials offer additional
control (compared with the case for Förster energy transfer)
through the manipulation of the bridge-mediated coupling.
Dexter’s 1953 analysis of spin-forbidden excitation energy trans-

fer between donor (D) and acceptor (A) moieties in contact in-
voked coupling via the electron–electron Coulomb operator (5).
However, most Dexter systems of interest today involve chemically

bridged species. In addition to the two-electron interaction identi-
fied by Dexter, one-electron interactions (applied to second or
higher order) also couple D to A. The term “Dexter coupling” is
now understood to arise from both one- and two-electron in-
teractions that may be mediated by a bridge (see Two-State EnT
Kinetics), and two-state approximations to the Dexter coupling
that include both contributions are well known (13). Pioneering
kinetic studies of bridge-mediated Dexter energy transport in
molecules have been reported by Closs et al. (14), Albinsson
et al. (15), Harriman et al. (16), and Spieser (10); and consid-
erable recent attention has turned to Dexter energy transfer at
nanoparticle–molecule junctions (4). Despite the crucial role
played by bridge-mediated Dexter energy transfer, a general
framework to assess coupling pathway-mediated Dexter inter-
actions and their interferences is lacking. We formulate a theory
for bridge-mediated Dexter coupling pathways that allows the
appraisal of specific coupling mechanisms.
Our description of Dexter coupling pathways relies on a

configuration-interaction single-excitations (CIS) framework,
motivated by schemes used to assess bridge-mediated interactions
for single-electron/hole transfer (6, 7), adapted here to track the
coupled motion of two particles. Pathway decompositions allow
molecular-level understanding of energy, orbital symmetry, and
interference effects on energy-transfer rates. The framework
developed here allows analysis of Dexter-pathway coupling
mechanisms in the language of virtual exciton pathways mediated
by the bridge. We find that Dexter pathways through short
bridges with high tunneling-energy gaps are dominated by charge-
transfer virtual exciton intermediates [donor–acceptor charge-
transfer excitons (DAE)] with one particle (electron or hole) on
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D and the other on A. The coupling in this short-distance high-
barrier regime is consistent with an early conjecture of Closs et al.
(14) and with the picture of Harcourt et al. (13). At longer dis-
tances or lower bridge energy gaps, however, bridge-localized
virtual excitons (without DAE intermediates) dominate the Dex-
ter coupling. These virtual excited states of the bridge, or bridge
excitons (BE), are characterized by electron-hole pairs localized
on the bridge. We provide formulas to assess the BE contribution
to the Dexter coupling, because the earlier theories did not ac-
count for these BE intermediates.
We denote the donor, bridge, and acceptor chemical frag-

ments in the energy transfer (EnT) system as D, B, and A, re-
spectively. To describe the electron/hole charge distributions in
these regions we use a +, − notation. For an exciton with both
the hole and the electron localized in a single D, B, or A region,
we use R∓ (R=D, B, or A, where the plus sign indicates a hole,
and the minus sign indicates an electron). For an exciton with
electron and hole localized in separate regions R and R′, we use
R+R′−. A specific exciton state (configuration) with hole in or-
bital i and excited electron in orbital x is denoted ji, xi. Specific
excited-electron orbitals x, y are denoted with the * notation.

Two-State EnT Kinetics
Nonadiabatic triplet-to-triplet (tr) EnT is well described in the
golden-rule approximation when the (resonant) donor and ac-
ceptor electronic transitions are at much lower energies than all
other electronic transitions. The golden rule rate is

k=
2π
Z
jVtrj2 FC, [1]

where Vtr is the bridge-mediated donor–acceptor coupling and
FC is the Franck–Condon factor associated with molecular and
medium polarization that brings the donor and acceptor excita-
tion energies into coincidence (17, 18).
A commonly used expression for the bridge-mediated Dexter

coupling is given in Eq. 2 (19). We find that Eq. 2 does not
capture these crucial BE contributions to the Dexter coupling, and
we provide more general formulas that account for the BE con-
tributions. The approximate Dexter coupling between D-centered
ðjD,D*iÞ and A-centered ðjA,A*iÞ triplet excited states is

