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Abstract

 Purpose of review—The microbial-mammalian symbiosis plays a critical role in metabolic 

health. Microbial metabolites emerge as key messengers in the complex communication between 

the gut microbiota and their host. These chemical signals are mainly derived from nutritional 

precursors, which also are in turn also able to modify gut microbiota population. Recent advances 

in the characterization of the gut microbiome and the mechanisms involved in this symbiosis allow 

the development of nutritional interventions. This review covers the latest findings on the 

microbial-mammalian metabolic axis as a critical symbiotic relationship particularly relevant to 

clinical nutrition.

 Recent findings—The modulation of host metabolism by metabolites derived from the gut 

microbiota highlights the importance of gut microbiota in disease prevention and causation. The 

composition of microbial populations in our gut ecosystem is a critical pathophysiological factor, 

mainly regulated by diet, but also by the host’s characteristics (e.g. genetics, circadian clock, 

immune system, age). Tailored interventions, including dietary changes, the use of antibiotics, 

prebiotic and probiotic supplementation and faecal transplantation are promising strategies to 

manipulate microbial ecology.

 Summary—The microbiota is now considered as an easily reachable target to prevent and treat 

related diseases. Recent findings in both mechanisms of its interactions with host metabolism and 

in strategies to modify gut microbiota will allow us to develop more effective treatments especially 

in metabolic diseases.
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 Introduction

Humans have evolved as part of a critical symbiotic relationship with their gut microbes. 

The gut ecosystem harbours thousands of microbial species and millions of genes, 
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integrating a number of co-evolved microbial metabolic reactions encoded in the gut 

metagenome complementing endogenous metabolic processes encoded in the mammalian 

genome. High-throughput technologies such as metagenomics and metabolomics provide 

novel insights into this complex ecosystem, which is now recognized to have a key impact in 

the development and progression of diseases such as cardiometabolic disorders, irritable 

bowel syndrome and cancer.

The human gut provides commensal microbiota with a specific biotope with an almost 

constant supply of diet- and host-derived substrates for bacterial fermentation, thus 

providing key nutrients and energetic needs for the bacterial community and its human host 

[1]. Beneficial cross-feeding in this symbiotic relationship is best exemplified by i) the 

bacterial breakdown of otherwise indigestible polysaccharides and fibres into 

monosaccharides and short-chain fatty acids [1], and ii) the rapid fucosylation of the host 

intestinal epithelium to sustain bacterial populations during sickness [2]. However, the range 

of metabolites produced by gut microbiota goes beyond simple metabolism and also include 

microbial metabolites that act as chemical messengers, binding human target proteins and 

thereby impacting signalling pathways and metabolic and inflammation-related processes in 

the host [3**,4].

In this review, we briefly present the ecological structure of the microbiome and address 

selected examples of how nutrients are converted by the gut microbiota into chemical signals 

with a strong impact on host physiology and behaviour. We also revisit recent progress in 

novel tools to remodel the gut bacterial community (e.g. dietary interventions, use of 

antibiotics, prebiotics and probiotics, faecal transplantation) and its relevance as 

personalised approaches targeting key features of the microbial-mammalian metabolic axis.

 The gut microbiome architecture

The gut microbiome is a highly complex ecosystem. Every person presents a unique 

combination of microbial species making everyone’s microbiome unique. Several thousand 

species have been reported and result in combinations of more than 10 million individual 

bacterial genes which have been catalogued [5**]. The gut ecology can be divided into core 

species that are present in pretty much everyone of us and rare species which are only 

observed in a small proportion of the population. Moreover, enteric bacterial populations 

tend to converge towards three distinct community types, called enterotypes [6,7]. This 

particular architecture of the gut microbiome is not binary, but corresponds to a continuous 

distribution along a spectrum. These enterotypes are not related to gender, age and 

geography, and are dominated by one phylum: Bacteroides, Prevotella orRuminococcaceae.

Variations related to the microbiome architecture are manifold. Microbial gene richness is 

variable in human populations and has been tied to metabolic health: people with a high 

microbial gene count are healthier than people with a low microbial gene count who tend to 

have metabolic syndrome [8**]. This is also the case for Irritable Bowel Syndrome where 

patients with IBS have a lower ecological diversity than healthy controls [9,10]. Obesity is 

associated with an imbalance between two major phyla, Bacteroidetes and Firmicutes, which 

is observed in both animal model and human populations [11].
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 Factors affecting the gut microbial ecology

Gut microbiota composition is complex and multifactorial. Individual composition is 

influenced by environmental and genetic factors in a polygenic model [12,13**]. Not 

surprisingly, abundance in Gram-positive organisms mapped with several inflammation-

related genes such as cytokine Il22, Irak3, a kinase regulating the MyD88-dependent Toll-
like receptor (TLR) pathways [12]. The expression of Irak4, another kinase involved in TLR 

pathway correlates with abundance of beneficial Roseburia ssp in a study of the genetic 

determinants of the microbiome, whereas Akkermansia municiphila mapped with 

lipopolysaccharide-binding protein (Lbp) and Bpi, an antibiotic secreted protein targeting 

Gram-negative bacteria [14*].

