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Abstract
ThewMel strain ofWolbachia bacteria is known to prevent dengue and Zika virus transmis-

sion in the mosquito vector Aedes aegypti. Accordingly, the release ofwMel-infected A.
aegypti in endemic regions has been recommended by the World Health Organization as a

potential strategy for controlling dengue and Zika outbreaks. However, the utility of this

approach could be limited if high temperatures in the aquatic habitats where A. aegypti
develop are detrimental toWolbachia. We exposed wMel-infected A. aegypti eggs and lar-

vae to fluctuating daily temperatures of 30–40°C for three, five, or seven days during their

development. We found thatWolbachia levels in females emerging from heat treatments

were significantly lower than in the controls that had developed at 20–30°C. Notably, seven

days of high temperatures starting at the egg stage reducedWolbachia levels in emerging

females to less than 0.1% of thewMel control levels. However, after adult females returned

to 20–30°C for 4–7 days, they experienced differing degrees ofWolbachia recovery. Our

findings suggest that the spread ofWolbachia in wild A. aegypti populations and any conse-

quent protection from dengue and Zika viruses might be limited in ecosystems that experi-

ence periods of extreme heat, butWolbachia levels recover partially after temperatures

return to normal.

Author Summary

The proposed arbovirus biocontrol strategy of releasing mosquitoes infected with the
wMel strain ofWolbachia bacteria promises to reduce the transmission of dengue and
Zika viruses, but its utility in the field may be limited by the local environment. We show
that when Aedes aegypti infected with wMel experience high temperatures during egg and
larval development, they have lowerWolbachia levels as emerging adults. High tempera-
tures starting at the egg stage and lasting for seven days reduceWolbachia levels in emerg-
ing females to less than 0.1% of control levels. However, partial recovery ofWolbachia
occurs by 4–7 days of age. The spread ofWolbachia in wild A. aegypti populations and any
resulting impacts on dengue and Zika transmission could be limited by periods of extreme
heat, butWolbachia levels may subsequently recover.
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Introduction
Mosquito-borne arboviruses are a growing public health threat. The alarming geographic
spread and costly health burden of dengue fever have led the World Health Organization
(WHO) to deem it “the most important mosquito-borne viral disease in the world.” Over the
last 50 years, the incidence of dengue cases has increased 30-fold [1]. Now more than 100
countries have endemic dengue and over 40% of the world's population is at risk [2]. Zika
virus, which recently caused a surge of children born with microcephaly and other neurological
disorders, was declared a Public Health Emergency of International Concern (PHEIC) by the
WHO after it spread from Brazil to 26 other countries or territories in the Americas within one
year [3, 4]. With no effective antiviral treatments in the arsenal and just one licensed dengue
vaccine that is 65.6% effective for those 9 years or older, control of the mosquito vectors, Aedes
aegypti and Aedes albopictus, is the most viable option for curbing transmission of these arbovi-
ruses [5–7]. However, in resource-limited cities with endemic dengue, vector control efforts are
often only pursued in response to explosive epidemics [8, 9]. Failure to control these vectors in
tropical urban environments is one of the major drivers of the growing incidence and geo-
graphic expansion of dengue and other mosquito-borne arboviruses [10].

Alarmingly, existing control options for A. aegypti are of little use in urban areas [9, 11].
Space spraying with ultra-low volume insecticides, including organophosphates and pyre-
throids, has been used by many countries in the face of dengue outbreaks for the past 40 years
despite limited evidence of its epidemiological benefits [10, 12, 13]. Vector densities inevitably
recover after space spraying because ideal larval habitats for A. aegypti abound in cities—
exposed water sources for drinking or washing and non-biodegradable trash that collects water
[8]. Targeted spraying of potential larval development containers with residual insecticides [14,
15] and indoor residual spraying targeting adult mosquitoes [16] in combination can substan-
tially reduce local dengue incidence, but only if high coverage is achieved [17, 18]. For coun-
tries faced with nearly ubiquitous breeding of A. aegypti in their sprawling cities, the
comprehensive spraying required to stop transmission is unrealistic [19]. Consequently, there
is no urban setting in which vector control has completely eliminated dengue virus (DENV)
transmission or prevented dengue epidemics [13, 20].