Vtr ’ 2

�
D
��V̂ h��A��D* ��V̂ e��A*�

ΔECT
− ðDAjD*A*Þ. [2]

jDi, jD* i, (and jAi, jA*i) denote hole-occupied and electron-
occupied diabatic orbitals that are mostly localized on the D
(and A) fragments with tails on B. These orbitals can be written
in a basis of zeroth-order hole or electron orbitals that are
fully localized on D, B, or A fragments; i.e., jDi ’ jdi+ ��δbrD i,jD*i ’jd*i + ��δbrDpi, jAi ’ jai + ��δbrA i, and jA*i ’ ja*i + ��δbrApi,
where jdi ðjd*iÞ and jai ðja*iÞ are the zeroth-order D-localized
and A-localized basis orbitals and

��δbri are the bridge tails.
In Eq. 2, hD��V̂ h

��Ai is the bridge-mediated hole-tunneling matrix
element between jDi and jAi, and hD* ��V̂ e

��A*i is the bridge-
mediated electron-tunneling matrix element between jD*i and
jA*i (V̂ h and V̂ e denote the hole- and electron-tunneling operators
of the one-electron Hamiltonian). ΔECT is the energy differ-
ence between the triplet donor–acceptor charge-transfer exciton
state jD,A* i (or jA,D*i) and the triplet donor state jD,D*i. In the
CT states, a hole occupies the jDi ðjAiÞ orbital and an electron the
jA* iðjD* iÞ orbital. ðDAjD*A* Þ is the Coulomb exchange integral
ðDAjD*A* Þ= k

R
dr1dr2ΨDðr1ÞΨAðr1Þr−112ΨD*ðr2ÞΨA*ðr2Þ ðk= e2=

4πe0Þ (5, 19). Eq. 2 indicates that jD,D* i and jA,A* i are coupled
by both a one-electron/hole Hamiltonian operator (to second or-
der) and a two-electron Coulomb Hamiltonian operator (to first
order) (5, 19).

In Eq. 2, hD��V̂ h
��Ai and hD* ��V̂ e

��A* i are the couplings that cause
hole or electron D-to-A CT reactions mediated by through-bridge
tunneling (7). There are numerous approaches to compute these
couplings (6, 17, 18, 20). Diabatization approaches compute the
diabatic orbitals jDi ðjD*iÞ and jAi ðjA*iÞ and then obtain the matrix
elements of V̂ h and V̂ e (14, 21–23). Green’s function (GF) strate-
gies based on the Löwdin projection technique (7) express hD��V̂ h

��Ai
and hD* ��V̂ e

��A*i in terms of the zero-order jdi, jd*i and jai, ja*i
orbitals mentioned above; i.e., hD��V̂ h��Ai= hd��V̂ hĜBV̂ h��ai and
hD* ��V̂ e

��A*i= hd* ��V̂ eĜBV̂ e
��a*i, where ĜB = ðEtÎB − ĤBÞ−1 is the

single-particle bridge GF (ĤB is the bridge Hamiltonian and Et is
the electron- or hole-tunneling energy).
The GF approach is useful to interpret hD��V̂ h

��Ai ðhD* ��V̂ e
��A*iÞ as

a sum of through-bridge hole (electron)-coupling pathways (7), symbol-
ized by D∓BA→D−B+A→D−BA+ ðD∓BA→D+B−A→D+BA−Þ.
Thus, the first term in Eq. 2 describes the contribution of single-
particle transfer (SPT) pathways to the triplet-EnT coupling
Vtr (D∓BA→D+B−A→D+BA− →DB+A− →DBA∓ and D∓BA→
D−B+A→D−BA+ →DB−A+→DBA∓). Eq. 2 suggests that this
contribution always involves DAE virtual intermediates with
charge distributions D+BA− or D−BA+. We formulate a general
GF approach to analyze Vtr in terms of more general triplet ex-
citon tunneling pathways. We show that Eq. 2 excludes an im-
portant class of triplet BE virtual mediating states ðDB∓AÞ. For
long bridges or low bridge tunneling barriers, these BE pathways
dominate the Dexter coupling.

Fig. 1. (A) Schematic view of the electron-then-hole DAE pathways (upper
route via jd, a*i), hole-then-electron DAE pathways (lower route via ja,d*i),
and mixed electron/hole bridge-exciton BE pathways (routes through the
center block of the bridge-exciton states fjbn,bm* ig). The DAE pathways
(upper and lower routes, dotted lines) avoid the BE manifold f��bn,b

*
mig. The

BE pathways (dashed lines to and from the center block) avoid jd,a*i and
ja,d*i. (B) Schematic diagrams of hole- and electron-occupied orbitals in the
DAE state jd, a*i and in a BE state

