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Summary

Cardiovascular (CVD) risk assessment with traditional risk factors (age, sex, blood pressure, 

lipids, smoking and diabetes) has remained relatively invariant over the past decades despite the 

inaccuracies associated with this approach. However, the search for novel, robust and cost-

effective risk markers of CVD risk is ongoing. A large share of the major developments in CVD 

risk prediction during the past five years have been made in large-scale biomarker discovery and 

the so called “omics” – the rapidly growing fields of genomics, transcriptomics, epigenetics and 

metabolomics. This review focuses on how these new technologies are helping drive primary CVD 

risk estimation forward in recent years, and speculates on how they could be utilized more 

effectively for discovering novel risk factors in the future.
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 1. Introduction

“It’s tough to make predictions, especially about the future.”

-Yogi Berra

 1.1 Is there a need for new cardiovascular risk factors?

The current American College of Cardiology/American Heart Association (ACC/AHA) 

guidelines recommend assessing traditional cardiovascular disease (CVD) risk factors every 

four to six years in all adults 20 to 79 years of age [1]. The concept of CVD risk factors is, 

therefore, an integral and central part of modern healthcare. The term “risk factor” in itself 

was used initially by the Framingham Heart Study investigators William Kannel and 
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Thomas Dawber in their 1961 landmark paper “Factors of risk in the development of 

coronary heart disease – six year follow-up experience” [2]. In that seminal work, the 

authors demonstrated that high blood cholesterol levels, elevated blood pressure, smoking, 

and electrocardiographic abnormalities were associated with an increased risk of incident 

coronary heart disease over a 6-year follow-up of the Framingham cohort. After 50 years of 

research, their findings are still very much valid although many other modifiable (diabetes, 

sedentary lifestyle, and smoking) and non-modifiable (age, family history of CVD, and race) 

CVD risk factors have since been identified.

Although the discovery of the common modifiable CVD risk factors has enabled the 

development of population-based and personal interventions, CVD risk assessment on the 

individual level still lacks precision. The clinical CVD risk prediction models, i.e. risk 

scores, do not provide their user with confidence intervals and may not therefore reflect the 

within-person uncertainty in risk [3]. Even the best risk scores achieve a c-statistic (a 

measure of discrimination also known as the area under the ROC curve (Figure 1), of 

approximately only 0.80. This means that a 20% probability still exists that the risk 

prediction model is not able to discriminate an individual likely to develop CVD on follow-

up from one less likely to do so [4]. In addition, the current ACC/AHA guidelines 

recommend discussing both lifestyle and pharmacological preventive interventions with 

individuals when their estimated 10-year risk of a CVD event of an individual exceeds 7.5% 

[1]. At a 10-year 7.5% CVD risk level, 92 to 93 out of 100 patients in whom treatment is 

initiated may not have a myocardial infarction or stroke over the next 10 years (even if the 

therapy would have been withheld), i.e. they may not necessarily benefit from therapy [1]. 

Furthermore, 67 primary prevention patients with a 5-year CVD risk of 5–10% need to be 

treated with statins to prevent one CVD event [5]. Because of inaccuracies like these even at 

the dawn of the “precision medicine” era, some scientists have argued for the redistribution 

of resources away from precision medicine research and efforts into public health programs 

[6].

In this context it is important to distinguish risk prediction at the individual levels from that 

at the population level [7]. Of note, the primary care physician typically treats individual 

patients, and not populations. In order to improve risk prediction at the individual level, and 

thereby enhance patient care, novel risk factors and more accurate CVD risk profiling may 

be necessary. Eventually, improved risk prediction at the individual level may translate into 

improved clinical care of the individual, which in turn will eventually augment the health of 

the population.

 1.2 Desirable features of a risk factor for the primary prevention of CVD

Epidemiological studies are usually performed in relatively asymptomatic community-

dwelling adults. The results obtained from these studies about risk factors are, therefore, 

often best generalizable for use in primary care and primary prevention settings. There are 

several desirable features of a risk factor for the primary prevention of CVD (Table 1). In 

addition to being accurate, acceptable, reproducible, universally applicable and easily 

interpretable, a good risk factor should be strongly associated with the outcome (disease) 

and it should provide incremental value to risk prediction. Additionally, clinical use of the 
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risk factor should translate into improvement in clinical outcomes, and it should be cost-

effective when measured in primary care settings. Cost-effectiveness, however, does not only 

depend only on the price of the risk factor and the quality of evidence showing that 

screening is effective in improving outcomes, but also on the number needed to screen, price 

of the outcome and the benefits and harms of screening.

The most important step to identifying a novel risk factor is to demonstrate an association 

between the risk factor and outcome with adjustment for other established and relevant risk 

factors. In addition to demonstration of a simple association with clinical outcome of 

interest, the new risk factor should also improve risk discrimination (statistically speaking) 

over a best available model that incorporates several known predictors of disease and that is 

the current standard of care [8,9]. Discrimination in this context refers to whether the risk 

factor adds capacity to discriminate between persons who will subsequently experience the 

outcome from those who will not.

The improvement in discrimination is often measured with the previously mentioned c-

statistic that also has some downsides (Figure 1) [8]. Albeit being quite informative, the c-

statistic only measures if the risk score is providing appropriate rank ordering of risk of non-

cases and cases, not how much greater the risk is between these two groups [10]. In addition, 

when a new risk factor is added to a model that already includes a powerful risk factor, such 

as age, the increases in c-statistic are usually very small in magnitude. On the other hand, 

conventional risk factors such as age or sex may perform poorly when the study population 

consists solely of elderly, high-risk participants, especially when the age range is narrow or 

the gender distribution is uneven. When a novel risk factor is studied in such a population, it 

can easily lead to overestimation of the effect of this risk factor. Furthermore, the 

incremental contribution of novel risk factors can also be overestimated when the c-statistic 

for the baseline model is low or when all current clinically relevant variables are not 

included in the basic model. The results of analyses for association and improvement in 

discrimination must therefore always be interpreted within the context of the study 

population and the study methods.