A potential solution for DENV and Zika virus (ZIKV) transmission involves releasing A.
aegypti infected withWolbachia, a common bacterium infecting the reproductive systems of
many insects [21–24]. The fitness effects ofWolbachia on insect hosts are strain specific, rang-
ing from life-shortening to pathogen-blocking phenotypes [25, 26]. The pathogen-blocking
properties of some strains ofWolbachia have led researchers to characterize them further and
transfer them into vector species for potential use in vector-borne disease control. The wMel
strain ofWolbachia shows the most promise currently, as it blocks DENV and ZIKV transmis-
sion by the mosquito, raising the possibility of disrupting dengue and Zika transmission cycles
[27–30]. The wMel strain was transinfected from Drosophila melanogaster into A. aegypti, and
wMel-infected A. aegypti have been released at sites in Australia, Vietnam, Brazil, Indonesia,
and Colombia [31]. The success of eachWolbachia strain in invading insect populations is
determined by the net fitness effect of the strain coupled with the extent to which it manipu-
lates host reproduction [32]. One key mechanism of reproductive manipulation is cytoplasmic
incompatibility (CI). When a strain causes complete CI,Wolbachia-infected females can mate
successfully withWolbachia-infected males, while uninfected females cannot [32]. The wMel
Wolbachia strain causes complete CI and has had some success in invading wild A. aegypti
populations [28, 33]. However, the prevalence of wMelWolbachiamust remain high in the A.
aegypti population in order for wMel to reliably and substantially reduce the capacity of the
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mosquito population to transmit pathogens [32, 34]. Protection against DENV in field-col-
lected wMel A. aegypti is similar to that observed in the original transinfected wMel line [35],
indicating that this strategy might be used to reduce dengue transmission in endemic areas [28,
29, 36]. Recently the WHO recommended the use ofWolbachia for dengue and Zika control
[4], although there is currently insufficient epidemiological evidence to know if the approach is
effective. It is also unknown whether the prevalence of wMel-infected A. aegypti and the wMel
Wolbachia levels within individual mosquitoes will remain high enough to prevent DENV and
ZIKV transmission in all environments.

The levels of wMelWolbachia load throughout the various stages of the A. aegypti lifespan
have not been described, as most studies have focused on population dynamics and fitness
effects of wMelWolbachia after adult emergence [28, 33, 35, 37–40]. The early stages of devel-
opment comprise a sensitive period during the A. aegypti lifespan; immature forms are con-
fined to their aquatic habitats, whereas adults can seek out favorable microclimates to increase
their chances of survival [41–43]. Immature A. aegypti develop in containers in the domestic
environment that hold water, including flower pots, tanks, and drums as well as bottles, cans,
and automobile tires [8, 44]. These containers sometimes hold as little as 5 mL of water [45].
Female A. aegypti preferentially lay their eggs in shaded containers, but it is not uncommon to
find immatures in containers fully exposed to the sun [46, 47]. Although comprehensive tem-
perature measurements in sun-exposed containers have not been carried out, lab-reared A.
aegypti larvae can tolerate aquatic temperatures as high as 43°C if they are pre-exposed to high
but sublethal temperatures [48]. The ability of wMelWolbachia to tolerate the same elevated
temperatures as immature A. aegypti has not been investigated.

The heat sensitivity ofWolbachia with respect to its hosts has been characterized in other
arthropods. Exposure to high temperatures during development cured theWolbachia infec-
tions of two-spotted spider mites Tetranychus urticae [49], Tribolium flour beetles [50], and
Drosophila spp. [51–54]. In the mosquito Aedes scutellaris, the reproductive effect of CI caused
byWolbachia was lost when larvae were reared at 32.5°C, but it was unknown whether the loss
ofWolbachia or host expression of heat-shock proteins was responsible [55–57]. In A. albopic-
tus all life stages maintained at 37°C had a lower levels ofWolbachia than those reared at 25°C,
indicating that high temperatures may reduceWolbachia levels in mosquito hosts [58].

