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Abstract

The tools of synthetic biology allow researchers to change the ways engineered organisms respond 

to chemical stimuli. Decades of basic biology research and new efforts in computational protein 

and RNA design have led to the development of small molecule sensors that can be used to alter 

organism function. These new functions leap beyond the natural propensities of the engineered 

organisms. They can range from simple fluorescence or growth reporting to pathogen killing, and 

can involve metabolic coordination among multiple cells or organisms. Herein, we discuss how 

synthetic biology alters microorganisms’ responses to chemical stimuli resulting in the 

development of microbes as toxicity sensors, disease treatments, and chemical factories.

 Introduction

Synthetic biology allows scientists to re-program interactions between genes, proteins, and 

small molecules. One of the goals of synthetic biology is to produce organisms that 

predictably carry out desired functions and thereby perform as well-controlled so-called 

biological devices. Together, synthetic and chemical biology can provide increased control 

over biological systems by changing the ways these systems respond to and produce 

chemical stimuli. Sensors, which detect small molecules and direct later cellular function, 

provide the basis for chemical control over biological systems. The techniques of synthetic 

biology and metabolic engineering can link sensors to metabolic processes and proteins with 

many different activities. In this review we stratify the activities affected by sensors to three 

different levels: sensor-reporters that provide a simple read-out of small molecule levels, 

sensor-effectors that alter the behavior of single organisms in response to small molecules, 

and sensor effectors that coordinate the activities of multiple organisms in response to small 

molecules (Figure 1).

 1. Sensor-Reporters

Small molecule sensors used in synthetic biology are often based on RNAs [28-34] or 

transcription factors [35-42] that bind to specific chemicals and influence the expression of 

downstream effectors. Sensors with different specificities can be mined from the literature, 

discovered through screens for small molecule responsive promoters [16,43], or 

computationally designed [36,44,45**]. Once a suitable sensor is defined, its function can be 
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tested by placing the expression of a reporter gene under the sensor’s control (Figure 1A). 

Protein transcription factors are commonly used as sensors and are primarily discussed in 

this review. RNA based sensors that bind to a variety of ligands can be used to alter 

transcription, translation initiation, and ribozyme activity [46,47]. Using evolution based 

methods [48,49], RNAs that bind to specific ligands can be selected; however, it is often 

unclear how to link ligand binding function to reporter read out, and RNA based sensors for 

a wide array of compounds largely await development.

Simple sensor-reporter devices can be very powerful detectors of toxins or valuable 

chemicals. For instance, Trang and co-workers [35] show that a luciferase based bio-reporter 

for arsenic is capable of measuring arsenic levels in ground water from Vietnam at an 

accuracy better than established chemical methods. They propose to use this bio-assay in 

regions where expensive methods like atomic absorption spectroscopy cannot be easily 

performed. Similar reporters can measure levels of heavy metals, organic pollutants, and 

methylating compounds [37-39,42].

Sensor-reporter systems also allow one to screen for strains that produce a compound of 

interest in high yield (Figure 2). For such screening, strains need both the ability to produce 

a particular compound and the ability to report the amount they produce. This allows one to 

mutate or engineer these strains and directly measure the amount of reporter produced. 

High-producing strains can then be separated and used in further rounds of engineering and 

screening to continue enhancing yields.

The reporter-screening strategy described above has been used to enhance bacterial 

production of mevalonate [36], lysine [41], butanol [50], dicarboxylic acids [50], and 

triacetic acid lactone [51]; it is compatible with a wide variety of mutagenesis techniques. In 

a recent iteration of this technique, Raman et al 2014 [52**] used sensors controlling the 

expression of antibiotic resistance genes to select for E. coli strains with enhanced 

production of naringenin or glucaric acid. In their system, increased production of these 

compounds enhanced antibiotic resistance and provided a selective advantage over strains 

with lower production. Here the reporter readout was growth. The authors designed and 

implemented mutations enhancing production using multiplex automated genome 

engineering [53] and negative selection strategies to kill off any strains with mutations that 

simply led to high basal levels of antibiotic resistance. Iterative rounds of mutation, negative 

selection, and positive selection successfully improved the yields of both naringenin and 

glucaric acid.