Other commonly used methods for measuring improvement in risk discrimination are the net 

reclassification improvement and integrated discrimination improvement, which measure the 

new model’s ability to more accurately stratify individuals into higher or lower risk 

categories of clinical importance (Figure 1) [9]. In an example based on the Women’s Health 

Study, inclusion of HDL cholesterol with the other classical risk factors resulted in a 

minimal increase in c-statistic from 0.77 to 0.78. However, at the same time, over 34% of 

women classified at 5% to 20% 10-year risk in the model without HDL cholesterol changed 

risk category when HDL cholesterol was included in the model [10]. In addition, this new 

risk estimate was a more accurate representation of actual risk for over 99% of women 

reclassified. Reclassification can therefore be important for the clinician, even if the 

increases in c-statistic are nominal. Limitations of the reclassification metrics are that they 

depend on model calibration (ability to estimate the probability of an event across the whole 

range of prognostic estimates) and the somewhat arbitrary number of risk categories and the 

thresholds between categories.
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 1.3 Novel CVD risk factors in the 2010s

Despite the previously listed challenging requirements for new risk factors, significant 

advances have been made in the past 25 years in the fields of imaging, biomarker discovery 

and vascular assessment especially through the discovery of surrogate markers of CVD that 

can also be used as risk factors (Table 2). For example, assessment of subclinical 

atherosclerosis with ultrasound measurement of carotid intima-media thickness or with 

coronary calcium scoring from cardiac CT have been shown to improve risk discrimination 

in population studies, as compared with the traditional risk factors [11,12]. In addition to 

imaging, data from a few studies suggest that newer (and older) tests of vascular function 

such as the ankle-brachial index and aortic pulse wave velocity, a measure of large artery 

stiffness, may improve risk discrimination [13–15]. Out of these risk factors, coronary 

calcium scoring and the measurement of ankle-brachial index are already recommended by 

the current guidelines to inform decision making and they are consequently slowly being 

adopted into mainstream clinical practice [1].

In spite of these advances in imaging and vascular assessment during the past two decades, a 

large share of the very recent major developments in CVD risk prediction have been made in 

large-scale biomarker discovery and so called “omics” the rapidly growing fields of 

metabolomics, genomics, epigenetics and transcriptomics (Table 2). This review will 

therefore focus on how these new technologies have helped push primary CVD risk 

estimation forward in recent years, and speculates on how they could be utilized more 

effectively for discovering novel risk factors in the future.

 2. Biomarkers

Biomarkers are biological measures that are used as an indicator of the presence (or 

absence) or severity of a particular disease (or state of health). The wide definition of the 

term includes all imaging tests and any recordings obtained from a person, but most often 

biomarkers are considered to be compounds isolated from serum although urine or other 

biological specimens. The traditional CVD risk factors include two sets of biomarkers, 

namely blood glucose and lipids for diagnosing diabetes and hypercholesterolemia (Table 2). 

Other biomarkers, such as B-type natriuretic peptide, C-reactive protein, estimated 

glomerular filtration rate and urine microalbumin, have also been previously shown to be 

strongly associated with CVD prognosis both in patients and in the general population and 

used for CVD risk assessment in select settings [1,16–18].

While the traditional search for novel biomarkers has been a slow process, new methods and 

technologies now allow for large-scale high throughput screening of biological specimens 

for biomarker discovery. It seems that biomarker-based CVD risk prediction, will slowly 

move from the use of single biomarkers, to composite marker scores based on several 

biomarkers, and finally to metabolomics that allows for the precise identification of 

hundreds to thousands of small molecules in biological samples.
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 2.1 Lipoprotein and lipid-related biomarkers

 High density lipoprotein (HDL) cholesterol—The reverse cholesterol transport 

process, which removes excess cholesterol from peripheral cells to the liver for excretion, is 

considered one of the most important antiatherogenic functions of HDL [19]. Numerous 

epidemiological studies have robustly shown that high concentrations of plasma HDL 

cholesterol are associated with a lower risk of CVD [17,19]. Increasing HDL cholesterol 

levels was therefore considered to be a promising therapeutic strategy until several 

randomized studies of HDL cholesterol-raising drugs, such as niacin and cholesteryl ester 

transfer protein inhibitors, failed to demonstrate any benefit on the clinical outcome of 

patients when added to statin therapy [20,21]. Furthermore, genetic mechanisms that raise 

plasma HDL cholesterol do not seem to lower risk of myocardial infarction in Mendelian 

randomization studies (a topic addresser later in this review), as they have done for low 

density lipoprotein (LDL)-related genetic loci [22]. In fact, a recent paper by Zanoni et al. 

suggested that persons with a loss-of-function variant in SCARB1, the gene encoding the 

major receptor for HDL cholesterol, have elevated levels of HDL cholesterol and, 

surprisingly, increased odds of coronary heart disease [23]. Although HDL cholesterol still 

remains a strong predictor of CVD outcome, due to these negative results from trials and 

genetic studies, epidemiological research has started to focus on the functional properties of 

HDL, rather than solely on its mean cholesterol concentration, and one emerging notion is 

that HDL may be a marker of risk, rather than a causal risk factor per se.

 HDL function—One relevant functional property of HDL could be the HDL cholesterol 

efflux capacity, the ability of HDL to accept cholesterol macrophages, which is a key step in 

reverse cholesterol transport [24]. So far, two population-based studies have studied the 

prognostic significance of HDL cholesterol efflux capacity. In the Dallas Heart Study, 

baseline HDL was not predictive of CVD while a 67% reduction in CVD risk was observed 

in participants in the highest quartile of cholesterol efflux capacity versus the lowest quartile 

in regression models that also included traditional risk factors and HDL particle 

concentration [25]. In addition, adding cholesterol efflux capacity to traditional risk factors 

improved discrimination and reclassification indexes. Results from a nested case-cohort 

sample of a population study from United Kingdom were supportive of these findings [26]. 

However, higher cholesterol efflux activity has also been paradoxically associated with an 

increase in risk of myocardial infarction and stroke although these observations were made 

in a case-cohort setting and with a hospital based sample [27].

In addition to cholesterol efflux capacity, HDL particle size and number are other factors 

that are thought to potentially reflect HDL function but the results from studies assessing the 

relation between these factors and CVD outcome have been mixed [28,29]. Nonetheless, 

given the complexity of HDL, many potential mechanisms of HDL function will require 

further investigation in the future in relation to CVD risk.