��b1,b
*
2 i. For example, NLMO orbitals jb1i

and
��b*2 i could correspond to the first σ bond and the second σ* antibond of

the alkane bridge in Fig. 2A.
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Characteristics of the Dexter Coupling
Experimental and theoretical studies of Dexter transport have
been carried out in rigid and flexible molecules, in polymers, in
polymer assemblies, and in metal–organic frameworks (3, 24,
25). Dexter rates drop approximately exponentially with distance
(10), and Eq. 2 suggests a distance decay constant equal to the
sum of the electron and hole superexchange decay constants
(14). Experimental studies of Harriman found that some Dexter rates
decay with exponential decay constants as small as 0.1 Å−1 for Ru
(II)–Os(II) terpyridyl complexes linked by 1,4-diethynylene-
2,5-dialkoxy-benzene bridges (16). Albinsson et al. found ex-
ponential decay constants of 0.45 Å−1 for phenylene ethynelene
linked porphyrins (15). For alkane linkers, Closs et al. found
large decay exponents, 2.8 Å−1 (14). Computed decay constants
as large as 3.4–3.8 Å−1 were reported by Curutchet and Voityuk
for through-solvent Dexter transport (26). Experimental and
theoretical studies clearly indicate that Dexter couplings de-
pend on the structure and energetics of the bridge.

CIS Model in a Localized Basis
We use a CIS approach (27) to describe the tr Dexter coupling.
CIS methods were found to describe tr EnT couplings accu-
rately in earlier studies (21–23). We use an orthogonal basis of
natural localized molecular orbitals (NLMOs) that are mostly
two-center bonding (e.g., σ and π) and two-center antibonding
orbitals (e.g., σ* and π* ) with occupations of two and zero,
respectively (28). A triplet CIS configuration is defined as
ji, xi≡ ψ̂†

x↑ψ̂ i↓

��Φ0i, where ψ̂ i↓ destroys a spin-down electron
(creates a hole) in occupied NLMO spatial orbital i ðϕiðrÞÞ, and
ψ̂†
x↑ creates a spin-up electron in virtual NLMO spatial orbital x

ðϕxðrÞÞ. jΦ0i is a ground-state restricted Hartree–Fock Slater
determinant [linear combinations of ji, ximust be used for triplet
states (29)].
The NLMO representation for i and x produces an intuitive

interpretation of a triplet basis state ji, xi as an exciton with hole
and electron localized on different (D, B, A) molecular seg-
ments. The ji, xi basis set can be divided into different groups
(Fig. 1). jd, d*i and ja, a*i describe triplet exciton states with the
electron and hole entirely localized in D and A regions, re-
spectively. jd, a*i and ja, d*i describe DAE states with a hole on
D (orbital jdi) and an electron on A (orbital ja*i) or the reverse
(an electron on jd*i and a hole on jai). There is a set of states
f��d, bpnig with an electron on B (one of the f��bpnigNLMOs) and a
hole on D, as well as a set f��a, bpnig with an electron on B and a
hole on A. (In Fig. 1, braces f  g denote multiple ji, xi). The
fjbn, dpig and fjbn, apig sets contain all states with a hole on B
and an electron on either D or A. Finally, f��bn, bpmig contains all
BE basis states with both an electron and a hole on B. We es-
tablish a framework to understand how these sets of configura-
tions mediate the Dexter coupling (Fig. 1).
The Hamiltonian elements among CIS basis states are (29)

Hix,jy =
�
i, x

��Ĥ��j, y�= δi,jFx,y − δx,yFi,j − ðijjxyÞ, [3]

where Fi,j and Fx,y are Fock matrix elements that arise from the
(mean field) Hartree–Fock theory. Each diagonal Fock matrix
element Fi,i (Fx,x) corresponds to the energy of the NLMO i (x);
each off-diagonal Fock matrix element Fi,j (Fx,y) corresponds
to the electronic interaction between orbital i and orbital j (orbital
x and orbital y) (28, 29)

ðijjxyÞ= k
Z

dr1dr2ϕiðr1Þϕjðr1Þr−112 ϕxðr2Þϕyðr2Þ. [4]

ðk= e2=4πe0Þ are Coulomb matrix elements. It is useful to sepa-
rate the CIS Hamiltonian matrix elements (Eq. 3) into diagonal
ĥðdiÞ and off-diagonal V̂ parts

hðdiÞix,ix ≡
D
i, x

��ĥðdiÞ��i, xE=Fx,x −Fi,i − ðiijxxÞ, [5]

and

Vix,jy ≡
�
i, x

��V̂ ��j, y�=V ð1pÞ
ix,jy +V ð2pÞ

ix,jy . [6]

ĥðdiÞ (Eq. 5) contains the electron and hole NLMO orbital ener-
gies (Fx, x and −Fi,i, respectively) and the electron–hole Coulomb
attraction energy, −ðiijxxÞ. The off-diagonal interaction (Eq. 6)
contains one-particle ðV ð1  pÞ

ix,jy Þ and two-particle ðV ð2  pÞ
ix,jy Þ components.

