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Abstract

Over the past decade, protein-protein interactions have gone from being neglected as 

“undruggable” to being considered attractive targets for the development of therapeutics. Recent 

advances in computational analysis, fragment-based screening and molecular design have revealed 

promising strategies to address the basic molecular recognition challenge: how to target large 

protein surfaces with specificity. Several systematic and complementary workflows have been 

developed to yield successful inhibitors of protein-protein interactions. Herein we review the 

major contemporary approaches utilized for the discovery of inhibitors and focus on a structure-

based workflow, from the selection of a biological target through design.
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 Approaches to Targeting Protein-Protein Interactions

Selective recognition of one protein by another – protein-protein interactions, or PPIs – 

governs the three key dimensions of cellular life: growth, survival, and differentiation. 

Modulators of these interactions are critical both for understanding cellular networks 

governing biological functions and for developing new therapeutics. Despite their 

fundamental role, PPIs are often considered unattractive targets for drug discovery as 

illustrated by the fact that less than 0.01% of PPIs composing the interactome have been 

targeted with an inhibitor [1]. However, recent advances in proteomics, computational 

chemistry, and ligand design provide new road maps for manipulating these recalcitrant 

targets.

In this perspective, we focus on structure-guided approaches to develop PPI inhibitors. We 

begin with a brief discussion of workflows for phenotypic and target-guided screens as well 

as structure-based design. Within structure-based design, we highlight two complementary 
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approaches rooted in fragment-based design and protein domain mimicry for rational design 

of PPI inhibitors. These methods rely on the mimicry of interfacial residues that contribute 

most significantly to binding. Identification of these critical contacts, termed “hot spot” 

residues, is facilitated by computational assessment of protein-protein complexes.

 Phenotypic Screens

Approaches to inhibitor design can be categorized into (a) phenotypic screening, (b) target-

based screening and (c) structure-based design (Figure 1) [2, 3]. In phenotypic screens, also 

referred to as “forward chemical genetics,” the goal is to find a hit from a collection of 

compounds that leads to a desired and specific biological result such as inhibition of mitosis, 

modulation of transcription of a particular gene, or inhibition of specific kinase signaling[4]. 

Phenotypic screens are often performed with libraries of drug-like molecules, and 

compounds that emerge from these screens become attractive leads for drug discovery [3]. A 

key benefit of phenotypic screens is that it provides impetus for finding new targets that 

drive the desired biological activity[4]. Several compounds that gave the field of chemical 

genetics its initial appeal have been discovered through phenotypic screens. Monastrol, an 

inhibitor of mitotic spindle formation, was found in a small molecule library during a search 

for compounds that induced changes in spindle formation without perturbing tubulin 

polymerization[5, 6]. Discovery of monastrol also led to the discovery of its target, motor 

protein Eg5, establishing the elegance and potential of forward chemical genetics[6]. 

Similarly, the anticancer drug lenalidomide, which has been approved by the USA FDA, was 

discovered from a phenotypic screen, but the elucidation of its target, an E3 ligase protein 

cereblon, did not occur until years after its approval in 2012[3, 7]. Not surprisingly, target 

identification and determination of mechanism of action of advanced lead compounds 

remain significant bottlenecks[2]. Several high-throughput mass spectrometry strategies 

have been implemented to mitigate this challenge. They include, but are not limited to, 

classic affinity pull-down assays, activity-based protein profiling (ABPP), chemical capture 

compound assays, stable isotope labeling by amino acids in cell culture (SILAC), isotope-

coded affinity tag (ICAT), isobaric tags for relative and absolute quantification (iTRAQ), 

drug affinity responsive target stability (DARTS), and stability of protein from rates of 

oxidation (SPROX)[4, 8, 9].

 Target-based Screens

In target-based drug screening, also referred to as “reverse chemical genetics,” specific 

compounds are screened to modulate a particular target or protein of interest[4]. This 

approach requires a biologically validated target or pathway; however, a high-resolution 

structure of the target is not needed. Target-based drug discovery has gained prominence 

with growing understanding of cellular networks and molecular targets from genome 

sequencing[3, 10]. Several methods, including ELISA-based screens, split luciferase, and 

yeast two-hybrid assays, are widely used to screen compounds against a desired protein of 

interest both in vitro and in vivo[11]. These approaches do not require an intimate 

knowledge of the molecular details of targeted protein interfaces. Nutlins, which are small 

molecule ligands of Mdm2 and potent inhibitors of the p53/Mdm2 interaction, were 

discovered from a target-based high-throughput screen[12, 13]. While high-throughput 