 Apolipoprotein C-III (Apo-CIII)-containing lipoprotein subclasses—Apo-CIII is 

a protein that is a component of very low density lipoprotein (VLDL), low density 

lipoprotein (LDL), and HDL. LDL that contains proinflammatory Apo-CIII has been shown 

to have a markedly altered metabolism and proatherogenic effects on vascular cells [30]. 
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Several studies performed in patients have demonstrated an association of CVD events with 

blood Apo-CIII level in total plasma or in VLDL and LDL, but results from prospective 

cohort studies are limited [30]. In a recent report, concentrations of LDL with Apo-CIII in 

1476 community-dwelling participants were associated with risk of coronary heart disease, 

even when adjusting for HDL cholesterol, LDL cholesterol, apoB, triglycerides, or the total 

cholesterol/HDL-ratio [31]. In addition to LDL with Apo-CIII, increased circulating plasma 

Apo-CIII also has been linked with CVD risk in the general population [30,32]. The validity 

of these findings are supported by the observations that humans with genetic deficiency of 

Apo-CIII have lower triglyceride and LDL cholesterol levels as well as reduced 

atherosclerosis [32]. Although more data are needed, Apo-CIII rich containing lipoproteins 

seem to have direct atherogenic consequences and could be potentially used as risk factors 

for coronary heart disease.

 2.2 Cardiac biomarkers

 High sensitivity troponin T/I (hs-TnT/I)—Although drastic elevations of cardiac 

troponins have been used as markers of acute myocardial injury in the clinic since the early 

1990s, they have had no role in primary prevention of CVD. However, by the late 2000s, 

ultra-hs-TnT assays capable of measuring levels as low as 0.005 ng/ml had been developed 

that enabled researchers to assess whether minute detectable TnT levels (even in healthy 

individuals) would be suitable for screening the general population for cardiac dysfunction 

[33].

In 2010, hs-TnT was found to be associated with pathological cardiac phenotypes [34], all-

cause mortality [34], heart failure [35] and CVD death [35] in two large prospective 

observational cohorts. These findings were later confirmed in other Northern American and 

European population cohorts, including when hs-TnI was used instead of hs-TnT as the 

biomarker [36,37], In addition, modest improvements in model discrimination were 

observed in all of these studies when hs-TnT was added to prediction models that included 

the traditional risk factors [34–37], Although hs-Tn is most likely the cardiac biomarker 

closest to being adopted into mainstream diagnostic and prognostic use, more research is 

still needed to demonstrate its cost effectiveness in different primary care settings, to 

determine diagnostic thresholds, and to establish parameters for hs-Tn testing for screening 

or other purposes.

 Other cardiac biomarkers—Other biomarkers such as those of cardiac fibrosis 

(galectin-3 and soluble ST2) [38], apoptosis (growth differentiation factor 15 [GDF-15]) 

[38], inflammatory activity (cathepsin S) [39] and renal dysfunction (neutrophil gelatinase-

associated lipocalin [NGAL]) [40] have also been recently used to predict CVD in 

population cohorts. The results of these studies are summarized in Table 3.

Evidence on the prognostic significance of most of these biomarkers is still limited or 

missing. Several [41–46], although not all [47], studies have found an association between 

CVD events and blood levels of galectin-3 or soluble ST2 (Table 3). However, although 

these two markers of myocardial fibrosis have been proposed as early markers of heart 

failure, most of these studies reported no improvement in discrimination, especially when 
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the models included natriuretic peptides which are still one of the mainstays of a heart 

failure diagnosis [41,42,45,46]. Furthermore, because soluble ST2 has a low specificity, it 

cannot be currently considered a prime candidate for heart failure risk assessment or 

diagnosis [38]. The evidence of the predictive value of circulating levels of cathepsin S and 

NGAL are even more limited as their predictive values have been assessed in single studies, 

and no improvement in discrimination has been demonstrated for cathepsin S (Table 3) 

[48,49].

GDF-15, in contrast, seems to show some promise as a cardiac risk factor as it has been 

found to predict CVD events and to improve discrimination in numerous studies quite 

consistently (Table 3) [44,50–53]. However, no universally accepted reference values for 

GDF-15 currently exist and there is no evidence whether measurement of GDF-15 would 

improve clinical decision making over and above the currently used clinical biomarkers.

 2.3 Biomarker scores

Although numerous papers on several new biomarkers have recently been published, 

relatively few of these biomarkers consistently associate with outcome and improve CVD 

risk discrimination. Instead of single biomarkers, more attention has recently been focused 

on composite risk scores formed of biomarkers from one or even several pathophysiological 

pathways – a “multimarker” approach, under the assumption that several biomarkers may 

outperform individual ones.

One of the first studies to take this approach was published in 2006 when the Framingham 

Heart Study investigators measured 10 biomarkers from distinct biologic pathways in 3209 

community-dwelling participants [54]. In this study, persons with multimarker scores (based 

on 5 significant biomarkers) in the highest quintile had a 4-fold greater risk of dying and 2-

fold greater risk of having a major CVD event as compared with those with scores in the 

lowest quintile. However, even with 10 biomarkers, CVD event risk discrimination was 

improved only marginally with an increase in c-statistic from 0.76 to 0.77. This risk score 

was later amended with some of the novel biomarkers for cardiac stress. This score, 

composed of natriuretic peptides, high sensitivity CRP, soluble ST2, GDF-15 and hs-TnI 

was strongly predictive of all-cause death, CVD events, and heart failure while improving 

the c-statistic by 0.01–0.02 in the same Framingham population [44]. Participants in the 

highest quartile of the multimarker score had a 3-fold risk of death, 6-fold risk of heart 

failure, and 2-fold risk of CVD events. Later, the same multimarker score was found to be 

significantly associated with incident atrial fibrillation although no improvement in risk 

discrimination was observed [44,55].

In 2008, Swedish investigators determined a biomarker score based on four biomarkers: TnI, 

N-terminal pro-B-type natriuretic peptide (nt-proBNP), cystatin C and C-reactive protein for 

1135 participants of the Uppsala Longitudinal Study of Adult Men (ULSAM) [56]. As 

expected, all four biomarkers were significantly associated with CVD outcome. The 

surprising finding was the marked improvement in risk discrimination when the four 

biomarkers were incorporated into a model with established risk factors, with the c-statistic 

increasing from 0.688 to 0.784 as compared with the modest increases around 0.01–0.02 

usually observed in primary prevention studies. However, as previously mentioned, all 
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results must be interpreted within the context of their limitations. The ULSAM cohort 

consists solely of elderly persons of similar age and the same gender. Hence, the 

conventional risk factors did not perform as well as in a general adult population; therefore 

the lower c-statistic of the base model made it easier to improve risk prediction metrics such 

as the c-statistic with new biomarkers.