Diet is an environmental factor that critically reshapes the microbial ecology and therefore 

the microbial-mammalian symbiotic relationship. Diet drives the functional convergence of 

microbiomes across various species and habitats [15]. High fat diet (HFD) rapidly alters the 

gut microbiome [16*] and long-term dietary patterns associated with the distribution of 

enterotypes: carbohydrate diets are linked with the Prevotella enterotype whereas animal 

protein and fats are linked with the Bacteroides enterotype [17].

The host circadian clock influences gut microbial ecology through feeding and diurnal 

rhythms; long-distance travel and jetlag result in the disruption of this molecular clock and 

feeding rhythms thereby inducing dysbiosis which promotes impaired glucose tolerance 

[18**]. In fact, travel influences the microbiome even in absence of jetlag, as local diets 

exert a key influence on gut motility and the microbiome, even in absence of disruptions of 

the circadian clock [19**].

Age is a major factor related to microbiome architecture, starting with the ecological 

dichotomy observed between C-section and natural births. The maturation of the 

microbiome in the first few years has a therefore critical impact on a person’s health. For 

instance, antibiotics knock down gut bacteria and destabilise microbial ecology. There is an 

early life developmental window in which the microbiome can be disrupted by low-dose 

penicillin treatment, resulting in long-term metabolic programming [20**]. However, this 

perturbation provides an opportunity for the microbial ecology to evolve towards different 

equilibria, and therefore microbiome compositions and functions. In some cases, antibiotic 

therapy also results in the development of abnormal microbial ecologies such as 

opportunistic C. difficile infections. Likewise, gut microbiota composition in the elderly 

populations correlates with frailty, co-morbidity, nutritional status and inflammation [21].

Surprisingly, dietary supplements such as artificial sweeteners have a direct impact on the 

gut microbial ecology and gene function, which then promote impaired glucose tolerance 

[22**]. Anti-diabetic drug metformin also has a spectacular impact on the microbiome in 

animals and in humans [23**].

Also, diet heavily influences the production of microbial metabolites by the gut microbiota. 

This review will address, in particular, the impact of three microbial metabolite families 

involved in the microbial-mammalian metabolic axis and in human health (short-chain fatty 

acids (SCFA), methylamines and indoles).
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 Microbial metabolites from dietary fibre fermentation impact host metabolism

Consumption of dietary products rich in fibre has proven benefits for the human health, 

either improving insulin sensitivity or inflammatory parameters [24]. Interestingly, in both 

cases, gut microbial metabolism has been postulated as the link mediating these effects 

[24,25]. As many plant-derived carbohydrates are partially or totally resistant to human 

digestion in small intestine, they progress into the colon were they can undergo bacterial 

transformation. As a result, carbohydrate fermentation and bacterial cross-feeding produce a 

range of SCFAs (e.g. acetate, butyrate, propionate) [24].

Acetate may be produced by many enteric species including Blautia hydrogenotrophica [1]. 

Propionate is mostly produced through the succinate pathway, either by Bacteroidetes spp 
producing propionate from carbohydrates and by Firmicutes spp using lactate or succinate as 

substrates [1]. Propionate can also be produced from lactate by Firmicutes spp. (acrylate 

pathway) or from deoxyhexose sugars by Firmicutes and Proteobacteria spp., through the 

propanediol pathway [1].

SCFAs are involved in several beneficial processes for human health. Butyrate, propionate 

and acetate prevent both diet-induced obesity and insulin resistance [3**]; butyrate and 

propionate promote intestinal gluconeogenesis with a beneficial effect in the host’s glucose 

homeostasis [26**]. Propionate upregulates the release of appetite-suppressing gut 

hormones, such as GLP-1 and PYY, in both rats and mice [27*]; in overweight humans, 

propionate has also shown to prevent weight gain [28*]. Acetate has anorexigenic properties, 

by altering the hypothalamic expression of neuropeptides involved in appetite 

suppression[29**] and regulates inflammation [30].

Considering the above-mentioned effects, it is relevant to understand the relative 

contribution of diet and microbiota composition to SCFA production. Dietary carbohydrate 

intake as shown to impact the faecal levels of SCFA, but the effect on butyrate was not 

proportional to the variation of total SCFA, suggesting that specific microbial groups (e.g. 

butyrate-producing Roseburia - E.rectale groups) may have a higher dependence on diet 

[24,31].