V ð1  pÞ
ix,jy = δi,jFx,y − δx,yFi,j (Fig. 1). These Fock matrix elements Fi,j

and Fx,y describe, e.g., the through-bond (or through–anti-bond)
interactions familiar in electron-transfer theory. V ð2  pÞ

ix,jy =−ðijjxyÞ is
the two-electron pure exchange interaction.
The term BE used for the f��bn, bpmig CIS basis states does not

imply that a physical BE state in a molecular system corresponds
to a single

��bn, bpmi. Physical BE states are eigenstates of the
Hamiltonian submatrix involving the BE basis states, i.e., the
submatrix with elements hbn, bpm

��Ĥ��bk, bpl i. These eigenstates,
which are linear combinations of the

��bn, bpmi, are denoted
��Ψbbp

L i
(eigenenergies Ebbp

L ).

Exact EnT Splittings in Model Compounds
We focus on a simple set of n-alkyl–bridged dienes and nor-
bornanes (Fig. 2) to study bridge-mediated EnT couplings, in-
cluding their distance, energy-gap, molecular-conformation, and
coupling-pathway dependence. For all of the molecules in Fig. 2
we choose the donor and acceptor segments to be the left (L)
and right (R) C=C bonds, and we set jd, d*i= ��πL, πpLi and
ja, a*i= ��πR, πpRi. These states are quasi-resonant with each
other and are off-resonance with the other ji, xi, ensuring that the
jd, d*i to ja, a*i Dexter coupling is an entirely virtual process. We
then scan the energy difference hd, d* ��Ĥ��d, d*i− ha, a* ��Ĥ��a, a*i
until we find two eigenstates jΨ±i of Ĥ (Eq. 3) given by jΨ±i ’
ð1= ffiffiffi

2
p Þ½jd, d*i± ja, a*i�+ jδ±i, where jδ±i is small, and it contains

the contribution to jΨ±i of all ji, xi other than jd, d*i and ja, a*i. In
this virtual coupling (tunneling) regime, the energy eigenvalues E± of
jΨ±i are near each other and are separated from the other energy
eigenvalues. This setup provides a definition of an “exact” coupling
Vtr between jd, d*i and ja, a*i as one-half of the splitting computed
by diagonalizing the full Hamiltonian matrix ~H in Eq. 3:

Fig. 2. (A) Alkyl-bridged diene model compound with seven bridging σ
bonds. The alkane bridge is planar, and the left and right C=C bonds are
twisted approximately 60o in opposite directions out of the CC-bonded
bridge plane. These double bonds are taken to be the D and A. In our
computations (Fig. 3), the number of bridge σ bonds is varied from 4 to 13.
(B) Example of disordered alkyl-bridged diene model compound with seven
bridging σ bonds used in the computations of Tables S1 and S2. (C) Nor-
bornyl bridged diene model compound with two parallel C=C bonds (D and
A). These compounds with n = 1, 2 are used in the computations shown in
Tables S3 and S4. (D) Norbornyl bridged diene model compound with or-
thogonal C=C bonds (D and A) with symmetry-forbidden triplet EnT.

Skourtis et al. PNAS | July 19, 2016 | vol. 113 | no. 29 | 8117

CH
EM

IS
TR

Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517189113/-/DCSupplemental/pnas.201517189SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517189113/-/DCSupplemental/pnas.201517189SI.pdf?targetid=nameddest=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517189113/-/DCSupplemental/pnas.201517189SI.pdf?targetid=nameddest=ST3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517189113/-/DCSupplemental/pnas.201517189SI.pdf?targetid=nameddest=ST4


Vtr ≡ ðE+ −E−Þ=2. [7]

Fig. 1 shows that the bridge-mediated jd, d*i-to-ja, a*i EnT cou-
pling can be mediated by the virtual states jd, a*i and ja, d*i
(DAE) or the virtual-state manifold f��bn, bpmig (BE). We therefore
define the exact tr EnT coupling mediated by DAE as V ðdaeÞ

tr ≡
ðEðdaeÞ

+ −EðdaeÞ
− Þ=2, where EðdaeÞ

± are obtained by diagonalizing the
~H matrix (Eq. 3) with all elements containing the

��bn, bpmi states in
Fig. 1 set to zero. By construction, V ðdaeÞ

tr is thus mediated by DAE
rather than by BE. Similarly, we define the exact tr EnT coupling
mediated by BE as V ðbeÞ

tr ≡ ðEðbeÞ
+ −EðbeÞ

− Þ=2, where EðbeÞ
± are

obtained by diagonalizing the ~H matrix with all elements contain-
ing the jd, a*i and ja, d*i states in Fig. 1 set to zero.