The initial significant findings of the Framingham and ULSAM investigators drew a great 

deal of attention to biomarker scores among CVD epidemiologists. In recent years, the trend 

in multimarker scores has been towards an ever increasing number of biomarkers as high-

throughput multiplex analyses have enabled the fast and simultaneous determination of tens 

or even hundreds of serum biomarkers. In 2010, the number of assayed biomarkers for 

creating a multimarker score had already increased to 30 [57]. In this study based on a 

population of 8000 participants from Finland and Northern Ireland, the strongest 

associations between biomarker levels and CVD outcome were found for nt-proBNP, C-

reactive protein, and sensitive troponin I. A biomarker score based on these three biomarkers 

also resulted in improved risk discrimination in internal validation. Very recently, up to 284 

cardiometabolic biomarkers were analyzed in participants of a diabetes drug trial. 10 of 

these biomarkers (nt-proBNP, trefoil factor 3, apolipoprotein B, angiopoietin-2, 

osteoprotegerin, α-2-macroglobulin, glutathione S transferase α, GDF-15, hepatocyte 

growth factor receptor, and chromogranin A) were predictive of CVD composite outcomes, 

with c-statistic increasing from 0.64 for the clinical variables to 0.71 [58].

In general, the published data suggest that the simultaneous addition of several biomarkers 

related with several pathogenic pathways improves the risk stratification for CVD disease 

beyond that of a model that is based only on established risk factors and single biomarkers. 

One promising method of finding novel pathways may be the use of metabolomics, which 

allows for the screening of an even larger number of small molecules than regular laboratory 

testing.

 2.4 Metabolomics

Metabolites are the intermediates and products of metabolism that represent a diverse group 

of low-molecular-weight structures such as lipids, amino acids, peptides, nucleic acids, 

organic acids, vitamins, thiols, and carbohydrates [59]. Metabolomics is the study of these 

metabolites present in cells, tissues and organs. Specifically, modern metabolomics tries to 

study the unique chemical fingerprints that cellular processes leave behind thereby 

potentially helping us understand better the mechanisms underlying health and disease. The 

interest in metabolomics has recently increased significantly through technological advances 

made in platforms commonly used to analyze metabolites, namely nuclear magnetic 

resonance (NMR) spectroscopy and mass spectrometry (MS). Modern versions of these 

technologies now enable the high-throughput determination of up to thousands of small 

molecular metabolites from peripheral blood samples [59].

Metabolite profiling has been used extensively and successfully to identify biomarkers of 

diabetes and the insulin-resistant state that precedes overt type 2 diabetes [60]. However, 

until recently, there was a paucity of evidence establishing that metabolic profiling could 

provide any additional value over the traditional risk factors for predicting CVD risk in 
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epidemiological studies. Only in 2013 was it demonstrated in a case-cohort sample of the 

Malmö Diet and Cancer Cardiovascular Cohort that an amino acid score composed of 

tyrosine, phenylalanine and isoleucine that had been previously used to predict new-onset 

diabetes, was also associated with CVD [61]. In this study, participants in the highest 

quartile of the amino acid score had 2.2-fold odds of having a CVD event during follow-up. 

After this initial discovery with a predefined risk score, a few other studies have also 

demonstrated that metabolomics can also be used for the discovery of novel metabolic 

profiles that are associated with CVD. In 685 participants of the population-based Bruneck 

study, 135 lipid species from 8 different lipid classes were profiled with MS [62]. The 

authors observed that molecular lipid profiling results in significant improvement in CVD 

risk discrimination beyond the information provided by traditional risk factors, including 

lipid measures. In two other separate studies, Swedish investigators used MS, while a 

Finnish-British-American collaboration used NMR to discover metabolite profiles consisting 

of 4 different metabolites associated with CVD disease [63,64]. However, risk 

discrimination was not substantially improved in either study.

Although evidence of the benefits of non-targeted metabolite profiling in CVD risk 

prediction is slowly accumulating, the use of metabolomics in clinical practice is still limited 

by the complexity of the metabolism and its associations with other biological phenomena. 

Metabolomics currently remains a promising and attractive tool that is being applied 

predominantly in research settings; its clinical applicability remains to be demonstrated.

 3. Genomic research

The first observations of genetic susceptibility to CVD were made over 50 years ago. The 

range of genetic variance in, for example, coronary artery disease is currently estimated to 

be between 40% and 60%, based on findings from twin studies [65]. However, the exact 

mechanisms underlying this hereditary component are still a mystery to a large extent. Even 

though the genetic underpinnings of some Mendelian disorders that predispose to CVD, 

such as familial hypercholesterolemia, were identified already 30 years ago, these rare 

diseases do not explain the variance in CVD prevalence on the population level.

In the 1990s and early 2000s, numerous studies tried to find an association between potential 

candidate genes, selected based on known disease pathways, and CVD outcomes. However, 

the results from these studies were often limited, could not be reproduced or explained only 

an insignificant part of trait variance [66]. At this time, the notion of “common disease-

common variant” started to gain more popularity. This hypothesis predicts that common 

diseases are determined by a combination of common genetic variants with very small 

effects that would in aggregate result in the adverse CVD phenotype.

After the early 2000s, the development of microarrays containing ever-increasing numbers 

of DNA sequences has made it possible to analyze in an efficient manner more than 1 000 

000 single nucleotide polymorphisms (SNPs), common variants in DNA sequence that occur 

at a frequency of over 1–5 %. This technology initially raised high expectations as it enabled 

researchers for the first time to explore the associations between complex diseases and 

nearly the whole genome without prior hypothesis, referred to as genome-wide association 
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(GWA) studies. After the first cardiovascular GWA studies 10 years ago, tens of SNPs 

associated with coronary heart disease and stroke have since been identified including the 

chromosome 9p21 locus that can be considered the most robust single genetic marker of 

coronary artery disease today [67–69]. The initial results of these studies were slightly 

underwhelming, particularly considering the expenses and the high expectations that 

motivated these studies, as most of the significant SNPs had very small effect sizes (odds 

ratio <1.2) and explained together only ~10% of the estimated heritability [67]. However, an 

approximate joint association analysis was recently performed using genome-wide complex 

trait analysis software to discover 202 variants in 129 loci associated with coronary heart 

disease. These loci together explained 28% of the estimated heritability of coronary heart 

disease, a substantial proportion by any measure [70].