 Microbial conversion of dietary choline into methylamines impacts insulin resistance 
and atherosclerosis

Methylamines are metabolites produced by gut microbiota from the degradation of choline 

in trimethylamine (TMA) [3**]. The estimated daily choline intake in adults is of 222-415 

mg, mainly obtained from meat products but also from dairy products, egg, grains grain-

based products and seafood [32*]. The bacterial species degrading choline into TMA were 

predicted in silico [33]. An in vitro screening of 79 human intestinal isolates validated that 

CutC and CutD expressing species were TMA producers, as well as Edwardsiella tarda 
despite the absence of Cut cluster, this latter finding having been met with scepticism 

[34**]. TMA diffuses through the host’s bloodstream to the portal vein and is detoxified into 

TMA-N-oxide (TMAO) by the hepatic flavin-monooxygenase 3 (FMO3).

Raised TMAO plasma concentration was associated with cardiovascular risk in several 

studies [35]. Furthermore, TMAO dietary supplementation enhanced heart failure in an in 
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vivo model [36]. A recent study proposed the use of 3,3-dimethyl-1-butanol (a structural 

analogue of choline) as an inhibitor of TMA production by gut microbiota [37**]. This 

analogue is also able to reduce plasma TMAO levels in mice and in fine reduce 

atherosclerosis phenotype. [37**]. Oral TMAO was also suggested to promote impaired 

glucose tolerance in mouse [38*] and to be associated with inflammation in both mouse and 

human [38*,39*].

Finally, the FMO3 enzyme has been shown to play a central role in cardiovascular diseases. 

Indeed, the knockdown of FMO3 improves glucose tolerance, prevents hypercholesterolemia 

and atherosclerosis [40*,41*]. This role played by FMO3 in cholesterol metabolism was 

also recently extended to ER stress and inflammation [42*]. Altogether these studies suggest 

to consider the role of the TMA -> (FMO3) -> TMAO reaction as a whole process rather 

than TMAO’s role alone.

 Tryptophan is metabolised into a range of indole-containing derivatives

Tryptophan is an essential amino acid particularly abundant in egg white, red meat, poultry, 

fish, cheese, peanuts and also in some seeds [43]. According to the World Health 

Organization, the daily recommended dose of tryptophan for an adult human is 4 mg/kg of 

body weight [43]. Apart from its role in protein biosynthesis, tryptophan is also a 

biochemical precursor of serotonin and niacin. Recent studies have pointed out a novel 

potential role for tryptophan in metabolic outcomes: in humans, tryptophan levels are 

associated with an increased risk of type 2 [44,45] while in rats, interestingly, its 

supplementation decreases fat deposition and enhances both protein synthesis and fatty acid 

oxidation [46*]. A recent study in a fish model also points out a possible role on the 

improvement of the intestinal barrier integrity and immune function [47].

Tryptophan can also enter a complex network of bacterial-based metabolic reactions, 

producing a range of gut bacterial metabolites that lately impact different aspects of the 

host’s health. Tryptophanase-containing gut bacteria (e.g. Escherichia coli) metabolise 

tryptophan directly into indole [48*], that is subsequently sulphated into indoxylsulphate in 

the liver. Various clostridial species (e.g.: C. sporogenes) produce indole-3-propionate (IPA) 

and other indole-containing intermediate molecules, including indole-3-pyruvate and 

indole-3-acetate[3**]. In a study comparing gnotobiotic with germ-free mice, IPA 

production was demonstrated to be completely dependent on the gut microbiota [48*]. By 

playing a role on the maintenance of the intestinal barrier integrity through Pregnane X 

Receptor (PXR) [49**], IPA contributes to a key beneficial aspect for host-microbe 

symbiosis. High fat diets promote leaky intestinal barrier allowing translocation of bacteria 

and bacterial components such as lipopolyssacharide (LPS), providing a crucial link 

between gut microbiota and metabolic disorders (e.g. high-fat diet-induced inflammation) 

[50].

Conversely, indoxylsulphate has been associated with deleterious effects, including cardiac 

fibrosis and cardiomyocyte hypertrophy [3**]. Indoxylsulphate is an aryl hydrocarbon 

receptor (AhR) agonist that induces several outcomes of endothelial dysfunction in vitro, 

including inhibited proliferation, cell migration and reduced nitric oxide production [51**]. 
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Pro-inflammatory pathways, as well as oxidative stress, are also thought to be stimulated by 

this compound[51**].