Contributions of DAE and BE Virtual Intermediates to the
Dexter Coupling
In our quantum computations, we used restricted Hartree–Fock
methods implemented in Gaussian 09 (30) with a 6–31G basis.
Fig. 3A shows Vtr, V ðdaeÞ

tr , and V ðbeÞ
tr as a function of bridge

length for the extended alkane systems of Fig. 2A. Fig. 3A, Inset
indicates the relative magnitude of the DAE and BE contribu-
tions [V ðdaeÞ

tr =ðV ðdaeÞ
tr +V ðbeÞ

tr Þ, as well as the contribution of V ðbeÞ
tr =

ðV ðdaeÞ
tr +V ðbeÞ

tr Þ, respectively] as a function of bridge length. Figs.
2A and 3A show that the BE contribution in extended alkane
bridges with more than seven to eight CC bonds is larger than the
DAE contribution. The relative BE contribution is larger for
bridges with smaller tunneling barriers. To explore this switching
effect, we shift the energies of all bridge NLMO diagonal Fock
matrix elements, Fx,x =Fbpn ,bpn and Fi,i =Fbn,bn in Eq. 5, so that the
energy gaps averðFbpn,bpnÞ−Fdp,dp and Fd,d − averðFbn,bnÞ are reduced
(aver indicates the average value). We ensure that the energy-shifted
systems remain in the tunneling regime. That is, we can still find two
eigenstates jΨ±i of ~H (Eq. 3) equally delocalized over jd, d*i and
ja, a*i with small amplitude on the bridge. Then, we compute
Vtr, V

ðdaeÞ
tr , and V ðbeÞ

tr , using the new CIS Hamiltonian. Fig. 3B
shows Vtr, V

ðdaeÞ
tr , and V ðbeÞ

tr as a function of bridge length for the
extended alkane structures used in Fig. 2A, where we have set the
averðFbpn ,bpnÞ−Fdp, dp = 6.15 eV and Fd,d − averðFbn ,bnÞ= 6.35 eV
[compared with the original values averðFbpn ,bpnÞ−Fdp,dp = 11.32 eV
and Fd,d − averðFbn,bnÞ= 11.52 eV in Fig. 3A]. For the seven-
bond bridge in Fig. 3B, the lowest BE eigenstate

��Ψbbp
Lmin

i is 2.2 eV
above jd, d*i, whereas the DAE state jd, a*i is 10.8 eV above
jd, d*i (as opposed to values of 12.4 eV and 10.8 eV, respec-
tively for the seven-bond bridge in Fig. 3A). Therefore, for the
lower barrier systems in Fig. 3B, the BE contribution dominates the
coupling for all bridge lengths, becoming more than two orders of
magnitude larger than the DAE contribution for longer bridges.
Fig. 3B shows that the BE contribution produces large Vtr matrix
elements of the order 10−2–10−3 eV.
To investigate the effects of molecular conformations on the

alkane systems, we sampled structures by choosing random tor-
sional angles and optimizing these conformations with restricted
Hartree–Fock methods using a 6–31G basis set (RHF/6–31G).
The folded structures thus generated (Fig. 2B) were used to
compute Vtr values and the DAE and BE coupling contributions
as a function of energy gap. In Table S1, we show Vtr, V

ðdaeÞ
tr , and

V ðbeÞ
tr for five folded alkanes with seven CC bonds that have

averðFbpn ,bpnÞ−Fdp,dp = 11.32 eV and Fd,d − averðFbn ,bnÞ= 11.52 eV.
Table S2 shows Vtr, V

ðdaeÞ
tr , and V ðbeÞ

tr for the structures in Table S1
with lowered the energy gaps to averðFbpn ,bpnÞ−Fdp,dp = 6.15 eV
and Fd,d − averðFbn,bnÞ= 6.35 eV (the same energy gap as in
Fig. 3B). In most cases, the BE contribution is greater than or ap-
proximately equal to the DAE contribution. The Dexter cou-
plings for the conformationally sampled alkane bridges are
smaller compared with the couplings for the extended alkane
bridges (for the seven-CC bond bridge, Vtr = 1.27× 10−4 eV in