So where is the remaining 72% of heritability of coronary heart disease? Although a GWAS-

based approach will not most likely provide definite answers to this question, several 

explanations may contribute to the disagreement between estimated and observed 

heritability. First, CVD phenotyping is difficult and most of the population-based genetic 

studies are large-scale collaborations by tens of cohorts from different ethnicities with their 

own disease definitions. For example, phenotypes of coronary artery disease have been 

consistently used interchangeable with that of myocardial infarction. Second, variants of low 

and very low allele frequencies (<1%) may not be captured by current GWA arrays even 

when using modern software and genotype imputation techniques. Third, current estimates 

of CVD heritability could be exaggerated. Fourth, it might be that most heritability is not 

actually missing, but instead the individual effects are too small to pass the stringent 

significance tests adjusted for multiple comparisons (p < 10−8). In fact, investigators have 

recently demonstrated that the use of SNP arrays followed by whole-genome imputation of 

~17 million variants may capture nearly all of the heritable variance for human complex 

traits, such as height and weight [71]. However, no matter what research method is used, the 

notion of completely independent genetic and environmental risk factors needs 

reconsideration, as both are components of a larger intertwined complex molecular system 

that, as a whole, results in the complex phenotype.

In the next part of this review, we will focus on the post-GWA study era of CVD genomics. 

We will review how Mendelian randomization has helped establish if the associations of 

some traditional and novel CVD risk factors are truly causal, and whether genetic risk scores 

based on previously discovered SNPs can be used to improve CVD risk assessment. In 

addition, we will briefly review emerging areas of genomic research – whole genome 

sequencing, epigenetics, and transcriptomics – that will hopefully advance our 

understanding of CVD pathogenesis and can thereby also be used to improve CVD risk 

estimation.

 3.1 Mendelian randomization

The associations observed in epidemiological studies between risk factors and CVD may be 

causal. However, true causality is usually challenging to demonstrate with observational 

study designs due to the confounding and inherent and often unavoidable biases associated 
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with this observational approach. In the absence of an ethical, practical, and economical 

randomized trial, the epidemiologist must seek alternative ways to demonstrate causality.

Mendelian randomization represents a novel epidemiologic study design akin to a 

randomized trial that can be used to address the question whether an association between a 

risk factor and disease is truly causal (Figure 2) [72]. The basic principle of Mendelian 

randomization is to use common genetic variants closely associated with a risk factor as the 

‘intervention’. Random allocation of alleles at fertilization mirrors the randomization in the 

controlled trial setting. Because allele distribution is mainly random, Mendelian 

randomization should be free from any confounding or reverse causation. And because the 

genetic variant is closely associated with a risk factor of interest, individuals with these 

variants should be predisposed to the outcome of interest if the risk factor is truly causal 

(Figure 2).

There are, however, certain assumptions and limitations to Mendelian randomization 

[72,73]. Most importantly, a suitable genetic variant may not be available or can have other 

effects beyond its effect on the specific biomarker being studied, i.e., pleiotropy. Pleiotropy 

can counteract any effects of the variant on the disease acting via the biomarker, or 

alternatively, a positive direct association between the genetic variant, and may be 

mistakenly be interpreted as a causal association with the biomarker. Furthermore, allocation 

of alleles at conception may not be perfectly random when two loci are in close proximity to 

each other on the same chromosome. The probability of allocation of these alleles from 

parents to offspring will be correlated, a phenomenon known as linkage disequilibrium. In 

addition, adequate statistical power is required to detect the association between the risk 

allele, the intermediate factor, and the outcome of interest.

Several Mendelian randomization studies have been performed in recent years to confirm the 

association between CVD and traditional risk factors such as LDL cholesterol [74], 

triglycerides [75], hypertension [76] and hyperglycemia [77]. Mendelian randomization has 

also been used to demonstrate the causal effects of lifestyle-related risk factors such as 

obesity [78], smoking [79] and alcohol [80] for CVD although some of the mechanisms may 

ultimately be through other intermediate factors such as hypertension. More interestingly, 

Mendelian randomization has been recently used to assess whether certain novel biomarkers 

that have been found to associate with CVD are truly causal and therefore also potential 

targets for therapy, or only ‘markers’ of disease risk when they can be used only for guiding 

diagnosis, prognosis and treatment.

As already briefly stated in the beginning of this review, Mendelian randomization has been 

utilized to demonstrate that some genetic mechanisms that raise plasma HDL cholesterol do 

not seem to lower risk of myocardial infarction [22]. Together with the negative results from 

HDL-elevating drug trials, it is now doubted whether elevated HDL is causally protective 

against coronary artery disease. The causalities of several other biomarkers that have been 

found to associate with CVD, such as uric acid [81], fibrinogen [82], adiponectin [83], 

lipoprotein-associated phospholipase A2 [84], secretory phospholipase A2 [84,85] and C-

reactive protein [86] have also been assessed using Mendelian randomization. However, 

none of the genetic variants that affect the circulating levels of these biomarkers had any 
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impact of CVD outcome and it is therefore unlikely that altering their levels would be a 

useful therapeutic goal for preventing CVD. In contrast, several studies have shown that 

genetic variants that increased lipoprotein(a) levels predispose to coronary artery disease 

[87], aortic valve stenosis [88] and heart failure [89] and that persons carrying the allele 

leading to reduced interleukin-6 receptor binding show a lower inflammatory response and 

reduction in coronary disease events [90].

Mendelian randomization has emerged as a valuable method for assessing the causality of a 

novel risk factor. However, it has several requirements and limitations that need to be taken 

into consideration when designing a study that uses this method. Furthermore, Mendelian 

randomization is an important ancillary research method that does not eliminate the need for 

randomized controlled studies, which still remain the golden standard for establishing 

causality.

 3.2 Genetic risk scores

Because of the complex genetic background of traits such as CVD, no single risk allele can 

be used for risk prediction in the general population. Genetic risk scores (GRSs), however, 

can be used to incorporate the information from multiple disease-associated SNPs for more 

effective CVD risk prediction [91]. The simplest method for building a GRS is to sum the 

number of risk alleles (0, 1 or 2) across all genetic variants associated with the trait of 

interest. For improved accuracy, effect sizes across different variants should also be taken 

into account [91]. In addition to predicting CVD risk, genetic risk scores can also be used to 

evaluate the genetic contribution of intermediate traits and risk factors to CVD, and for 

Mendelian randomization.

The first epidemiological cohort studies to use a GRS to predict CVD were published in 

2010. Investigators of the Women’s Genome Health Study concluded that a GRS comprising 

101 SNPs associated with coronary artery disease was not significantly associated with 

incidence of total CVD [92]. In contrast, a more strictly selected 13-SNP GRS was strongly 

associated with incident coronary heart disease in a Finnish-Swedish collaboration [93]. 

This positive association between a GRS and coronary artery disease has since been 

replicated twice [94,95]. Later, several papers have demonstrated that GRSs composed of 

blood pressure- or intermediate trait-related SNPs can also be effectively used to predict 

coronary heart disease and stroke [96–99].