ReducedWolbachia levels in response to high temperatures during larval development
could represent a barrier to the spread of wMelWolbachia in A. aegypti populations if funda-
mental drive mechanisms such as maternal transmission and CI are affected. Because only
Wolbachia-infected females produce viable offspring withWolbachia-infected males, CI cre-
ates a selective pressure for the spread ofWolbachia [32]. The spread ofWolbachia in mosquito
populations is crucial, because incomplete wMelWolbachia coverage in the A. aegypti popula-
tion leaves the potential for DENV and ZIKV transmission. A recent study found geographical
clusters of uninfected mosquitoes in a wMel-infected A. aegypti release suburb of Cairns, Far
North Queensland, Australia [59]. The incompleteWolbachia coverage was suggested to be
due to immigration of uninfected mosquitoes from outside the release area, cryptic breeding
sites, or other environmental phenomena such as “larval curing” (loss ofWolbachia infection
during larval development) [59]. However, the occurrence of larval curing in mosquitoes has
been poorly defined to date. Specifically, little is known about the temperature thresholds for
Wolbachia during mosquito development or whether any potential curing persists after tem-
peratures return to normal. Understanding larval curing in wMel-infected A. aegypti has
important applications, as lowerWolbachia levels in adults might have downstream impacts
on cytoplasmic incompatibility [60–67] (although in D. simulans between-strain differences in
CI are not explained byWolbachia density [68]), maternal transmission [69, 70], and pathogen
inhibition [29, 68, 71–73].
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We investigated the effects of high temperatures during egg and larval development on labo-
ratory-reared wMel-infected A. aegypti using fluctuating daily temperatures that simulate the
real-world conditions of a heatwave in Cairns, Australia. Our results have implications for the
projected spread of wMelWolbachia through A. aegypti populations and for the vector compe-
tence of wMel-infected A. aegypti under different environmental conditions.

Methods

Ethics statement
Blood feeding of mosquito colonies using human volunteers was performed in accordance to
the QIMR Berghofer Human Research Ethics Committee permit QIMR HREC361. Written
informed consent was obtained from all volunteers who participated in the study.

Mosquitoes
Mosquitoes were taken from aWolbachia-free A. aegypti colony (“Cairns” line) started from
eggs collected in Cairns, Australia, in January 2015 and from a colony of wMel-infected A.
aegypti (“wMel” line) started from eggs collected in suburbs of Cairns in April 2015. The colo-
nies were maintained in separate, identical climate-controlled rooms at 27 ± 1°C and 70 ± 10%
relative humidity with a 12:12 hour light:dark cycle and crepuscular periods. Eggs were flooded
in aged (� 48 h) tap water and allowed to hatch naturally. Larval stages were reared under a
controlled density (< 200 larvae per tray) in trays with 3 L of aged tap water. Larvae were fed
on ground TetraMin tropical fish food (Tetra, Germany). Pupae were transferred into cages
measuring 40 × 40 × 30 cm for adult emergence. Colonies were maintained with a population
size of> 500 individuals per generation. Adult mosquitoes received 10% sucrose solution ad
libitum, and females were blood-fed on a human volunteer for 15 min every 7 d. The wMel-
infected A. aegypti colony was regularly screened forWolbachia using PCR of the wsp gene
from the time of establishment [74]. Prior to the start of the experiments, our screening showed
that the colony was completely infected withWolbachia.

For the experiments, eggs were collected from A. aegypti wMel (F16 and F17 generations
used) and A. aegypti Cairns (F18 and F19 generations) colonies at 8:30 A.M. following the first
night of oviposition. Eggs were counted under a stereomicroscope at 23°C and were separated
into batches of approximately 600 eggs. Each batch was placed inside a dry paper towel, which
was folded and placed next to a damp paper towel inside an open plastic bag. Egg bags were
placed inside their corresponding environmental chambers at the coldest point of the tempera-
ture cycles, which was 20°C for the control condition and 30°C for the treatment condition.
Eggs were left to mature for 48 h, and then batches of approximately 150 eggs were flooded in
500 mL aged tap water in plastic trays (183 × 152 × 65 mm). Four replicate trays were used per
treatment group. From the day of hatching until pupation, ground TetraMin tropical fish food
(Tetra, Germany) was administered daily at the coldest point of the temperature cycles using
the “medium” diet described by Hugo et al. [75]. Pupae were transferred into 1-L plastic con-
tainers with mesh tops, and emerging adults were given 10% sucrose solution ad libitum. Adult
females were aspirated out at 0–2 days post-emergence and at 4–7 days post-emergence. They
were frozen at -20°C until processing.