Modell et al. Page 2

Trends Pharmacol Sci. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



screening has become relatively low cost and efficient, replication of the protein-protein 

interaction within the assay often remains problematic. For example, only part of the protein 

target may be able to be expressed and amenable to an assay format, or multi-protein 

complexes and other co-factors play a more substantial role in vivo as compared to what is 

replicated in the assay[14]. Another general challenge of screening approaches for PPI 

targeting is that often the compound libraries are not structurally diverse enough to target 

large and diffuse interfaces[15]. To address this challenge, several groups are developing 

strategies for the synthesis of complex natural product-like libraries[16-18].

 Structure-based Design

In contrast to the screening techniques, structure-based design relies on the use of structural 

models to rationally design small molecules or peptidomimics for targeting a PPI. 

Homology models may be utilized in the absence of high-resolution X-ray crystal or NMR 

structures[19]; however, the availability of high-resolution structures enables in silico 
evaluation of the target complex, thereby significantly streamlining identification of PPI 

modulators[20, 21]. Several structure-based design approaches have been developed 

including fragment-based design and mimicry of folded protein domains that display the 

important binding functionality.

Critical steps in the rational design process begin with the selection of the target. The target 

must be both biologically relevant and the PPI interfaces must suggest that the complex is 

amenable to disruption by a synthetic modulator. Numerous biochemical and biophysical 

assays, as well as computational prediction algorithms, have been developed and utilized to 

identify both binary PPIs and multi-protein complexes[22, 23]. The recent explosion of 

information emanating from the “omics” fields has produced a wealth of data resulting in 

over 300 pathway and interaction databases [22, 24]. Gene knockdown strategies such as 

RNAi or CRISPR-Cas9 screens, offer efficient methods for experimentally defining the 

biological relevance of an interaction in a pathway[25, 26]. Additionally, synthetic lethality 

assays have aided the elucidation of genes and proteins linked with disease states[27]. 

Combined, these strategies have greatly contributed to the understanding of PPIs associated 

with cancer and other disorders and revealed attractive PPI targets.

AbbVie’s venetroclax, which was approved by the FDA in April 2016, provides a landmark 

example of structure-based drug design[28]. Generation of lead compounds for its target 

protein, apoptotic regulator Bcl2, was achieved by a novel NMR-based approach[29, 30]. 

Although the redesign of analogs and clinical trials culminating in the approval of the drug 

took over 20 years, the biochemical tools and methods implemented for the discovery of this 

PPI inhibitor provide a roadmap for future success.

 Mode of Modulation

Both orthosteric and allosteric PPI inhibitors have been described (Figure 2)[31, 32]. 

Modulation of PPIs by either mode of binding can lead to complex inhibition or 

stabilization. Similarly, both complex inhibition and stabilization can lead to either 

inhibition or activation of biological function. In regards to the mode of modulator binding, 

allosteric modulators are attractive because large molecules may not be required to morph 
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the protein-binding surface by altering protein conformation[33, 34]. However, prediction of 

protein motion and dynamics in response to ligand binding remains non-trivial, thus rational 

design approaches often seek to develop orthosteric modulators that mimic critical features 

of the binding interface.

PPI stabilization represents a promising mode of modulation because binding to a pre-

existing complex is more energetically favorable relative to inhibition of complex 

formation[31, 35, 36]. Roche has described synthetic stabilizers, RO-2443 and RO-5963, 

which activate p53 signaling and induce apoptosis in breast cancer cells by stabilizing 

MdmX dimers. MdmX regulates p53 activity, and its complex with p53 has been a long-

standing target for inhibitor design[13, 37]. The Roche compounds illustrate that the same 

desired biological results may be obtained, for MdmX-overexpressing cancers, through an 

alternative mode of action[38]. This elegant result highlights the considerable potential of 

PPI stabilizers.

 Computational Analysis of Protein Complexes

The central hypothesis guiding rational design of PPI inhibitors is that while the interfaces 

are large and diffuse, some local regions are more critical for binding interactions than 

others[39, 40]. These binding regions often feature a small subset of residues that contribute 

significantly to the free energy of binding[41]. Several computational methods have been 

developed to quantify the influence each residue has on the overall binding of a protein-

protein complex.