In spite of several studies that have demonstrated a strong association between GRSs and 

incident CVD, only some of these studies have demonstrated significant, albeit modest, 

improvements in model c-statistics [95,99]. In addition, GRS studies have not always 

included family history of CVD in the adjustment variables. Although the GRS approach 

could be relative easy to incorporate into clinical practice, it should be first robustly proven 

that the use of GRSs provides any additional benefit over and above the simple question 

“Does anyone in your family have a history of CVD at a young age?” before widespread 

clinical use can be recommended.
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 3.3 Exome and whole genome sequencing

GWA studies have been successfully used to identify common gene variants associated with 

CVD that have allele frequencies, but a significant share of the heritability of CVD is still 

unexplained. Although the common disease-common variant hypothesis has become the 

dogma of the day, it is also possible that some of the missing genetic component of CVD 

could be attributed to rare genetic variants with large effect sizes [100]. Because GWA 

studies are generally not effective in identifying rare and extremely rare variants, methods 

such as whole genome and whole exome sequencing are needed to capture these rare 

variants. Specifically, whole genome sequencing is used to determine the precise order of 

bases in the whole genome whereas whole exome sequencing determines the order of bases 

in a DNA molecule only in the exome, the 1% protein-coding portion of the genome.

With the recent development of next-generation sequencing methods, whole genome and 

exome sequencing have become considerably less expensive and feasible. In fact, even the 

cost of the more expensive whole-genome sequencing (without upstream costs) is now 

approaching three-figure numbers – a strikingly low number compared to the approximate 

2.7 billion dollar price tag of the Human Genome Project [101]. This significantly reduced 

price along with increased availability has made DNA sequencing feasible in both clinical 

and epidemiological settings.

Whereas sequencing to date has mainly been limited to revealing genetic variants in a small 

number of affected individuals with rare forms of heart disease such as cardiomyopathies, 

next-generation sequencing is already being introduced at the population level [102]. Interest 

in rare loss-of-function gene variants significantly peaked after the discovery of several 

LDL-cholesterol lowering and cardioprotective PCSK9 gene mutations that led to the 

development of a whole new drug class, the PCSK9 inhibitors [103]. Thereafter, whole 

exome and candidate gene sequencing have been successfully used in epidemiological 

settings to find several other rare loss-of-function mutations in genes that affect both 

intermediate traits and CVD risk. Within the last two years, new loss-of-function mutations 

in genes that control LDL-cholesterol and triglyceride levels, such as APOC3, NPC1L1, 
LDLR, HMGCR, and APOA5, have been discovered in epidemiological cohorts 

[32,76,104,105]. The fact that carriers of these rare mutations also have an altered risk of 

CVD makes them potential targets for drug development, e.g., in the cases of NPC1L1 
(cholesterol absorption inhibitors) and HMGCR (statins). In addition to rare variants 

associated with lipid levels, whole exome sequencing was also very recently used to 

discover a rare coding variant in CLCN6 that is associated with lower blood pressure and 

hypertension risk [106].

Although significant discoveries in the field of CVD epidemiology have been made in recent 

years through exome sequencing, the application of DNA sequencing for variant discovery 

has not always been successful. This is highlighted by the results of Peloso et al. who used 

an “exome array”, based on coding sequence variants discovered from previous exome-

sequencing studies, to genotype over 200 000 low-frequency and rare coding sequence 

variants in over 56 000 individuals, and tested these variants for association with lipid levels 

[107]. In the end, no new genes associated with LDL cholesterol were identified and the four 

novel variants with large effects on HDL cholesterol and triglycerides were not associated 
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with risk for coronary heart disease. The main challenge of the DNA sequencing approach 

for finding novel CVD risk factors is the notable rarity of the clinically relevant low 

frequency variants. To illustrate this, over 500 000 mostly rare single-nucleotide variants 

were identified with exome sequencing in a study by Tennessen et al. that included 2 440 

community-dwelling individuals [108]. However, only 2% of the 13 595 single-nucleotide 

variants each person carried on average were predicted to affect protein function and 95.7% 

of single-nucleotide variants predicted to be functionally important were rare. In addition to 

the difficulty of finding rare variants with extreme effects on the phenotype, results from 

whole genome sequencing have suggested that in the end, common variation contributes 

more than rare variation to heritability of complex traits, such as HDL cholesterol [109].

These results highlight that although sequencing is an excellent method for revealing 

potential drug targets and the genetic underpinnings of rare hereditary diseases in family 

lines, variant discovery for complex disease will require the sequencing of thousands of 

cases and careful statistical analysis because the power to detect an association is low for 

most human genes. For the same reasons, non-selective sequencing in asymptomatic 

individuals will not most likely improve risk discrimination.

 3.4 Epigenetics

Epigenetics investigates genetic variations that are caused by external or environmental 

factors that switch genes ‘on’ and ‘off’. These modifications are often tissue-specific and do 

not change the DNA sequence, but instead, affect how cells ‘read’ genes. Epigenetic markers 

may be heritable similar to the genetic features of DNA, but these markers differ for their 

potential reversibility by external factors [110]. So far, research on epigenetic phenomena 

related to CVD has relied mostly on cell culture and animal models that are outside the 

scope of this article. However, recent advances in epigenetic research methods have also 

enabled the epidemiologic study of epigenetic mechanisms of CVD development and 

progression. The results of these initial studies provide interesting new insight into the 

epigenetic control of gene expression in CVD.

There are several epigenetic mechanisms that control gene expression including, but not 

limited to, histone modification, micro-RNA (miRNA) based mechanisms and DNA 

methylation [110]. Of these, histone modifications are post-translational modifications that 

serve to allocate the genome into active regions of euchromatin, where DNA is accessible 

for transcription, or inactive heterochromatin regions, where DNA is more compact and less 

accessible for transcription [110]. Although the study of histone modification is slowly 

being introduced to CVD epidemiology, it has so far been mainly limited to tissue samples 

in small patient cohorts. We will therefore concentrate on the two other major epigenetic 

mechanisms – DNA methylation and miRNA-based mechanisms, although the latter will be 

addressed later in the context of transcriptomics.

DNA methylation is the best understood and most studied epigenetic mechanism that occurs 

when a methyl group is added to cytosine-guanine dinucleotides (CpGs) [111]. CpG 

nucleotides are statistically underrepresented in the genome but are found to be concentrated 

in areas such as around the transcription start sites of genes. These methylated regions, or 

CpG islands, are relatively stable but may vary during an individual’s lifespan [111]. 
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Methylated regions are not actively transcribed and genes in such regions are silenced 

whereas nonmethylated regions remain active. DNA methylation is affected by 

environmental exposure and could therefore be one of the key mechanisms for the 

development of human disease such as cardiovascular disorders.