Environmental treatments
We tested the effect of high temperatures during egg and larval development onWolbachia lev-
els in A. aegypti wMel adult females in two replicate experiments: Each replicate experiment
compared various heatwave temperature regimes applied during particular periods of
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immature mosquito development that varied in duration and stage of onset. The temperature
profiles we used simulated observed temperatures during average and extreme conditions in
Cairns, Queensland. The Australian Bureau of Meteorology defines a heatwave as “a period of
at least three days where the combined effect of excess heat and heat stress is unusual with
respect to the local climate” [76]. We designed our treatment temperature profile to surpass
the severe daily mean temperature threshold of 30.4°C for Cairns, which is based on tempera-
ture data from 1958 to 2011 [76]. Both treatment and control temperature profiles followed a
truncated sinusoidal progression during the day and exponential decrease at night, represent-
ing a profile of daily temperature variation [77]. The shapes of the profiles were the same for
each condition, but the profile was raised or lowered to adjust the mean temperature (S1 Fig).
Experiments were conducted in two environmental chambers (294-L Panasonic MLR-
352H-PE and MLR-351H, Gunma, Japan). Nine treatment groups were exposed to fluctuating
heatwave temperatures between 30°C and 40°C for varying durations beginning at various life
stages. Controls consisted of wMel A. aegypti and wildtype Cairns A. aegypti exposed to diurnal
temperature fluctuations between 20°C and 30°C. Transfers between environmental chambers
were made at the coldest point of the temperature cycles (20°C for the control condition and
30°C for the treatment condition) in order to minimize the likelihood of heat shock. As illus-
trated in Fig 1, treatment groups exposed to high temperatures beginning from early embryo-
genesis (eggs at� 15 hours post-oviposition) lasting three, five, or seven days are denoted by
“E3,” “E5,” and “E7.” Groups exposed to high temperatures beginning at the immature larval
stages (1st/2nd instars) lasting three, five, or seven days are denoted by “I3,” “I5,” and “I7.”
Groups exposed to high temperatures beginning at more mature larval stages (3rd/4th instars)
lasting three, five, or seven days are denoted by “M3,” “M5,” and “M7.” Prior to the two studies,
a pilot study was conducted to determine differences in means for a range of onsets and dura-
tions (S2 Fig).

Data loggers, both factory installed and independent HOBO data loggers (Onset, Cape Cod,
MA), recorded light intensity and temperature variation. Actual water temperatures in the con-
trol chamber were within 1.00°C of the programmed air temperature throughout the duration
of the experiments. This was also the case in the treatment chamber, except during the coldest

Fig 1. Experimental design. All treatment groups (rows) were transferred to environmental chambers as eggs within 15 hours of
being laid, and all developed into adults by the end of the experiment. “wMel” denotes thewMel-infected A. aegypti controls, and
“Cairns” denotes the wildtype (Wolbachia-free) A. aegypti controls. For each of the other treatment groups, the letter represents
the stage of heat onset, with “E” indicating embryogenesis, “I” indicating immature larvae (1st/2nd instars), and “M” indicating more
mature larvae (3rd/4th instars). The number represents the number of days the group remained in the high temperature treatment
before returning to control temperatures (three days, five days, or seven days). Moving across each row, the cells track the days
for each treatment group, with blue cells representing days spent in the control chamber and red cells representing days in the
high temperatures chamber. Inverted triangles represent adult collection time points at 0–2 days and 4–7 days after emergence.

doi:10.1371/journal.pntd.0004873.g001
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periods, when water temperature was as much as 2.93°C lower than the programmed air
temperature.

Wolbachia density in adult females
Wolbachia densities within individual adult females were determined by quantitative PCR. The
head was removed from each frozen adult female before DNA extraction. Genomic DNA was
extracted using QuickExtract DNA Extraction Solution (Epicentre Technologies Corporation)
as per the manufacturer’s instructions and was diluted 1:10 in purified water. Multiplex qPCR
was performed, amplifying the targetWolbachia-specific wsp gene and the somatic Actin5c
gene, which acted as a reference gene to standardize for mosquito body size (wsp F: 5´–CATTG
GTGTTGGTGTTGGTG–3´, R: 5´–ACACCAGCTTTTACTTGACCAG–3´, Actin5c F: 5´–GA
CGAAGAAGTTGCTGCTCTGGTTG–3´, R: 5´–TGAGGATACCACGCTTGCTCTGC–3´)
(full methods in S1 Appendix) [73, 78, 79]. Quantification cycles (Cq) were normalized by tak-
ing into consideration the different amplification efficiencies of the wsp and Actin5c genes, and
Wolbachia to host genome ratios were calculated using Q-Gene [80].