These two metabolites highlight the complex and subtle role of microbial metabolism of 

tryptophan - exemplifying how the same dietary substrate impacts the delicate balance of the 

host-microbial mammalian symbiosis, by undergoing different biosynthetic pathways.

 Therapeutic interventions reshaping the gut microbiome ecology

Evidence from high-throughput technologies (e.g. metagenomics and metabolomics) 

supports the idea that the gut microbiota composition is a paramount aspect of the 

mammalian-microbial symbiotic relationship and, therefore, greatly affects human health 

and disease. Gene richness, a marker of metabolic health, is actionable by dietary 

interventions: gene count increases as obese patients follow a weight loss diet [52]. 

Moreover, Shoaie et al implemented a mathematical approach modelling the metabolism of 

key members of the microbiome of these patients and predicted the impact of the 

microbiome on fecal and circulating SCFAs and amino acids during this weight loss 

program [53**].

Postprandial glycemic responses are highly variable between two patients and this variability 

is associated with a range of dietary, clinical and metagenomic factors [54**]. Zeevi et al. 
developed a predictive model for postprandial glycemic responses based on anthropometric 

measurements dietary questionnaires and fecal metagenomes and used it to design 

personalised diets. These tailored dietary interventions were able to modify the gut 

microbiota and increase populations of bacteria previously reported as beneficial.

Reshaping the gut microbial ecosystem with the utilisation of functional food ingredient is a 

popular therapeutic strategy to improve host health. In particular, prebiotics are defined as 

fermented ingredients that beneficially affect the host by selectively stimulating the growth 

and/or the activity of colonic microbiota [55]. Prebiotics consist of oligosaccharides or short 

chain polysaccharides whose effect is mediated by the enhancement of beneficial microbes 

Bifidobacteria and Lactobacilli and the production of SCFAs [56**]. Prebiotics were also 

found to modulate systemic and hepatic inflammation via the secretion of glucagon-like-

proteins (GLP1 and GLP2) [57*], and to lower calorie intake, improve glucose tolerance and 

glucose-induced insulin secretion and to normalise inflammation in overweight mice and 

humans. [58*,59**]. In humans, however, prebiotic studies vary in quality and outcomes 

depending on age, dietary habits and prebiotic doses [60]. Several clinical randomised 

studies showed an improved inflammatory status, glucose sensitivity and an influence on 

satiety on overweight subjects [56**].

Another approach to remodel the gut microbial ecology is the use of probiotics, usually a 

single microbial species that enhances intestinal balance by changing the composition and 

activity of gastrointestinal microbiota [55]. Probiotics turned to be efficient in improving 

lactose digestion, reducing diarrhoea, and bloating, restoring a symbiotic ecosystem after an 

antibiotic intervention, and enhancing glucose sensitivity in humans [55] but no clear effects 

of probiotics on obesity and metabolic outcomes were demonstrated in human studies [61].
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However, oral probiotic doses are in general more than thousand time lower than the trillions 

of endogenous gut microbes and prebiotic administration influence temporary the 

microbiome therefore not having a lasting effect on microbial ecology [62*]. Whilst dietary 

and probiotic interventions impact the microbiome, faecal microbiota transplantation (FMT) 

allows the efficient transfer of an established microbial community together with its 

ecological properties. This approach has been highly successful and demonstrated that 

microbial communities could transfer disease phenotypes such as obesity [63], or non-

alcoholic fatty liver disease [64]. The FMT approach has been trialled for metabolic 

syndrome in human clinical studies [65] but has never been confirmed since.

FMT have also reported efficiency in the reduction of the recurrence of C. difficile infection 

and held promising effects on ulcerative colitis and Crohn’s diseases [66*]. A better 

understanding of the interplay between the prebiotics, probiotics, bacterial transplants and 

the gut microbiota is the prerequisite for optimising their uses in the treatment of 

inflammatory disorders and metabolic diseases.

 Conclusion

The understanding of the importance of the microbiota in health and disease is now 

established. The interactions between gut microbiota and host can be described as a 

symbiotic balance. Research is now mainly focusing on the gut microbiota dynamics and 

how this influence interactions with the host. Recent discoveries have shown that some 

metabolites produced by gut act as signalling molecules on host and by this mechanism 

could directly modulate host metabolism. These discoveries help the development of specific 

strategies to modify gut microbiota which will allow us to develop more effective treatments 

of metabolic diseases.
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Key points

• the gut microbiome has a complex and modular architecture

• numerous genetic and environmental factors affect the microbiota 

ecology

• microbial mammalian metabolic axis is a symbiotic relationship

• dietary interventions and microbiota transplants are successful avenues 

for sustainable beneficial alterations of the microbiome

• deep characterization of the microbiome by metagenomics and 

metabolomics can predict health, and response to treatments
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