 2. Whole Cell Effectors

Synthetic gene circuits can lead to many more complex functions (cellular motility, memory, 

fuel and drug production, etc.) in response to small molecules. Here we focus on effectors 

with functions designed to improve health and enhance production by microbial chemical 

factories (Figure 1B). Some of these examples represent the first instance of transfer of 

synthetic circuits into real animal disease models.
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 Microbial Sensor-Effectors in Disease Prevention and Treatment

Pseudomonas aeruginosa, a ubiquitous bacterium capable of causing both mild and severe 

infections in humans, has recently been targeted using engineered E. coli. Exploiting the fact 

that Pseudomonas aeruginosa produce the quorum sensing molecule 3OC12HSL, researchers 

have generated E. coli strains that produce proteins that kill P. aeruginosa upon sensing 

3OC12HSL [6,11], and other E. coli strains that respond to 3OC12HSL by migrating towards 

its source, releasing a protein that kills P. aeruginosa, and breaking down P. aeruginosa 
biofilms [5*]. The efficacy of these pathogen-killing bacteria has yet to be shown in vivo, 

but they provide a solid groundwork for future bacterial-based therapies.

We recently demonstrated the in vivo use of an E. coli memory device based on the lambda 

phage operon to record the presence of a chemical in the mouse gut [54**]. E. coli 
engineered with this memory circuit sustain production of beta-galactosidase after detecting 

anhydrotetracycline. When populating the mouse gut, these E. coli can detect 

anhydrotetracycline in mouse drinking water and remember its presence (i.e. continue to 

produce beta-galactosidase) up to 8 days after it is removed from the drinking water. This 

work is the first demonstration of an in vivo gut memory device and provides a platform 

upon which a variety of engineered gut microbiota responses to various chemicals (e.g. those 

indicative of infection) can be designed.

Many bacteria thrive in the hypoxic and acidic conditions of the tumor-micro environment 

with bacterial growth resulting in many anti-tumor effects. This phenomenon has a long 

history dating back to the 1800s and the use of bacterial extract (Coley’s toxin) to boost the 

immune system in cancer treatment. There has also been extensive work using attenuated 

and engineered strains of bacteria to combat cancer (Reviewed in [55]). Although therapies 

using S. typhimurium have shown limited efficacy [56-58], an on-going phase I clinical trial 

using intratumoral injections of attenuated Clostridium novyi has shown promising anti-

tumor activity [59**]. In addition, the natural anti-tumor activity of Salmonella typhimurium 
has been expanded by giving it the ability to invade cancer cells or to secrete toxins when in 

the vicinity of tumors [8,9,18,43]. These strategies take advantage of promoters that induce 

gene expression under conditions indicative of the tumor microenvironment. For example, 

Flentie et al 2012 [43] discovered a Salmonella typhimurium promoter responsive to low pH 

and placed Shiga Toxin 2 under its control in S. typhimurium. When injected into mouse 

xenograph tumors, this strain decreased tumor cell viability within 5 days of injection [43].

The engineered ability to sense and respond to the chemical nature of the tumor 

microenvironment holds promise in increasing the specificity of bacterial anti-cancer 

therapies, but this specificity can also be achieved through other means. For example, 

Salmonella selectively kill tumor cells in a mouse xenograph model when they express 

antibodies to cause their attachment to the tumor cells and thymidine kinase to locally 

convert the prodrug Ganciclovir into an apoptosis inducer [60*]. Furthermore, E. coli have 

been used as a means of delivering shRNA’s silencing genes important for cancer cell 

viability to mammalian cells and live mice [10,61,62]. Further pairing of sensors with these 

types of selective treatments will likely lead to therapies with exquisite specificity.
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 Microbial Sensor-Effectors in Microbial Chemical Factories

Often, expressing a single enzyme can be enough to get a microbe to produce a small 

amount of a desired product, but more complicated metabolic engineering is usually 

required to divert metabolism away from natural cellular processes and toward production. 

While sensor-reporters provide a means of detecting high producers, sensor effectors can be 

used to dynamically modulate metabolism in response to the production of a compound of 

interest or its precursors providing new means to enhance yields.

Engineered metabolic pathways require coordination to limit the production of toxic 

intermediates and prevent hindrances on growth. In an early example of dynamic metabolic 

coordination, Farmer and Liao (2000) [14] enhanced E. coli lycopene production by placing 

lycopene-producing genes under the control of a promoter activated in the presence of acetyl 

phosphate (indicative of excess flux to acetate production). E. coli produce acetyl phosphate 

and acetate when they have excess glucose, but acetate retards E. coli growth. Farmer and 

Liao [14] hypothesized that high acetyl phosphate concentrations would be indicative of a 

metabolic state ideal for lycopene production; instead of diverting excess glucose into toxic 

acetate, acetyl phosphate induction of lycopene genes could re-direct excess glucose into 

lycopene synthesis. This strategy successfully increased lycopene production by greater than 

ten-fold compared to strains with lycopene production genes under the control of a lactose 

inducible promoter.