Wolbachia visualization in mosquito ovaries
Fluorescence in situ hybridization (FISH) was carried out using aWolbachia-specific 16S
rRNA probe [29]. Three freshly collected adult females (legs and wings removed) from each
treatment group were fixed in 4% paraformaldehyde in 0.1 M phosphate buffer overnight and
were transferred to 70% ethanol. Bodies were embedded in paraffin wax and sectioned with a
microtome. Slides were dewaxed with two successive xylene washes for 10 min, two successive
5-min washes with 100% ethanol, and two successive 5-min washes in 95% ethanol. Slides were
hybridized with theWolbachia-specificW2 probe (5´–CTTCTGTGAGTACCGTCATTAT
C–3´) [29] conjugated on the 5´ end to the fluorescent probe Alexa Fluor 488 (Molecular
Probes, Inc). Slides were left in a dark humidity chamber at 37°C overnight and washed briefly
in 1× saline sodium citrate (SSC) buffer + 10 mM dithiothreitol (DTT) at room temperature,
then two 15-min washes in 1× SSC + 10 mMDTT at 55°C, two 15-min washes in 0.5× SSC at
55°C, a 10-min wash in 0.5× SSC + 10 mMDTT + 4',6-Diamidino-2-phenylindole (DAPI)
(0.01 mg/50 mL) at room temperature, and then a final 10-min wash in 0.5× SSC + 10mM
DTT at room temperature. Slides were washed briefly with distilled water and mounted with
Vectashield Hard Set mounting medium (Vector Laboratories, Burlingame, CA). Slides were
allowed to dry in a refrigerator overnight. Images from all sections were captured with a Delta-
Vision Core Deconvolution Microscope (GE) using identical acquisition settings (S2 Appen-
dix). Images were reformatted using SoftWorx (Enterprise Softworks (Pty) Ltd.) and were
cropped and standardized for contrast using Adobe Photoshop CS6 (Adobe Systems, Inc.).

Body size
To determine the effect of the heat treatments on adult body size, the left wing of six females
from each treatment group was removed and dry mounted on a slide. The distance from the
axial notch to the wing tip, excluding the fringe scales, was used as a proxy for body size [75,
81].

Statistical analysis
All analyses were performed in R [82] and GraphPad Prism v. 6 (GraphPad Software, San
Diego, California, USA). Normality and homogeneity of variances within treatments were
tested using Shapiro-Wilk and Bartlett’s tests, respectively. Log10-transformedWolbachia
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densities were used for all analyses. A two-way blocked analysis of variance (ANOVA) was per-
formed to determine the effects of treatment and collection time point and their interaction on
Wolbachia density. Replicate was included as a blocking factor to account for any variation
between the two experiments. An analogous two-way blocked ANOVA was performed to
determine the effects of treatment group and collection time point and their interaction on
body size. Pair-wise post-hoc comparisons between treatments and controls and between col-
lection time points were made for both ANOVAs, and P values were adjusted for multiple
comparisons using Tukey’s honest significant difference test. Differences were considered sig-
nificant if adjusted P values were< 0.05. A nonlinear regression was performed using ordinary
least squares fit for each stage of onset at the two collection time points to determine relation-
ships between the heat treatment duration andWolbachia density. Sum of squares F-tests were
used to determine significant differences in slopes and y-intercepts.

Results

Wolbachia density in adult females
We found significantly lowerWolbachia densities relative to wMel controls in 0–2 d-old
females emerging from eight of the nine treatments (Fig 2), with only the mature instar treat-
ment lasting three days (M3) showing no significant reduction.Wolbachia levels in the 0–2 d-
old females that were exposed to 30–40°C for seven days starting at the egg stage (E7) were less
than 0.1% of wMel control densities (Fig 2). Both treatment group and collection time point