Alanine scanning mutagenesis offers an effective approach for identifying hot spot residues - 

residues whose substitution with alanine leads to a decrease in binding energy by ΔΔG ≥1 

kcal/mol are considered important contributors (Figure 3)[42-44]. Identification of hot spot 

residues at protein-protein interfaces provides a powerful starting point for rational 

design[45, 46]. Small molecules or peptidomimetics that reproduce the functionality of these 

hot spot residues have been shown to be potent inhibitors of PPIs. For example, in the well-

studied p53/Mdm2 interaction, three residues (Phe19, Trp23, and Leu26) from the p53 

activation domain are known to be strong contributors to binding as shown alanine 

scanning[47, 48]. Several compounds that mimic Phe19, Trp23 and Leu26 with either small-

molecules or peptide-based backbone scaffolds have been shown to successfully inhibit the 

p53/Mdm2 interaction[13, 37, 49-51]. Additionally, analysis of changes in solvent-

accessible surface area (ΔSASA) upon binding also offers a valuable tool for judging the 

relative importance of interfacial residues[52]. Both alanine scanning and ΔSASA 

measurements reveal native residues that make important contacts with the target surface 

using different metrics.

Emerging in silico approaches are also exploring a complementary question: which native 

interfacial residues can be optimized to make increased contacts to the target protein? This 

question is pertinent because nature has not designed all protein-protein interactions to have 

the highest possible affinity, thus not all native residues make the best possible contacts. 

Computational approaches that systematically reveal underutilized contact surfaces provide 

a powerful tool for rational design (Figure 3)[53-55]. Both natural and non-natural residues 

have been used to aid in the design of potent inhibitors to optimize native hydrophobic and 
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electrostatic contacts with the protein surface[56]. The inherent structural plasticity of 

protein-protein interactions provides a major challenge for structure-based efforts that often 

utilize static models for inhibitor design. Recent efforts with molecular dynamic simulations 

suggest the exciting possibility of revealing cryptic surface pockets that may be suitable for 

modulation by allosteric ligands[57-60].

Fundamentally, inhibitor design may be approached from engagement of the target 

“receptor” surface or mimicry of the “ligand,” i.e., hot spot residues. Following these ideas, 

the strategies that utilize hot spot information to develop potent inhibitors may be subdivided 

into fragment-based design to target pockets on the “receptor” or direct mimicry of protein 

contact residues on the “ligand.” Both strategies capitalize on the identification of key 

contact residues and pockets found in the native PPI but often differ in their approach to 

targeting these regions. Fragment-based design searches for potential “anchors” for further 

elaboration with less of a focus on the connection between these “anchors,” while protein 

secondary and tertiary structure mimicry efforts consider the folded protein backbones as 

scaffolds that display critical side chains[52]. Figure 4 provides a schematic illustrating this 

decision point for a protein complex. After computational analysis of the PPI, an inhibitor 

can be designed to engage and fill the receptor’s pockets (a fragment-centric approach) or 

mimic the backbone geometry of the ligand protein chain displaying hot spot residues (a 

protein domain mimic approach). It should be noted that both fragment-based design and 

protein domain mimicry can be achieved with protein backbone scaffolds or small 

molecules[61]. Both techniques are plausible as long as the pockets on the receptor are 

targeted, or the hot spots on the ligand are mimicked, respectively.

 Fragment-based Design

Successful PPI modulators are generally larger than traditional drugs, typically double or 

triple the molecular weight range preferred for enzyme inhibitors[62]. Drug-like libraries, 

developed for traditional drug targets, often lack the characteristics needed to engage a 

protein’s surface[62, 63]. Thus, screening of drug-like compound libraries against PPI 

surfaces often leads to nonspecific and low affinity hits. To address these limitations, 

fragment-based screening techniques have been developed[63, 64]. These techniques work 

well since modulators of PPIs may be viewed as assemblies of multiple drug-like molecules 

or fragments stitched together.

Many screening and validation techniques as applied to PPIs are the same when applied to 

traditional drug targets but have required modifications to interpret weaker affinities between 

fragment and target. Due to the reduced contact area and increased solvent exposure of a 

protein binding interface, the affinities of initial fragment hits for a PPI (KD 0.1-5 mM) are 

often lower than those for a traditional drug target[64, 65]. To address this problem, 

pioneering work by Wells et al. developed a covalent ‘tethering’ approach in which 

fragments containing thiol moieties are utilized to form disulfide bonds with strategically 

located native or engineered cysteine residues[66-68]. Optimization of a fragment-based 

modulator can be performed through: (i) linking small fragment moieties after concurrently 

optimizing each piece for a particular pocket, known as fragment linking, or (ii) 
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progressively growing the fragment chain with successive optimization after each step of 

chain elongation, known as fragment growing (Figure 5)[69, 70].