Earlier studies that tried to link locus-specific DNA methylation markers with CVD have 

produced interesting results on the underlying pathophysiological mechanisms of CVD, but 

their clinical potential remains unclear [112]. In addition, the majority of phenotypic 

variation due to DNA methylation will not be detected by this approach. Recently developed 

techniques that couple next-generation sequencing with simultaneous analyses for DNA 

methylation have now enabled performing epigenome-wide association (EWA) studies based 

on peripheral blood samples of population cohorts. Although no EWA study of CVD per se 
has yet been performed, several studies have already identified specific DNA-methylation 

profiles associated with traditional CVD risk factors, such as smoking [113], diabetes [114], 

blood lipids [115], and BMI [116,117].

As all of the current EWA studies are cross-sectional, the study of DNA methylation and 

epigenetics for CVD risk prediction is still very much in its infancy. The International 

Human Epigenome Consortium is in process of generating at least 1 000 reference baseline 

human epigenomes from different cell types, which could significantly accelerate 

epigenome-wide studies for many common diseases [118]. However, already at this point, 

the dynamic processes of epigenetics highlight the limitations associated with an approach 

to CVD research that only focuses on the relatively static DNA code. In fact, preliminary 

results suggest that combining genetic and epigenetic information could have greater utility 

for complex-trait prediction than what is achieved with solely genetic information [119].

 3.5 Transcriptomics

Transcriptomics is very much intertwined with both genetics and epigenetics as it is the 

study of the transcriptome – the complete set of RNA transcripts that are produced by the 

genome at any time [120]. Like the epigenome, but unlike DNA sequence, which is 

normally fixed within an individual, the transcriptome is dynamic as considerable variability 

in gene expression exists in different tissues, and in response to stimuli. The main 

component of the transcriptome is messenger RNA (mRNA) that conveys codes from the 

DNA that the protein-synthesizing machinery in the ribosome translates into protein. Among 

several other types of RNA are non-coding RNAs, such as miRNAs, that are not translated 

into a protein but may have other functions, such as regulatory functions [121].

Traditional transcriptomics techniques have been slow, inaccurate, expensive or have 

required a significant amount of RNA which have challenged their use in epidemiology 

[120]. However, similar to what has happened in genetics and epigenetics, transcriptomics 

has recently experienced a revolution brought about by the advent of next-generation high-

throughput RNA sequencing technologies. In addition to being fast and cost-effective, RNA 

sequencing detects more subtle changes in the transcriptome than the previous technologies 

and does not depend on previous knowledge of the transcriptome [120]. So far, the use of 

transcriptomics in the discovery of CVD risk factors has mainly been limited to patient 

populations. For example, gene expression data have been used to help in the discovery 
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novel biomarkers such as soluble ST2 and GDF-15 [122,123]. Furthermore, a blood-based 

gene expression score for 23 genes has been effective in predicting obstructive coronary 

artery disease in patients referred for coronary angiography or myocardial perfusion imaging 

[124,125].

The connection between gene expression and CVD risk, however, has been sparsely 

investigated in community-based cohorts where RNA is usually limited to blood-derived 

sources. Three recent papers based on the Framingham Heart Study data have reported an 

association between platelet gene expression and several factors associated with CVD risk, 

such as lipids, BMI, CRP and IL-6 [126–128]. These studies are some of the first to 

demonstrate CVD correlates of gene expression signatures in a large community-based 

cohort. The results are consistent with the hypothesis that specific peripheral-blood 

transcripts play a role in the pathogenesis of coronary heart disease and its risk factors. 

However, no evidence exists yet if transcriptome profiling would improve CVD risk 

prediction prospectively in the population.

Another emerging field of transcriptomics besides mRNA sequencing is miRNA expression 

profiling. To date, more than 2500 miRNAs have been identified in the human genome 

[129]. MiRNAs are non-coding single stranded RNAs that typically downregulate gene 

expression at a posttranscriptional level [130]. MiRNAs are typically present in tissues and 

they, in addition to other functions, regulate cardiac growth, vascular development, and 

angiogenesis. In 2008, their presence was detected also in plasma and serum making them 

more easily accessible for wide-scale research [130]. The release of certain miRNAs has 

been associated to cellular damage such as cardiac injury. In addition to cross-sectional 

studies that have reported altered levels of miRNAs in cardiac patients, some circulating 

miRNAs have been effectively used to predict patients who are at high risk of developing 

acute coronary syndrome [131] or of heart failure after a myocardial infarction [132]. In 

population cohorts, the evidence of the prognostic significance of miRNAs is still very 

limited. In 820 participants of the Bruneck cohort, two circulating miRNAs demonstrated a 

negative association and one miRNA a positive association with incident myocardial 

infarction [133]. In addition, circulating levels of miRNA-328 were found to be associated 

with prevalent, but not incident atrial fibrillation in the Framingham Heart Study [134]. 

Although these results are very preliminary and additional research is needed, miRNAs are 

interesting CVD risk factors because they are also potential therapeutic targets as their 

function can be efficiently and specifically inhibited with chemically modified antisense 

oligonucleotides [135].

 3.6 Challenges associated with the novel techniques of genomic research

Although next-generation sequencing provides a great opportunity for discovering novel 

CVD risk factors in the genome, transcriptome and epigenome, several challenges remain 

with these new techniques, such as the requirement for large study populations, ethical 

problems, imprecision of sequencing techniques [136], high upstream costs, complex data 

integration and complicated statistical testing (Table 4). All of these problems need to be 

considered and solved before these novel techniques can be used more effectively in risk 
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factor research, and especially before they can be used in clinical medicine for diagnosing 

patients and for risk prediction.

 4. Expert commentary

There are some caveats to consider when assessing the CVD risk of a patient. A plethora of 

risk assessment tools that usually provide 10-year risk estimates based on the classical risk 

factors are currently available for the clinician. However, the treating physician must 

remember that these tools only provide estimates of absolute risk for the population and 

should not be therefore interpreted as the exact CVD risk of an individual. Second, patients 

may also find it difficult to understand an estimated CVD risk score. A more concrete risk 

presentation format such as vascular age, calculated by comparing an individual’s absolute 

risk to the age at which they would reach that absolute risk if they had ideal risk factors, may 

help motivate patients adopt healthier lifestyles even if absolute CVD risk is low [137]. 