Fig 2. Wolbachia density by treatment group.Wolbachia densities in 0–2 d-old (circles) and 4–7 d-old (inverted triangles) femalewMel A. aegypti exposed
to various temperature treatments. “wMel” denotes thewMel-infected A. aegypti controls that were not exposed to high temperatures, and for the other
treatment groups the letter represents the stage of heat onset—“E” for embryogenesis, “I” for 1st/2nd instars, and “M” for 3rd/4th instars—and the number
represents the number of days the group remained in the high temperature treatment.Wolbachia density was measured by qPCR of theWolbachia-specific
wsp gene and the somatic insect gene Actin5c. Displayed values are relative concentrations ofwsp and Actin5c calculated in Q-Gene. The horizontal line at
y = 10−3.552 represents the detection limit ofWolbachia by qPCR, which was established by the average Cq values forWolbachia-free Cairns A. aegypti
controls. Bars denote means bounded by their 95% confidence intervals. The lower 95% confidence limit for the 0–2 d-old I5 group (y = −0.009) is not shown
because it cannot be represented on the log scale. The significance levels of differences between time points are indicated above brackets and between
treatment groups and thewMel controls at the top of the graph as P < 0.05 (*), P < 0.01 (**), P < 0.001 (***). Each point represents an individual mosquito.

doi:10.1371/journal.pntd.0004873.g002

Heat Sensitivity ofwMelWolbachia during Aedes aegyptiDevelopment

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004873 July 26, 2016 7 / 16



were significant predictors ofWolbachia density (F(10, 362) = 197.34,MSE = 55.24, P< 0.001
and F(1, 362) = 397.21,MSE = 111.20, P< 0.001, respectively). Compared with the 0–2 d adult
collection time point, 4–7 d-old adult females in all treatment groups except the wMel control
group and the M3 group had higherWolbachia levels, with adults from three-day treatments
(E3, I3, and M3) showingWolbachia densities that were not significantly different from wMel-
infected controls (Fig 2). TheWolbachia levels in 4–7 d-old adults from the six other treat-
ments remained significantly lower than in wMel-infected controls. There were inverse rela-
tionships between the duration of heat treatment andWolbachia density and for all stages of
onset; however, the relationships differed significantly both in their slopes and y-intercepts (F
(5, 305) = 3.68, P = 0.003 and F(5, 305) = 2.79, P = 0.02, respectively). Duration of heat expo-
sure had the greatest impact onWolbachia density in emerging females when high tempera-
tures began in the 3rd/4th instar stages. At 4–7 days of age the impact of heat duration on
density was most pronounced when high temperatures began at the egg stage.

Wolbachia visualization in mosquito ovaries
We also investigated whether we could visualize reductions inWolbachia levels in the ovaries
of adult mosquitoes after exposure to high temperatures during development. Using FISH we
visualized very low levels ofWolbachia in the ovaries of 0–2 d-old E7 females (Fig 3B). We also
noticed that the E7 ovaries were much less developed than in controls, a possible consequence
of the heat exposure. In 4–7 d-old E7 females (Fig 3D),Wolbachia remained at very low levels
compared with 4–7 d-old wMel-infected controls (Fig 3C).

Body size
We found a significant effect of treatment group on wing length (F(10,71) = 13.70,MSE = 0.32,
P< 0.001) and of the treatment group–collection time point interaction (F(9,71) = 2.81,
MSE = 0.07, P = 0.007). Collection time point and replicate were not significant predictors
(F(1, 71) = 0.22,MSE = 0.005, P = 0.64 and F(1, 71) = 1.21,MSE = 0.03, P = 0.27, respectively).
Treatment groups E7, I5, I7, M3, M5, and M7 were all significantly smaller than wMel controls
(S3 Fig). There was no significant difference in wing length between wMel controls and Cairns
controls.

Discussion
We found that when A. aegypti infected with the wMel strain ofWolbachia were exposed to
daily fluctuating temperatures of 30–40°C during early development, the emerging females had
reducedWolbachia levels compared with controls. The most affected group consisted of mos-
quitoes exposed to high temperatures starting at the egg stage and lasting for seven days (E7).
In E7 emerging females, meanWolbachia levels were less than 0.1% of the levels of wMel con-
trols. Loss ofWolbachia density from a subset of the mosquito population may be a concern
forWolbachia-based dengue and Zika control efforts in regions where the aquatic habitats of
juvenile A. aegypti can reach extremely high temperatures. It has previously been shown that
differentWolbachia strains attain different infection densities and that density is correlated
with the level of virus inhibition [68, 71, 73, 78]. The relationship between wMel density and
DENV and ZIKV inhibition can be assumed from near complete blockage of these viruses in
Ae. aegypti harboring dense wMel infections [28, 30, 35], but the relationship has not been spe-
cifically defined. A recent study found that exposure of adult wMel-infected A. aegypti to
28°C ± 4°C beginning at 5–8 d of adult age was associated with reducedWolbachia densities;
however, there was no interaction between the reduced densities and DENV infection, dissemi-
nation, or transmission [40]. Eggs and larvae exposed to high temperatures in our study
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produced adult A. aegypti with very lowWolbachia densities; therefore, the level of pathogen
inhibition in adult mosquitoes that were subject to impacts of heat exposure during early devel-
opment deserves investigation. The partial recovery ofWolbachia density by 4–7 days of age
suggests that any impacts of heat exposure during mosquito development on subsequent virus
inhibition may be attenuated with age.