Fig. 3A, and for the partially folded seven-CC bond bridges in
Table S1, hVtri= 1.67× 10−5 eV).
The trends in the coupling mechanism apply to more complex

bridged structures. Tables S3 and S4 show Vtr, V
ðdaeÞ
tr , and V ðbeÞ

tr for
norbonyl bridged systems (Fig. 2C) where, as with the linear alkanes,
we choose the donor and acceptor segments to be the L and R
C=C bonds, and we set jd, d*i= ��πL, πpLi and ja, a*i= ��πR, πpRi.
In Table S3, we examine two bridge lengths with n= 1,2 (Fig. 2C). In
Table S4, we use the same structures as in Table S3 with lowered
energy gaps. The averðFbn ,bnÞ values are increased by 4.90 eV and
the averðFbpn ,bpnÞ values are lowered by 4.90 eV. The splittings shown
in Tables S3 and S4 indicate that the BE contribution dominates the
Dexter coupling as the chain length grows and the tunneling barrier
drops. As a final example, we consider a norbonyl system with
orthogonal donor/acceptor C=C bonds (Fig. 2D). In this structure,
the Dexter coupling is symmetry forbidden (Vtr = 2.10× 10−13 eV)
and both BE and DAE contributions are symmetry forbidden
[V ðdaeÞ

tr = 3.70× 10−13 eV and V ðbeÞ
tr = 1.53× 10−13 eV, within the

numerical noise].
To summarize, the splitting computations find that the Dexter

coupling is mediated by BE virtual states, rather than by DAE
virtual states; i.e., Vtr ’ V ðbeÞ

tr and V ðbeÞ
tr >V ðdaeÞ

tr for low tun-
neling energy gaps and/or long bridges. The distance at which

Fig. 3. (A) Dexter coupling and the BE and DAE contributions to the cou-
plings for linear alkanes (Fig. 2A) as a function of bridge length. (B) Same
structures as in A, where the average energy gaps averðFbn,* bn

* Þ− Fd*,d* and
Fd,d − averðFbn ,bn Þ are lowered.
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the transition from DAE to BE dominance occurs is structure
and energy gap dependent.

Triplet-EnT Pathways
Having established the importance of BE contributions to the
Dexter coupling Vtr, we return to our consideration of Eq. 2. Our
focus is the first single-particle transfer (SPT) term, which is a
product of D-to-A electron transfer (ET) and hole transfer (HT)
couplings. To understand the contributions of this term to Vtr,
we develop a general GF pathway description of Vtr, V

ðdaeÞ
tr and

V ðbeÞ
tr , using Löwdin (effective Hamiltonian) projection methods

that are applicable to tunneling matrix element computations.
Below, Ttr, T

ðdaeÞ
tr , and TðbeÞ

tr denote the Löwdin projection (GF)
expressions for Vtr, V ðdaeÞ

tr , and V ðbeÞ
tr , respectively. The Löwdin

projection expression for Vtr is given by

Ttr ≡ hd, d*jĤefðEtÞja, a*i,
ĤefðEtÞ  =   P̂ĤP̂+ P̂ĤQ̂ĜðEtÞQ̂ĤP̂,

[8]

where P̂= jd, d*ihd, d* j+ ja, a* iha, a* j is the projection operator
for the DAE subspace and Q̂= Î − ðjd, d*ihd, d* j+ ja, a*iha, a* jÞ is
the projection operator for the complementary subspace containing
all exciton states ji, xi other than jd, d*i and ja, a*i. Given the sub-
space grouping of Fig. 1

Q̂= Q̂db* + Q̂bd* + Q̂ba* + Q̂ab* + Q̂da* + Q̂ad* + Q̂bb*, [9]

where Q̂db* =
P

n

��d, bn*ihd, bn*��, Q̂dap = jd, apihd, apj, etc. Q̂bbp =P
n,m

��bn, bpmihbn, bpm
�� is the projection operator for the BE

subspace, etc. ĜðEÞ= ½EQ̂− Q̂ĤQ̂�−1 is the exact GF for the
CIS Hamiltonian (Eq. 3) in the Q̂ subspace ðQ̂ĤQ̂Þ. Et is the
tunneling energy that can be adjusted so that Ttr is infinite order
in perturbation theory so that Ttr =Vtr (e.g., refs. 7 and 31 and
Supporting Information). We also define TðdaeÞ

tr and TðbeÞ
tr in the same

way that we defined V ðdaeÞ
tr and V ðbeÞ

tr (Eqs. S6 and S7). That is, we
use equations identical to Eq. 8 where we zero out all Ĥ matrix
elements that contain jd, a* i and ja, d*i states [for TðbeÞ

tr ] or all Ĥ
matrix elements containing

��bn, b*mi [for TðdaeÞ
tr ]. The important con-

clusion is that for all systems in Fig. 2 and all tunneling energy gaps,
we can reproduce the splitting-derived Vtr, V