Our lab has demonstrated the use of an inducible degradation system to modulate E. coli 
fatty acid metabolism for the production of medium chain fatty acids [63] (Figure 3). E. coli 
require long chain fatty acids for normal growth, but medium chain fatty acids are potential 

precursors to fuel-like compounds. To divert E. coli fatty acid synthesis away from the 

production of long chain fatty acids, we replaced one of E. coli’s two fatty acid elongating 

enzymes with a mutant that can only elongate the fatty acids up to eight carbons. We then 

made the degradation of the second enzyme inducible by the small molecule isopropyl β-

D-1-thiogalactopyranoside (IPTG). Replacing both enzymes with mutants would likely have 

been lethal, but the inducible degradation system allowed us to push fatty acid synthesis 

toward medium chain fatty acid production. These efforts, combined with further enzyme 

deletions designed to shunt cellular resources into fatty acid production, resulted in the 

production of the medium chain fatty acid octanoate at 12% theoretical yield. Future efforts 

could use sensors to link similar degradation systems to growth or fatty acid production 

instead of IPTG.

Similar strategies have been used to improve amorphadiene [16], alpha-santalene [13], fatty 

acid [15,17*], and fatty acid ethyl-ester [12] production. It is important to note however, that 

it is unclear whether these strategies can be used at commercial scale.

 3. Multi-cell Effectors

While single engineered cells are powerful tools, greater functionality can be achieved by 

chemically coordinating activities between multiple cells, strains, or species. The use of 

coordinated consortia can limit the need for researcher intervention, provide means to 

stabilize compound production by limiting toxicity and/or providing a selective advantage to 
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high producers, and enhance yields. Applications of chemically coordinated cellular 

consortia are only just beginning to take shape, but synthetic biology provides us with the 

tools to chemically coordinate the activities of multiple organisms, as discussed below.

 Quorum Sensing

Microorganisms use quorum sensing (QS) to measure population density through sensing 

the concentration of a small molecule produced by members of the population. QS allows 

microorganisms to restrict certain behaviors (e.g. virulence, sporulation, and light 

production) to particular population densities (Reviewed in [64]). Many QS molecules, 

production enzymes, sensors, and responsive promoters have been discovered [64]. These 

QS tools allow researchers to coordinate engineered activities within microorganisms. For 

example, researchers must measure population density when using bacteria to produce 

recombinant proteins or useful chemicals. If production is turned on too early or too late, 

yields can be limited. Quorum sensing provides a useful means through which engineered 

bacteria can measure their own population density and has the added advantage of 

preventing the use of a potentially expensive inducer molecule [22,23,65] (Figure 1C).

QS can also be used to regulate population density and composition. Mixed microbial 

consortia offer the possibility to partition engineered functions into optimally engineered 

and cooperating microbial strains or species. QS systems can be used to both activate and 

repress gene expression [66]. Altered gene expression due to Inter-microbe QS can be used 

to modify population structures as may be necessary in complicated microbial production 

schemes [21,24,65,67]. For example, You et al 2004 [24] used QS controlled cell lysis to 

regulate E. coli population density. Such a system could be used to maintain an engineered 

strain at a desired and/or safe level. Hong et al 2011 [21] used QS to regulate the bacterial 

composition of a biofilm. Such biofilm tuning could be used to effect dynamic metabolic 

output. QS systems can also be incorporated into logic gates [68] and have been use to drive 

bacterial localization to cancer cells [69]. These developments provide us with many tools, 

but QS systems await the realization of their full potential in synthetic systems that produce 

commodity chemicals or treat human disease.

 Coordinating Metabolic Pathways

It is not always beneficial or possible to engineer all the components of metabolic pathways 

in a single organism. Different organisms have different natural metabolic propensities and 

sensitivities to toxic compounds. It can therefore be advantageous to use multiple organisms 

to carry out a complex task. For example, Minty et al 2013 [70*] co-cultured a fungus that 

naturally breaks down cellulose with E. coli engineered to produce isobutanol; they showed 

that the two can convert cellulosic biomass into isobutanol. In this example, the E. coli are 

essentially parasitic to the fungi because they use fungal resources and produce a compound 

(isobutanol) that inhibits fungal growth.