Fig 3. Visualization ofWolbachia in ovaries by FISH.Ovaries of A. aegypti wMel females emerging from the control (A,C) and E7 (B,D) treatment
groups, collected at 0–2 d (A, B) and 4–7 d (C, D) after emergence are shown.Wolbachiawere stained with Alexa Fluor 488 (green) and cell nuclei
with DAPI (blue).

doi:10.1371/journal.pntd.0004873.g003
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This study is the first to investigate the duration and timing of heatwave conditions in rela-
tion to immature development of mosquitoes infected withWolbachia. To achieve this we sim-
ulated normal and heatwave conditions based on temperature data from a city selected for
Wolbachia biocontrol. We found an inverse relationship between the duration of heat exposure
andWolbachia density in adult females, raising the possibility that longer periods of heat
might be capable of clearingWolbachia. The slope of this relationship varied by the stage of
heat onset and by the age of adult females collected. Duration of heat exposure had the greatest
impact onWolbachia density in emerging females when high temperatures began in the 3rd/4th

instar stages; however, the impact of heat duration on density at 4–7 days of age was most pro-
nounced when high temperatures began at the egg stage. In addition to reducing bacterial den-
sities, high temperatures resulted in smaller adult body sizes, with more prominent effects in
the later stages of heat onset and the longer durations. This is likely due to the known inverse
relationship between larval rearing temperature and adult body size [83]. We controlled for the
effect of body size by standardizingWolbachia density measurements with the host gene
Actin5c.

Loss ofWolbachia density in response to heat has also been reported in T. urticae [49] O.
scapulalis [84], D. simulans [54], D. bifasciata [53], A. albopictus [58], the predatory miteMeta-
seiulus occidentalis [85], and the wasp Leptopilina heterotoma [86]. The mechanism behind the
loss ofWolbachia in response to high temperatures is not fully understood, but deformation of
theWolbachia cellular membrane could be a contributing factor [87]. Our FISH visualization
confirms the loss ofWolbachia from the ovaries of mosquitoes exposed to high temperatures.
Partial recovery ofWolbachia in the ovaries after the mosquito returns to normal temperatures
suggests thatWolbachia replication continues even after the ovaries are fully developed. It is
uncertain whether replication continues throughout the female lifespan and at what ageWol-
bachia densities would be restored to control levels in heat-exposed females.

Our results support the notion that wMel has a more restricted thermotolerance than its
mosquito host A. aegypti. Loss of thermotolerance in insect symbionts can be due to point
mutations that occur as the symbiont co-evolves with the host [88]. In the case of the obligate
symbiont of aphids Buchnera aphidicola, a point mutation affecting heat-shock protein tran-
scription leads to death of the symbiont following a heat treatment [89]. Compared with other
symbionts of insects, wMel has experienced far less reductive evolution, as evidenced by its
large genome with very high levels of repetitive DNA and mobile DNA elements [90]. Because
of the low mutation rate of wMel [90], loss of thermotolerance is less likely than for other sym-
bionts [91]. If reductive evolution of wMel does occur, then rearing wMel-infected A. aegypti
under constant temperatures in the lab might accelerate loss of wMel thermotolerance. More
studies are needed to understand the co-evolution of wMel and A. aegypti.

Wolbachiamay hold the potential to reduce and even eliminate dengue and Zika transmis-
sion in endemic areas. The advent of a promising control tool for dengue fever and Zika could
not have come at a better time, as currently many tropical countries have no options to control
the massive arbovirus outbreaks they experience. The strategy of releasing wMel-infected A.
aegypti is being tested in dengue-endemic regions around the globe, including Australia, Viet-
nam, Brazil, Indonesia, and Colombia [31], although substantial epidemiological data is still
needed to assess the impacts on dengue and Zika transmission. The importance of measuring
Wolbachia density in field trials, as opposed to presence or absence ofWolbachia, is
highlighted by our results and other investigations [61, 64, 78]. We found that the high temper-
atures that A. aegyptimay experience during early development can attenuate wMelWolbachia
levels. Consequently, wMelWolbachiamight be less effective as a dengue or Zika control strat-
egy in regions experiencing periods of extreme heat. If the effectiveness is compromised,
increased surveillance and supplementary mosquito control may be required in these regions.