ðdaeÞ
tr , and V ðbeÞ

tr values,
using the Löwdin GF expressions for Ttr, TðdaeÞ

tr , and TðbeÞ
tr , respec-

tively, thus confirming that the Löwdin projection method is appli-
cable (Tables S5–S8).

Donor—Acceptor Exciton vs. Bridge-Exciton Triplet-EnT
Pathways
We derive a generalized GF expression for the first (SPT) term
of Eq. 2. This term contains electron-transfer V̂ e and hole-
transfer V̂ h off-diagonal operators. Therefore, in Eq. 8, we re-
place the total CIS Hamiltonian Ĥ (Eq. 3) with a Hamiltonian
ĤðneÞ where the pure exchange terms ðijjxyÞ in the off-diagonal
elements Vix,jy of Eq. 6 are ignored (ne means no exchange).
Therefore, ĤðneÞ = ĥðdiÞ + V̂ e + V̂ h, where ĥðdiÞ is the diagonal part
of the CIS Hamiltonian (Eq. 5) [containing the Coulomb attraction
terms −ðiijxxÞ], and hi, xjV̂ ejj, yi= δi,jFx,y, hi, xjV̂ hjj, yi=−δx,yFi,j.
Replacing Ĥ by ĤðneÞ in Ttr (Eq. 8), we obtain pathway expressions
for the SPT components of the total Dexter coupling, of the DAE-
mediated coupling, and of the BE-mediated coupling. These ex-
pressions (Eqs. S15, S19, and S21) are denoted TtrðneÞ, T

ðdaeÞ
trðneÞ, and

TðbeÞ
trðneÞ, respectively, to emphasize that they do not include the ef-

fects of pure-exchange interactions in transferring electrons and
holes. The final result is

TtrðneÞ =TðdaeÞ
trðneÞ +TðbeÞ

trðneÞ, [10]

where TðdaeÞ
trðneÞ in Eq. 10 describes DAE pathways and is given by

TðdaeÞ
trðneÞ ’

hdd* jV̂ eĜdb*V̂
ejda* ihda* jV̂ hĜba*V̂

hjaa* i
Et −Eda*

 

+
hdd* jV̂ hĜbd*V̂

hjad* ihad* jV̂ eĜab*V̂
ejaa* i

Et −Eadp

[11]

(Eq. S25). TðbeÞ
trðneÞ in Eq. 10 describes BE pathways

TðbeÞ
trðneÞ ’ hdd* jV̂ eĜdb*V̂

hĜbb*V̂
eĜba*V̂

hjaa* i 
+ hdd* jV̂ hĜbd*V̂

eĜbb*V̂
hĜab*V̂

ejaa* i 
+ hdd* jV̂ eĜdb*V̂

hĜbb*V̂
hĜab*V̂

ejaa* i 
+ hdd* jV̂ hĜbd*V̂

eĜbb*V̂
eĜba*V̂

hjaa* i     

[12]

(Eq. S26). Et is the exciton tunneling energy. The ĜK are ĤðneÞ

GFs for the individual subspaces K of virtual intermediate states
shown in Fig. 1. ĜK ðEtÞ= ½EtQ̂K − Q̂KĤ

ðneÞQ̂K �−1, where the Q̂K
are the projection operator components of Eq. 9.
The DAE contribution TðdaeÞ

trðneÞ in Eq. 11 is the generalized GF
pathway expression for the first (SPT) component of Eq. 2. It
describes EnT as a sequence of two complete D-to-A electron and
hole tunneling steps (first term, D∓BA→D+B−A→D+BA− →
DB+A− →DBA∓; second term, D∓BA→D−B+A→D−BA+ →
DB−A+ →DBA∓). In the framework of Fig. 1, Eq. 11 contains
all of the upper and lower tunneling paths connecting jd, d*i
to ja, a*i via virtual DAE states ja, d*i and jd, a*i, respectively
(avoiding the BE manifold