Complementary innovative efforts have established the potential of NMR to find fragment 

binding and elaboration sites[71]. Fragment-based lead discovery and determination of 

structure-activity relationships by NMR have now become established methods for the 

development of PPI inhibitors[29, 30, 72-76]. Other methods including X-ray 

crystallography, differential scanning fluorimetry (DSF), surface plasmon resonance (SPR), 

isothermal titration calorimetry (ITC), and fluorescence spectroscopy assays have also been 

adapted to address the challenge of finding lead fragments[64, 65, 77-79].

 Protein Domain Mimics

Proteins often utilize secondary and tertiary structures to display hot spot residues[80]. 

These folded domains are attractive targets for mimicry and inhibitor development since 

they naturally reproduce side chains in a favorable orientation to engage the target protein’s 

surface. The synthesis of protein domain mimics (PDMs) has a rich history in bioorganic 

chemistry with a focus on increasing cellular uptake and proteolytic stability. Recently, both 

peptidic and nonpeptidic molecules have been shown to be potent leads for the development 

of therapeutics targeting PPIs[15, 37, 81]. The motivation for the development of PDMs is 

straightforward: if nature uses these domains to bring proteins together, the same strategy 

would allow competitive inhibition of complex formation. Below, we discuss the different 

classes of PDMs, ranging from small molecule secondary structure mimetics to peptide and 

protein-derived tertiary structure analogs (Figure 6).

We and others have comprehensively surveyed the PDB using computational alanine 

scanning mutagenesis[43] analysis to define complexes mediated by helices[45, 82], 

strands[83], loops[84], and helix dimer interfaces[85] to provide a systematic starting point 

for the exploration of PPIs using PDMs.

 Helix Mimics—An analysis of high-resolution structures deposited in the Protein Data 

Bank (PDB) revealed that roughly 60% of multiprotein complexes feature a helix at the 

interface [45]. Further analysis revealed that a majority of these helices contain hot spot 

residues on one helical face, with the rest displaying critical functionality on two or all three 

faces for recognition. Helix mimicry has become a fertile avenue for discovery of potent PPI 

inhibitors. Two general strategies for helix mimicry have been described: (a) topographical 

helix mimics or helix surface mimics and (b) stabilized helices or foldamers.

Topographical helix mimics contain a non-peptidic scaffold to orient protein-like side chains 

into proper vectors to mimic the display of side chains on α-helices. This class of mimics 

includes generally low molecular weight compounds that mimic a single helix face[12, 61, 

82]. Since the report of the first example of a topographical helix mimetic, which was based 

on an aromatic scaffold[86], many different scaffolds have been described to afford 

compounds that are less hydrophobic than the original designs and can target more than one 

face of a helix[12, 56, 61, 82].
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Alternatively, stabilized helices or foldamers are often able to mimic up to 2-3 faces of the 

helix depending on the stabilization technique[87]. For example, helix side chain staples – 

involving lactams, thiols, triazole linkages, and hydrocarbons – require one face for 

stabilization and allow two faces for recognition [12, 61, 82]. Additionally, hydrogen bond 

surrogate (HBS) helices with stabilization through the peptide backbone, as well as 

foldamers comprised of judiciously placed α- and β-amino acids, can mimic proteins that 

require three faces for recognition[12, 61, 82, 88]. These mimics have been shown to 

modulate PPIs in cell culture and animal models[37, 81, 89, 90]. Recent advances in helix 

mimicry have been extensively reviewed, and we refer the reader to these excellent 

reports[12, 61, 91].

 β-Strand and β-Sheet Mimics—Despite the fundamental role of strands and sheets at 

protein-protein interfaces, application of β-strand or β-sheet mimics as modulators of PPIs is 

limited. Strand designs are challenging because mimics with appropriately placed hydrogen-

bonding groups tend to aggregate. An analysis of the PDB for β-strands found at PPI 

interfaces reveals that β-strands interact with protein partners in multiple ways: as a lone 

strand or a sheet, side chain recognition, and with or without engagement of backbone 

hydrogen bonding[83]. A number of scaffolds for each type of these structures have been 

designed[92-100].