Chemicals produced by consortium members can be used to foster mutualisms, in which the 

members of the consortium are dependent upon one another for growth. One way to 

establish mutualism is to have one member of a two-component consortium consume a toxic 
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product produced by the other member (Figure 4). For example, Zhou et al 2015 [25**] used 

a consortium of S. cerevisiae and E. coli to produce oxygenated taxanes (precursors to anti-

cancer therapeutics). A portion of the metabolic route to the oxygenated taxanes was 

previously engineered in E. coli, but further processing required the use of cytochrome 

P450s that negatively impacted downstream steps in the pathway [71]. To avoid these 

negative impacts, the authors separated the pathway into components in E. coli and S. 
cerevisiae. The E. coli were capable of consuming provided xylose and produced 

oxygenated taxane precursors, but also produced toxic acetate as a byproduct. The yeast 

used the acetate as their carbon source thereby limiting its toxicity. The yeast then produced 

the cytochrome P450s and completed the pathway to oxygenated taxanes. This mutualistic 

consortium nearly doubled its production of oxygenated taxanes compared to a mixed 

culture where the E. coli and the yeast competed for glucose. A similar system was used by 

Bayer et al 2009 [26] to produce methyl halides from cellulosic biomass.

Further examples of metabolic coordination for the production of useful compounds are rare 

(Reviewed in [30]), but current research provides additional tools to link microbial 

metabolism. Microbes can be artificially linked through cross feeding essential metabolites 

[72,73], metabolites can be used for inter-strain and even inter-species signaling [27,74], and 

co-dependencies fostered by cross feeding can be used to select for the production of a target 

compound [75]. Equipped with these tools, future efforts should be able to generate many 

more mutualistic interactions that foster the cooperation of organisms with diverse 

functionalities.

 Conclusion

We have come to the point in synthetic biology where there are many lab-scale or proof-of-

concept examples of chemically controlled systems useful to sense small molecules, treat 

disease, and produce commercially useful compounds. These systems have great potential, 

but more attention needs to be paid to their stability, efficacy, and safety. Being that the 

sensor-effectors discussed above function in living, evolving organisms, it is unclear how 

well they will retain function when distributed in a patient or in a large-scale bioreactor. 

Future efforts should focus on developing these sensor-effectors for real-world application. 

Engineered organisms will only be useful if we can prove that their functions are reliable, 

predictable, and cost effective.
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Figure 1. 
A) Sensors (blue polygons) are the basic functional units microorganisms use to detect 

chemical stimuli (red triangles). Sensors act through effectors to achieve a particular 

function. Reporters (green sun) are simple effectors that provide an easily measured readout 

(growth, fluorescence) to indicate that a sensor has detected a particular compound. B) 

Whole cell effectors (purple circle) drastically alter cellular behavior allowing 

microorganisms to carry out a variety of functions. Effectors can give microorganisms the 

ability to incorporate signals from multiple sensors [1-4], to fight pathogens (left) [5*-11], 

and coordinate microbial metabolism to produce useful compounds (right) [12-17*]. C) 

Chemicals (red triangles), sensors (blue polygons), and effectors (purple circles) can 

coordinate populations of multiple cells, strains, or species with specialized abilities to 

detect or produce chemical stimuli resulting in the performance of tasks with labor shared 

among the population [18-25**,26,27]. In this example, growth leads to increased 

concentration of a chemical signal (red triangle) that coordinates the production of an 

effector (purple circle) by the entire population.
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Figure 2. 
Using sensors to screen for high yields of a desired compound. The bacterium on the left has 

been engineered to produce lysine (red triangle) which is sensed by a transcription factor 

(blue polygon) that activates the expression of GFP. After mutagenizing this strain, lysine 

production by different mutants can be detected via their level of GFP expression. Mutants 

that produce high amounts of lysine also produce high amounts of GFP and can be picked 

for further mutagenesis. Directly measuring lysine quantities produced by different stains 

using a technique like liquid chromatography mass spectroscopy (LC-MS) confirms the 

correlation between GFP expression and lysine production.
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Figure 3. 
Inducible inhibition of fatty acid elongation to enhance medium chain fatty acid production. 

In the system used in [63], fatty acid elongation was inhibited by an effector (purple circle) 

whose transcription was activated by exogenously added IPTG (red triangle). This slowed 

fatty acid synthesis and enhanced the production of the medium chain fatty acid, octanoate. 

Future systems could sense long chain fatty acids and avoid the need to add an exogenous 

inducer like IPTG.
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Figure 4. 
Coordinating multi-microbe metabolism. Multiple organisms can be coordinated through 

chemical exchanges and metabolism to produce a desired compound. Here the organism on 

the left eats glucose and has been engineered to produce the blue circle, but also produces 

toxic acetate as a byproduct. The organism on the right further converts the blue circle into 

the end product (yellow star) and also eats the toxic acetate thereby promoting the growth of 

the organism on the left. Due to their linkage through acetate, the organisms are mutually 

dependent upon one another for optimal growth.
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