��bn, bpmi). hdd* jV̂ eĜdb*V̂
ejda*i and

had* jV̂ eĜabpV̂
ejaa*i are the bridge-mediated electron tunneling

matrix elements for photo-excited electron transfer from jd*i to ja*i.
Similarly, hda* jV̂ hĜba*V̂

hjaa*i and hdd* jV̂ hĜbd*V̂
hjad*i are the

bridge-mediated hole tunneling matrix elements for photo-excited
hole transfer from jai to jdi. These matrix elements include the in-
fluence of electron–hole Coulomb attraction.
The bridge exciton contribution, TðbeÞ

trðneÞ (Eq. 12), describes all
tunneling pathways from

��d, dpi to ��a, api through the virtual BE
manifold

��bn, b*mi in Fig. 1 (avoiding the DAE states) (first two
terms, D∓BA→D+B−A→DB∓A→DB+A− →DBA∓ and D∓BA→
D−B+A→DB∓A→DB−A+ →DBA∓; last two terms, D∓BA→
D+B−A→DB∓A→DB−A+→DBA∓ and D∓BA→D−B+A→DB∓A→
DB+A− →DBA∓).

Rapid Growth in the Number of Bridge-Exciton Intermediate
States with Chain Length
Ignoring pure exchange when computing the Dexter coupling is
not generally sound. For the systems studied in Fig. 2A, the av-
erage exchange contribution to the Dexter coupling in the long
chain limit (Fig. 2A) is about 25% of Vtr. The analysis above
finds that the SPT component of the Dexter coupling contains
DAE and BE pathway terms that are of the same order in V̂ e and
V̂ h. Therefore, DAE and BE pathways must both be considered;
it is not appropriate to retain only TðdaeÞ

trðneÞ (which is analogous to
the first term in Eq. 2) without keeping the TðbeÞ

trðneÞ term as well.
For bridges with N bonding/antibonding orbitals (jbni,

��b*mi), the
number of BE CIS configurations

��bn, b*mi is at least N2.
Therefore, the number of BE eigenstates

��Ψbbp
L i of the submatrix

hbn, b*m
��Ĥ��bk, b*l i (or hbn, b*m

��ĤðneÞ��bk, b*l i) is also N2. In Eq. 12
for TðbeÞ

trðneÞ, Ĝbbp =
PN2

L=1ð
��Ψbbp

L ihΨbbp
L

��Þ=ðEt −Ebbp
L Þ (where Ebbp

L is
the eigenvalue of BE eigenstate

��Ψbbp
L i). As the bridge length N

grows, the number of possible BE virtual intermediates
��Ψbbp

L i
grows as N2 (as opposed to the two DAE intermediates jd, a*i
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and ja, d*i in Eq. 11). Thus, BE pathways are important for long
bridge lengths or low energy gaps, where omitting the BE
contribution to the Dexter coupling may introduce errors of
one to two orders of magnitude.

Conclusions
We have found that bridge-exciton tunneling pathways dominate
triplet energy transfer mediation in the long-distance/small tunneling
gap regime accessed in many molecular structures of current inter-
est. As well, we have developed a coupling pathway description for
bridge-mediated triplet Dexter coupling. The Dexter coupling is ex-
ponentially sensitive to donor–acceptor distance and to bridge struc-
ture, suggesting that these EnT rates and their directionality may be
manipulated by the bridge structure. As with bridge-mediated
electron and hole transfer, control can be realized by using pathway
interference effects, bridge energetics, and through-bond/through-
space coupling trade-offs. The theory enables an atomic-level de-
scription for the origins of Dexter coupling, a necessary step toward
controlling Dexter coupling interactions in a wide range of systems
of current interest in energy science and molecular biophysics.

The most significant result of the Dexter pathway analysis is
the demonstration that virtual bridge-exciton intermediate states
(Fig. 1, center) can dominate the EnT coupling for long bridges and
low tunneling-energy bridges. This BE-mediated coupling, and thus
the Dexter coupling, cannot be expressed as a simple product of
electron and hole donor-to-acceptor tunneling steps. Indeed,
Curutchet and Voityuk’s studies of Dexter couplings through sol-
vent found Dexter decay exponents to be smaller than the sum of
the electron- and hole-mediated superexchange coupling decay
exponents (26). The coupling pathway dissections introduced
here are sufficiently general to enable the further development of
structure–function relations for Dexter energy-transfer interactions.
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