 Macrocycles—Relative to α-helix and β-strand mimics, non-regular secondary structure 

(loop, turn, etc.) mimicry as a means to modulate PPIs is vastly unexplored. Analysis of the 

PDB identifies non-regular structures appearing at the interface of 50% of heterocomplexes 

and 41% of homodimers[80]. Loops have become a non-regular secondary structure of 

particular interest due to the potential to mimic these structures with macrocycles. 

Macrocycles have also seen a resurgence because they exhibit higher proteolytic and 

conformational stability and increased cellular uptake compared to linear peptides[101]. The 

attractiveness of macrocycles has grown with the emergence of in vitro selection[102], as 

well as on-bead screening strategies[103, 104] for isolation of compounds that bind desired 

targets. Systematic analysis of the PDB for loops at protein interfaces has provided a 

compelling impetus for rational design of macrocycles as PPI inhibitors[84].

 Tertiary and Quaternary Structure Mimics—The impressive success in the design 

of protein secondary structure mimics has been paralleled by substantive progress in the 

development of protein tertiary and quaternary structures where hot spot residues required 

for recognition lie on more than one secondary structure. Miniature proteins consisting of 

helical bundles, β-sheet barrels, and loops, along with synthetic antibodies[105-109] are now 

routinely used to enrich ligands for protein targets, especially for extracellular receptors. 

Significantly, many of these tertiary and quaternary protein structure scaffolds have been 

engineered for phage display, allowing rapid selection of potent sequences for desired 

targets. Synthetic protein tertiary structures with non-natural backbones have also been 

described[110-112].

Gellman et al. have demonstrated that protease-resistant oligomers consisting of both α- and 

β-amino acid residues can mimic peptides derived from the three-helix bundle “Z-domain” 

scaffold and target cell surface receptors with high affinity[110]. Arora and coworkers have 
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described a strategy for constraining short helix dimers for inhibition of protein-protein 

interactions that are mediated by such motifs[85, 113]. Successes in mimicking tertiary and 

quaternary motifs through design or recombinant technologies suggest the tractability of 

targeting PPIs with larger domains.

 Concluding Remarks

Inhibition of protein-protein interactions is rapidly becoming an attractive approach for 

generation of new therapeutics. The progress in the field is aided by the establishment of 

systematic approaches for target assessment, screening, and structure-based design. While it 

remains non-trivial to discover new inhibitors for protein complexes, computational tools 

now provide reliable assessments of hot spots and pockets found in PPIs, which offer 

reasonable starting points for inhibitor design. The optimism in the field stands in stark 

contrast to the rejection of PPIs as largely “undruggable” less than a decade ago.

It is now recognized that molecules larger than traditional drug compounds will be required 

for specific disruption of PPIs. While small molecules remain attractive as therapeutics, 

especially for oral bioavailablity, peptides and proteins are increasingly considered viable 

candidates. The successes in modulating proteins with peptides and peptidomimetics has 

been reflected in the number of FDA-approved peptide therapeutics. An unprecedented 

number of peptides have been recently approved or are currrently in clinical trials[114]. The 

success of peptides and proteins in the clinic promises to lead to a larger number of PPI 

therapeutics.

A critical challenge for structure-based design of ligands for protein surfaces – by small 

molecules, peptidomimetics, or designer proteins – is that natural PPIs are not always 

optimized for affinity or specificity. Typical drugs are potent molecules that exhibit high 

therapeutic index, i.e. selectivity for the target over a non-selective response. PPIs are often 

dynamic and transient in nature with partner proteins exhibiting weak affinity for each 

other[1, 115]. The challenge of developing potent selective binders is particularly difficult 

for strategies that seek to mimic surface residues. Since synthetic inhibitors only mimic a 

portion of the native “ligand” and bind to a limited surface area on the “receptor”, direct 

mimicry leads to weaker affinity than observed for the native interaction. This inherent 

limitation in protein surface mimicry may be overcome by use of nonnatural residues that 

access hidden pockets not accessible to native residues. Critical advances in computation are 

needed to create high-resolution surface maps and to define cryptic, transient pockets on 

protein surfaces thereby enabling design of exquisitely selective synthetic inhibitors.

We predict that in the near future, compounds will be designed for more challenging PPI 

targets such as intrinsically disordered proteins, which form a unique structure upon 

complex formation (see Outstanding Questions)[116-118]. Additionally, bi-specific PPI 

modulators that selectively target multiple proteins remain an unexplored area of research 

but will likely lead to exciting classes of compounds from both fundamental molecular 

recognition and drug design perspectives.
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Outstanding Questions

• Protein-protein interactions are considered challenging targets for drug 

design because drug-like small molecules often cannot inhibit these 

complexes. Would the larger compounds be orally bioavailable?