Heat Sensitivity ofwMelWolbachia during Aedes aegyptiDevelopment

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004873 July 26, 2016 10 / 16



Further estimates ofWolbachia recovery rates after heat exposure are needed to understand
the impacts on DENV and ZIKV inhibition and the spread of wMel through naïve A. aegypti
populations.

In summary, we showed that fluctuating daily temperatures of 30–40°C experienced during
wMel-infected A. aegypti egg and larval development significantly reducedWolbachia levels in
emerging adult females. However,Wolbachia recovered to differing degrees after adults
returned to 20–30°C. These findings suggest that the effectiveness ofWolbachia-based arbovi-
rus control might be compromised in ecosystems that experience periods of extreme heat, but
given thatWolbachia levels partially recover after temperatures return to normal, any effects
may be temporary. Greater understanding of environmental variables that affectWolbachia
can inform release site selection and help to better predict the impacts ofWolbachia on arbovi-
rus transmission.

Supporting Information
S1 Fig. Water temperature fluctuations in environmental chambers. Control and treatment
chambers are shown in blue and red, respectively. Data loggers were submerged in 500 mL
aged tap water in trays (183 × 152 × 65 mm) and temperature was recorded every 30 min for
the duration of both experiments. Bars denote means and standard errors over days logged.
(TIF)

S2 Fig. Pilot study results. Log10-transformed relativeWolbachia densities in 0–2 d-old female
A. aegypti in different treatment groups. Treatments not included in subsequent experiments
include the pupae onset stage (P1, P3) and the one-day duration (I1, M1, P1).Wolbachia den-
sity was measured by qPCR of theWolbachia-specific wsp gene and the somatic insect gene
Actin5c. Displayed values are relative concentrations of wsp and Actin5c calculated in Q-Gene.
Bars denote means bounded by their 95% confidence intervals. Significant differences between
treatment groups and the wMel controls are displayed as P< 0.05 (�), P< 0.01 (��), P< 0.001
(���). Each point represents an individual mosquito.
(TIF)

S3 Fig. Wing length by treatment group. Significant differences between treatment groups
and wMel controls are indicated by asterisks, P<0.05 (�), P<0.01 (��), P<0.001 (���). Bars
denote means bounded by their 95% confidence intervals. Each point represents an individual
mosquito.
(TIF)

S1 Appendix. qPCR conditions. The Actin5c gene was used to normalize wsp gene copies.
qPCR reactions were performed in 10 μl total volume containing 5.0 μl Platinum SYBR Green
qPCR SuperMix-UDG (Invitrogen), 1 μM of each primer, and 2 μL of DNA template. Cycling
was performed using a RotorGene 6000 system (Corbett Research) with the following program:
95°C for 2 min, 50°C for 2 min, and 50 cyclic repeats of 95°C for 10 s, 52°C for 10 s, and 72°C
for 20 s. This was followed by a standard melt analysis to confirm that only the expected prod-
uct had been amplified. Quantification cycles (Cq) values were calculated using the Compara-
tive Quantification algorithm in the RotorGene 6000 software (Corbett Research). Repeat
reactions were performed with samples for which the duplicate Cq values differed by more
than 0.75.
(TIF)

S2 Appendix. Microscopy methods. Images were captured with GE DeltaVision Core Decon-
volution Microscope (GE) equipped with an Olympus X181 inverted microscope using an
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Olympus 20X/0.75 U Apo 340 lens or an Olympus 10X/0.40 D Plan Apo UV lens and a Photo-
metrics Cool Snap HQ CCD camera. Images were acquired at a resolution of 1024 x 1024.
DAPI excitation was 390/18nm and emission collection was 435/48 nm with 0.2 s exposure
(5% ND filter). AlexaFluor 488 excitation was 475/28 nm and emission was 523/36 nm with a
0.15 s exposure (32% ND filter).
(TIF)

S1 Dataset.Wolbachia density data from first replicate.
(CSV)

S2 Dataset.Wolbachia density data from second replicate.
(CSV)

S3 Dataset. Wing length data.
(CSV)
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