Furthermore, because the risk assessment tools usually include only the classical CVD risk 

factors, physicians must be vigilant for other risk factors or signs of subclinical disease, such 

as left ventricular hypertrophy or microalbuminuria, which can markedly increase CVD risk. 

Finally, if a patient is expected to live for the next 50 years instead of the 10-year horizon of 

the risk assessment tools, even a relatively low burden of CVD risk factors is associated with 

significant increase in the lifetime risk of CVD [138]. Long-term risk assessment is therefore 

particularly relevant in younger patients.

CVD risk factor research has made significant advances during the past five years. Although 

the causative role of HDL cholesterol has been questioned, there are currently no 

considerable competitors in the market to replace the traditional CVD risk factors that have 

held their place for decades. However, certain novel ancillary risk factors (see Five-year 

view) are slowly being introduced into clinical practice. In any case, the need for novel risk 

factors has not disappeared, as demonstrated by the inaccuracies associated with current risk 

prediction models.

The search for new CVD risk factors is currently undergoing a significant revolution. In 

addition to the constant progress that is being made in imaging and vascular assessment, 

scientists are no longer looking for a single biomarker or genetic locus that would improve 

risk prediction. Instead, high-throughput screening of biological samples for up to thousands 

of biomarkers and millions of genetic variants with the use of metabolomics, genetics, 

epigenomics and transcriptomics is now possible. The use of these emerging techniques for 

finding CVD risk factors with the goal of risk prediction is still in its infancy. However, the 

initial findings have shown that these techniques may not only improve risk prediction, but 

also deepen our understanding of the pathogenesis of CVD itself. Furthermore, some of 

these findings, such as the discovery of rare PCSK9 mutations, have resulted in the 

development of novel therapeutic agents for the treatment of traditional risk factors.

While current research in CVD risk factors is showing promise, one must always keep in 

mind the wide gap between what we know about these risk factors and physicians’ and 

patients’ willingness to act upon this knowledge. Physicians’ clinical inertia, defined as 

“recognition of the problem, but failure to act” and patients’ non-adherence to lifestyle 
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advice and drug treatment are among the most important obstacles in the successful 

prevention and treatment of chronic illnesses. These issues need to be tackled urgently 

because without doing so even the most accurate risk prediction tools will not be able to stop 

the global epidemic of CVD.

 5. Five-year view

Rapid shifts in medical paradigm are extremely rare – the association between cholesterol 

and atherosclerosis was studied for over 50 years before any definite conclusions were being 

made. For this reason, CVD risk prediction will most likely be mainly based on the same old 

traditional risk factors for the next five years, with additional “fine tuning” of risk in a 

limited number of individuals with a few selected risk factors such as natriuretic peptide, 

urine microalbumin, hs-CRP, hs-Tn, coronary calcium scoring and measurements for arterial 

stiffness. After these five years, two “buzzwords” – omics and precision medicine – will 

most likely play increasingly central roles in CVD risk estimation. A pan-omic approach to 

the patient has the potential to transform cardiovascular risk prediction from CVD risk 

scores based on population means to truly individualized risk estimates based on a tidal 

wave of data spanning the spectrum of clinical, environmental, genomic and molecular 

information. However, the adoption of omics and precision medicine into primary, or even 

secondary or tertiary care, is still very far from being reality. Not even experienced 

researchers, let alone primary care physicians, currently know how to most effectively 

analyze and interpret the vast amounts of data that are produced by integrative omics.

The simple relationship between single risk factors and disease will have to be replaced by 

models that strive to integrate the whole field of omics into medicine. This includes the 

ability to disseminate, manage, and interpret the vast amounts of data in a clinical context 

and to ensure that omics results add value to patient care. In addition to clinical knowledge, 

this approach requires computational and mathematical modeling of complex biological 

systems, i.e., systems biology. Researchers working on CVD risk factor discovery will 

therefore have to transform CVD epidemiology from a science that is mainly led by 

physicians, public health researchers and biostatisticians to one that also includes geneticists, 

biochemists, nutritional scientists, and bioinformaticians as equals. Finally, to reach clinical 

application, even the most complex risk factor still has to pass the test of the three 

fundamental questions outlined by Morrow and deLemos: 1) “Can the clinician measure the 

risk factor?”, 2) “Does the risk factor add new information?”, and 3) “Does the risk factor 

help the clinician to manage patients?” [139].
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6. Key issues

• CVD risk assessment with the traditional risk factors has remained 

relatively fixed for the past decades despite the significant inaccuracies 

associated with this approach

• Most of the recent developments in CVD risk prediction have been 

made in large-scale biomarker discovery and so called “omics”

• Although the causative role of HDL cholesterol is now being 

questioned, HDL function, Apo-CIII-containing lipoprotein subclasses, 

hs-Tn and GDF-15 show promise as novel biomarkers for CVD

• Mendelian randomization represents a novel epidemiologic study 

design akin to a randomized trial that can be used to address the 

question whether an association between a risk factor and disease is 

truly causal

• The so called “omics” – metabolomics, genetics, epigenomics and 

transcriptomics – are still in their infancy but provide a great 

opportunity to discover novel CVD risk factors

• Initial findings have demonstrated that these emerging techniques may 

not only improve risk prediction, but be also useful in drug 

development and understanding CVD pathogenesis better

• There are significant challenges associated with omics that need to be 

tackled before they can be effectively used in risk factor research, and 

especially in clinical medicine

• Integrating the whole field of omics into medicine will require 

computational and mathematical modeling of complex biological 

systems, i.e., systems biology

• CVD epidemiology will have to transform from a science that is mainly 

led by physicians, public health researchers and biostatisticians to one 

that also includes geneticists, biochemists, nutritional scientists, and 

bioinformaticians as equals.
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Figure 1. 
Concepts of two metrics for evaluating improvement in discrimination when a new risk 

factor (RF) is added to an existing model: 1) improvement in c-statistic (the proportion of 

pairs in which the person who experienced the event had a higher predicted probability of 

experiencing the event than the subject who did not experience the event) and 2) net 

reclassification index, the percentage of persons with and without the event correctly 

reclassified.
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Figure 2. 
Principles of a randomized controlled trial and Mendelian randomization.
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Table 1

Desirable features of a risk factor for the primary prevention of cardiovascular disease.

Characteristic

Easily interpretable results

Strong association with outcome

Acceptable to the population

Cost-effective

Adds to known risk prediction models (improves discrimination)

High sensitivity and specificity

Changes treatment

Known reference values

Reproducible

Applicable to all gender, age, and ethnic groups

Biologically plausible

Can be effectively treated
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