• How can we add stability, uptake and solubility properties to peptide-

based protein epitope mimics?

• Fragment-based screens and protein domain mimetics seek to develop 

inhibitors using seemingly different hypothesis. Will we see a 

convergence of fragment-based screening and protein domain mimics?

• Can intrinsically disordered proteins, that do not adopt a stable 

conformation until in complex with a partner, be targeted with synthetic 

ligands?
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Trends Box

• Natural protein complexes are not always optimized for affinity. 

Computational approaches to locate underutilized and cryptic pockets 

are leading to new classes of potent inhibitors.

• Traditional modulators of PPIs consist of orthosteric inhibitors; 

however, we are now seeing a rise in allosteric modulators as well as 

stabilizers of PPIs

• Protein secondary mimics have been well developed over the past 

decade, and now there is a push for the development of protein tertiary 

and quaternary mimics.

• Advances in proteomics are paving the way to identify direct protein 

targets of modulators.
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Figure 1. 
Approaches to inhibitor design can be categorized into phenotypic screening, target-based 

screening and structure-based design. Left: Phenotypic Screening. A compound library is 

screened in a model system (i.e. cells, mice, flies) and analyzed for a specific phenotype. 

Center: Target-Based Screening. A library is screened against a particular protein target of 

interest in cell free or cell culture assays. Right: Structure-Based Design. A protein of 

interest is computationally assessed to design a modulator. Binding and biophysical assays 

are then performed on designed modulators to determine the best compound.
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Figure 2. 
Modulators for PPIs may function using orthosteric and allosteric mechanisms to lead to PPI 

inhibition or stabilization.
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Figure 3. 
Computational analysis of PPIs. Starting from the native structure, alanine scanning 

mutagenesis (left) can be performed on the “ligand” to quantify how much each contact 

residue contributes to the overall binding of the complex. The example shows a 

phenylalanine residue mutated to alanine to analyze the contribution of Phe to binding. 

While, fragment-centric topographical mapping of the “receptor’s” surface (right) reveals 

underutilized contact surface area. The native residue may not be optimal and a nonnatural 

amino acid may provide added contacts. Surface mapping allows judicious exploration of 

nonnatural residues.
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Figure 4. 
Structure-guided design of PPI inhibitors. Hot spot contact residues (hot pink spheres) are 

identified through experimental or computational alanine scanning, mapped on the ligand 

protein (yellow ribbon), and analyzed to understand how they interact with the receptor 

protein surface (grey surface). Protein domain mimetics (PDMs) with high hot spot density 

(blue ribbon) can be chosen as starting points for inhibitor design. Nonnative residues may 

be utilized to optimize binding interactions. In a fragment-based design (FBD) approach, the 

consecutive hot spots on the high-density domain may be utilized as initial fragments, which 

can be optimized via fragment linking or growing.
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Figure 5. 
Fragment-based design. Top: Fragment growing. A single fragment is progressively grown 

to optimize contacts with the target protein. Bottom: Fragment linking. Multiple fragments 

that bind in nearby sites are individually optimized and subsequently linked together.
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Figure 6. 
Surface-exposed protein secondary structures often mediate binding of one protein with 

another (Top). Mimics of these folded domains can lead to potent PPI inhibitors. Several 

methods for mimicking protein motifs (Bottom). For example, mimicking an α-helix can be 

achieved by using side chain crosslinks, nonnatural oligomers that adopt helical 

conformations, hydrogen bond surrogates (HBS) and topographical/surface mimics that 

reproduce the side chain disposition. β-strands may be mimicked by nonnatural backbones, 

and turn inducers or macrocycles that hold peptide stands in β-sheet conformations. 

Emerging methods allow tertiary (3°) and quaternary (4°) structures to be stabilized by 

crosslinks or nonnatural residues. Key: Green denotes backbone analogs or nonnatural 

residues (i.e. β-amino acid residues). Blue and purple indicate constraints or cross-linkings. 

Orange indicates side chain residues placed to reproduce the orientation of the side chains 

coming from the canonical secondary structures. Protein (PDB: 3QKR), Helix Foldamer 

(PDB: 3S1K), Tertiary Foldamer (PDB: 2QMT).
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